UMLANT: An Eclipse Plugin for Animating and Testing
UML Designs

Trung Dinh Trong, Sudipto Ghosh, Robert B. France, Michael Hamilton, Brent Wilkins
Department of Computer Science
Colorado State University
Fort Collins, CO 80523

{trungdt, ghosh, france, hamiltom, wilkins}@cs.colostate.edu

ABSTRACT

We describe the UML Animator and Tester (UMLAnT),
which is an Eclipse plug-in for animating and testing UML
models. UMLANT can be used both by developers in the
software industry and students who are learning concepts in
object-oriented modeling. UMLAT helps designers visual-
ize the behavior specified in a UML model by displaying an-
imated object diagrams and sequence diagrams. UMLAnT
allows testers to specify test cases and notifies them about
failures during test execution.

Keywords

Eclipse, EclipseUML, EMF, UML, activity diagram, class
diagram, model execution, model testing, object diagram,
plugin, sequence diagram

1. INTRODUCTION

A number of software developers use the Unified Modeling
Language (UML) to describe designs at different levels of
abstraction, from conceptual to detailed design [1]. UML
designs typically contain multiple views that show differ-
ent aspects of the system being modeled. For example, the
class diagram view shows the structural aspects, and the
sequence and activity diagram views show the behavioral
aspects. Currently, designers have no way to observe the
modeled behavior until the designs are implemented and
executable code is available.

Understanding and validating large, complex designs that
are split into multiple views is tedious and challenging. De-
velopers typically read UML models to understand them
and perform manual reviews and inspections to establish
their correctness.

In this paper, we present an Eclipse plugin, UMLAnT, that
simulates the behavior modeled in a UML design. It helps
developers visualize the execution of a model using two types

of displays — object diagrams and sequence diagrams. The
user can step through operations and the views get updated
as execution proceeds. The object diagram shows the cre-
ation and deletion of objects and links, and the modification
of attribute values. The sequence diagram shows the mes-
sages sent between objects. Test cases for the model can be
specified using the JUnit style, and UMLAnNT notifies the
tester whenever a test fails.

UMLAnNT can benefit Computer Science students who are
beginning to learn object-oriented modeling and the UML.
They can use UMLADT to get quick visual feedback on their
models. Software developers in the industry can use UML-
AnT as a tool for rigorous testing of their models before the
models are implemented and design faults are passed into
the code.

2. UML DESIGN MODELS

In our approach, we can visualize and test models consisting
of (1) class diagrams that characterize a set of valid object
configurations, (2) sequence diagrams that characterize the
interactions between objects, and (3) activity diagrams that
describe class operations. OCL is used to describe invariants
and operation pre- and post-conditions. We assume that the
design models describe sequential behavior only. We also as-
sume that the diagrams are syntactically well-formed when
submitted to UMLAnT. This check can be done automati-
cally by UML editing tools.

Class diagrams give us information about object configura-
tions and are used both to define test objectives based on
the types of configurations that we would like to be tested
and to generate the executable form of the design model.

Sequence diagrams are used to define test objectives based
on the conditions and paths that we would like to test in
different scenarios. Because sequence diagrams only tell us
what messages (e.g., operation calls) may be sent from one
object to another, but not what happens inside the opera-
tion call, we obtain such information from the activity dia-
grams corresponding to the operations.

In our activity diagrams, we use the following types of ac-
tions: call operation actions, calculation actions, create and
destroy object actions, create and destroy link actions, read
and write link actions, and read and write variable actions.
The UML specification describes its action semantics, but

does not prescribe a surface language for specifying actions.
Therefore, we describe the actions using our Java-like Ac-
tion Language (JAL)', which supports the action semantics
described in the UML specification [4]. We designed JAL
such that its syntax is similar to Java; developers who wish
to implement the action semantics do not need to learn any
new syntax. JAL has constructs that deal with design ele-
ments, such as creating and deleting instances and links.

Class diagrams and the JAL representation of actions are
needed by UMLANT to test and animate the models. Se-
quence diagrams are optional and are only used for identi-
fying test objectives.

3. USING UMLANT

Test Input

Test

Failure

Execution

Sequence Diagram

Figure 1: Overview of the Approach.

Figure 1 shows an activity diagram summarizing the pro-
cess of using UMLAnNT. The tester first provides the UML
design model under test (DUT) to the UMLART. The Eclip-
seUML plugin is used to draw class and sequence diagrams
in Eclipse. UMLAnT provides the default ecore system ed-
itor that is used to specify operations in terms of actions
using the JAL. A similar mechanism is used to specify OCL
constraints.

The DUT is converted into an executable form using design
information in structural (class diagram) and dynamic (ac-
tivity diagrams) views of the design to simulate the behav-
ior of the model. Test scaffolding is added to the executable
form to automate test execution and enable runtime failure
detection. The combination of the executable form of the
design and the test scaffolding is called the testable form,
TDUT.

The tester begins test execution by providing UMLAnT with
a test input. A test input is a tuple consisting of two com-
ponents: a prefix P and a sequence of system events E.
Before a test is performed, the system is in an initial con-
figuration containing a basic set of objects (e.g., controller
or factory instances) that can create any valid configuration
of the DUT. The prefix, P, is a sequence of system events,
which is applied to the system in the initial configuration to
move it to the desired configuration in which testing can be
started. Testing is performed by applying to the system a
sequence, E, of system events, < e;,7 = 1..n >, where e; is
a system event. We restrict system events to be operation
calls.

UMLAnDT extends the JUnit framework to support the test-
ing of models. Test inputs are written in the form of JUnit
test cases. Each method in a JUnit test class contains code
to set up the initial configuration and a sequence of method

1See http://www.cs.colostate.edu/ trungdt/
publication/NileshThesis.pdf

calls that correspond to the sequence of operation calls. Cur-
rently the test cases are written manually. We are working
on the automatic generation of test inputs in the form of
JUnit test cases using ideas from symbolic execution and
constraint solving.

Testing is performed by executing the TDUT using the pro-
vided test inputs. During test execution, the effects of sys-
tem behaviors modeled by activity diagrams are observed
in terms of changes in the configurations. Test failures are
reported by UMLANT whenever the following situations oc-
cur:

1. Uninitialized variables in conditions (such as transition
guards in activity diagrams).

2. Uninitialized parameters passed in operation calls.

. Non-existent target object of an operation call.

. Pre-conditions before method execution evaluate to

false.

. Post-conditions after method execution evaluate to false.

6. Object configuration produced by the execution of a
system event violates constraints imposed by a class
diagram.

=W

[l

Testers use the failure data to locate the faults in the design.
Examples of faults include incorrect multiplicity specifica-
tions on the association ends in a class diagram, or missing,
faulty, and incorrectly ordered actions in an activity dia-
gram.

During test execution, the trace of system behavior is recorded.
At the end of the test, the tester can use UMLAnNT to step
through the trace. UMLANT provides the object diagram
view and the sequence diagram view to illustrate changes
in the object configuration. The object diagram view shows
how the object configuration changes during test execution.
The sequence diagram views show the messages exchanged
between the objects. Both views get updated as the tester
steps through each action.

4. ECLIPSE PLUGIN

Model Compiler
XMI Parser TDUT Generator
T T
1 -—— -
> v
Model Manager
€~ - - =|{ JAL/OCL Editor

Model Execution Manager]

1 1

Test Infrastructure

Execution Animator

Figure 2: UMLANT Architecture.

Figure 2 shows the architecture of UMLANT. The subsys-
tems are as follows:

‘ﬂ Java - eTX_Example.ecore - Eclipse Platform

Jeles

Fle Edit MNavigate Search Project Run Sample Ecore Editor Window Help

| @13ava 2

H Category

category

= categorylD: Ent
= categoryDescription: EString

4 addProduct(
getiD(}
category | g

[3) Tobjectjava
[3] Tobjectset java
i |2 Prajectuse
] testable_models.Project,Framevork
| @8 testable_models. Project.Tests

| T &@ -0 | HHE- | ™ G-
| [Package Explorer 53 . Hierarchy | = 0| et _Example.ecd - eTx_Example 52
ES ~|nQ | # B 2 a8y Ay
& Demo-EPTUD P ' o !
i[5 eptud
5 2 eTX_Example H ProductCatalog | ..,
e
. = testable_models Project - || ## addCategory(1
B3] G y.javi
& [¢ v 1| catalog
- [3) Productjava g * | product
& [J] ProductCatalon.java arcduct
&[] ProductCatalogset.java & Product
E -| = D:Elt
&
Al [3) TGlob: o setD)
& h
-

) eTX_Example.2core 54

L7 Resource Set

& JRE_LIB - C:\Program FileslJavalret.5.0_03ibl tar 5 @ eTX_Example

& ECLIPSE_CORE_RESOLRCES fipse \pluginsiorg.ec 5[Product

& EMF_COMMOR - C: \Edipse'plugins lorg.ecipse. emf.cam T setD(END
i EMF_ECORE lipse \plugins'org. ecipse.emf.ecare i ——

. colostate,cs.umiant_L.0
igins\edu. colostate, cs.uml

e
‘edu.colostate.cs.umlant_

= H ProductCatalog

Eo e e S o

-

LS

-

= iget Taokit (SWT)
i &Y eTX_Example.ecd

&Y eTX_Example.ecare = Category

S| £TX_Exampie.ecore.iny + & setD(ENY

=i eT¥_Example.ccare jal

S| eTX_Exampie.mtd

UMLANtExample

gl
= |Consale

] I J [2]

| Selected Object: addCategory EString)

[¥} categol

= &Y platform: jresource /eTX_Example/d

¥ catalog : ProcuctCatal
gory : Categary

4 addCategory(ESting)

&3 product : Product
52 category : Category

Problems | Javadoc Dedaraton | Bl cons:

4 ==tCategoryDescription

1

Operation Behavior in JAL for addCategory =
Fategory catg; .
catg = _create_object_Category(); 1)
catg, =
catg.setCategoryDescription(catDsc)
_rreate_link_PraductCatalog_Category_category_cataloglcatg, this);

vl
8
Ok

Figure 3: UMLANT Input Screen.

1. The JAL/OCL Editor is used to specify the model
under test (DUT).

o

3. The XMI Parser parses the class diagrams saved in
the XMI format.

4. The Model Manager maintains instances of the UML
metamodel (i.e. the models under test).

5. The Test Infrastructure executes tests and reports fail-
ures.

6. The Ezecution Animator helps visualize the execution.

4.1 Model Specification

The Eclipse Modeling Framework (EMF) and Omondo Eclip-
seUML plugins are used to draw and specify the DUT. An
XMI Parser is used to parse the models and generate an
instance of the UML metamodel inside the Model Manager.
Figure 3 shows the model input screen of UMLAT with an
example operation specification presented by the editor in
the bottom right of the figure.

4.2 Generation of the Testable Form

The UML design models are first transformed into executable
Java programs that simulate the behavior of the model.
UML classes, attributes, and operations are transformed
into Java classes, state variables and method declarations.
For each class, C, in the DUT, a collection class, SetOfC, is
generated. An instance of SetOfC' maintains a collection of
instances of C. The SetOfC class is needed to take care of
association-end multiplicities that are greater than 1. The
SetOfC class has methods to add (or remove) an instance
of C to (or from) the collection. Association ends are trans-
formed into Java attributes with collection class types. For
more details on transforming UML class diagrams into Java,

The Model Compiler generates the testable form (TDUT).

please refer to [2].

A class named TFactory is generated from the class dia-
grams. This class has public methods to create and destroy
instances of every class and association in the class diagrams.

Activity diagrams are transformed into Java method bodies
using the following rules:

1. Call actions become Java method invocations.

2. Return actions become return statements.

3. Create object actions become Java object creation state
ments.

4. Java condition (if then ... else ...) and loop
structures (while ...) are derived from activity con-
dition and iteration structures respectively.

5. Object (or link) create and destroy actions are trans-
formed into appropriate invocations of the methods in
TFactory.

Test scaffolding is added to the executable Java program
to generate the TDUT. Scaffolding includes test drivers and
code to detect test failures. Test drivers contain Java code to
(1) create the initial configuration, (2) apply test inputs to
the system, and (3) execute tests. Failure detection involves
execution of code that checks for certain failure conditions
as described in Section 3.

Checking for uninitialized variables in conditions, uninitial-
ized parameters in operation calls, and existence of target
objects is performed by code inserted in the TDUT. Pre-
conditions, post-conditions, and object configurations are
checked using the facilities provided by the USE tool [3].

The USE tool enables validation of an object configuration
against the constraints described in a class diagram. This
tool accepts UML class diagrams in its own textual format.
Therefore, UMLADT transforms the DUT into USE format.
During execution, the USE tool maintains its own represen-
tation of the object configuration. When testing begins,
UMLANT signals USE to create its representation of the
initial configuration. As both tools perform a different set
of failure checks, they maintain their own copies of the con-
figuration. Whenever the configuration changes, USE is in-
formed about the modification, so that both UMLAnT and
USE always maintain the same configuration. The changes
in the configuration include adding or removing an object
or a link, and modifying an attribute value.

UMLANDT provides the USE tool with pre- and post-conditions

specified in the OCL and requests USE to validate them be-
fore and after the execution of every operation. After the
execution of every system event in the test input, UMLAnT
signals USE to check the object configuration against the
class diagram constraints.

4.3 Test Execution and Failure Reporting

Test Infrastructure
«interface» .

TestObserver
TObject TestDriver

TObjectSet

10 +executeTest()

2\ AN

TDUT

1

\|/_,_ Category || 1

SetOfProduct TFactory

Product

) *

1 «Uses» 1

Use Interface Use 1

TestDriverimpl

+executeTest()

Figure 4: Classes in the Test Execution Phase.

Figure 4 shows the UMLANT classes that are involved in the
testing phase. The TestInfrastructure and TDUT packages
are generated for every model. The TDUT package contains
classes that are specific to the model, in this case, a Product-
Catalog subsystem containing classes such as Product and
Category. Only some classes in the TDUT are shown for
lack of space.

TObject is a superclass of all the classes in the TDUT, which
correspond to the classes in the DUT. TObjectSet is a super-
class of the collection classes. TestObserver is an interface
that allows the Test Infrastructure package to report fail-
ures.

TestDriver is an abstract class representing the test cases. It
extends the JUnit framework to support a test environment

for testing UML designs by providing a base class for the
model test drivers, a graphical user interface for displaying
progress and results of test execution, and an assertion func-
tion, assertConformance (), that delegates the validation of
object configurations to the USE tool. The TestDriver class
has an abstract method named executeTest ().

For each test case, the tester needs to create a class, Test-
DriverImpl, that is a subclass of TestDriver, and override the
method executeTest (). The method body has two parts: a
prefix to create the start configuration and a sequence of sys-
tem operation calls. The prefix contains a series of TFactory
method invocations to instantiate objects and links between
them. In some cases the prefix may contain a few method
invocations to set the object attributes. A system operation
call is an invocation of a public operation of an object. The
sequence of system operation calls in a test driver represents
the sequence of system events in the corresponding test case.

ctlg:ProductCatalog

ctlg:ProductCatalog| +

:Category

categorylD = 1
description = "Tape"

(a) The Start Configuration| (b) The Final Configuration After
The Test Execution

class TestDrivelmpl extends TestDriver{
void executeTest(){
/[create start configuration
ProductCatalog ctlg = factory._create_object_ProductCatalog();
//Send test signal(s)
ctlg.addNewCategory("Tape");
}

}
(c) The Code For Method executeTest()

Figure 5: Object Configurations Resulting From
executeTest ().

Figure 5 shows an example of the object configurations that
result from the execution of a test method. Figure 5(c)
shows the method executeTest() that a tester provides
as a test input. The prefix part of the method creates
the start configuration shown in Figure 5(a). The start
configuration contains an instance of class ProductCatalog.
The sequence of system operation calls contains the call
ctlg.addNewCategory("Tape"). Figure 5(b) shows the fi-
nal configuration after the test is complete.

When a test case denoted by the class TestDriverImpl, UM-
LAnT invokes the method executeTest(). The failure de-
tected by USE or UMLANT is reported using the interface
TestObserver.

4.4 Model Animation

During test execution, the result of every action performed
by each object is recorded in a log file. The test anima-
tor reads the log file and updates the sequence and ob-
ject diagram views. Whenever the action involves chang-
ing an attribute value, and creation or deletion of a class
or association instance, the object diagram view is updated.
Whenever the action involves sending a message, and cre-
ation or deletion of an object, the sequence diagram view is

HModel Animator

Model Animator

L@ BIE]

r\la Cis pa, Help

[|

Ohject Diagram Sequence Diagram 1

< eabe>>—bl

MewCategary ()

: =
O8] Z:Categon]~ .
1 |@t0bj_1:F‘roductCatalog‘

File Display Help

8|

Object Diagram 1SEquence Diagram]

© tObj_2:Category

o categorylD = L

“create>>

% Obj_‘[ProductCatalog
}7

’—a

\

\

\

=l

v

|
|
|
| o_description = Tape
1
\
|
I

E3] (2]
| eventType] Attribu.. .] callingffirst dass name] callingflex|
[object create |
Eal object create.

“object creste SempleTestCasefor., testOne ¥
1%l i

(a) The sequence diagram before the call operation action

(c) Object diagram before a link creation

' Model Animator

BEX

' Model Animator
Fil= Display Help

Filz Display Help

8 | OB 3

Object Diagram Sequence Diagram

/li ObJ 1 ProductCatan

AC‘DT’
<4.r.1 eab&>>—J
’—Edﬂl‘lEi\ Category) —bl

Obj_2:Category| |

o |k Wj

Object Diagram lSEquencE Diagram]

@ 1Obj_1:ProductCatalog] [‘

© tObj_2:Category
o categorylD = 1
o_description = Tape

<oreate>>

v]

Ty

*] 2]
eventType 1 Abtribu... | caling/first dassname ca{lwngrf:t\j
I object create e
5 e object create

object create SampleTestCaseFor... testonel ¥

(b) The sequence diagram after the call operation action

(d) Object diagram after a link creation

Figure 6: UMLAnNt Animation Screen.

changed. Figure 6 shows an example of sequence diagrams
(parts (a) and (b)) and object diagrams (parts (c) and (d))
created by UMLAnT during the animation of test execu-
tion. Figure 6(d) shows the creation of the link between the
instances, t0bj_1:ProductCatalog and t0bj_2:Category in
Figure 6(c).

5. CONCLUSIONS AND FUTURE WORK

We presented an Eclipse plugin, UMLANT, that can an-
imate and test the behavior of UML models. UMLAnT
is integrated with some widely used software development
technologies, tools and languages, such as Eclipse, EMF,
JUnit, UML, and Java, thereby enhancing its applicability.

We are currently integrating a test input generation mech-
anism that uses symbolic execution and constraint solving
techniques. We plan to add displays for test coverage mea-
surement in each type of view. We are also working on
validating the sequence diagrams obtained during execution
against the sequence diagrams specified in the model.

Currently, the animations are performed after test execu-
tion is complete. We will integrate the plugin with the de-
bug mechanism inside Eclipse so that we can perform the
animations while the tests execute.

Acknowledgments

This material is based in part on work supported by the U.S.
National Science Foundation under grant CCR-0203285 and
IBM under Eclipse Innovation Grants.

6. REFERENCES
[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[2] T. T. Dinh-Trong. Rules For Generating Code From
UML Collaboration Diagrams and Activity Diagrams.
Master’s thesis, http://www.cs.colostate.edu/
“trungdt/code_generation/code_generation.htm,
Colorado State University, Fort Collins, Colorado, 2003.

[3] M. Gogolla, J. Bohling, and M. Richters. Validation of
UML and OCL models by automatic snapshot
generation. In Proceedings of the 6th Int. Conf. Unified
Modeling Language (UML’2003), pages 265—279.
Springer, Berlin, LNCS 2863, 2003.

[4] Object Management Group. The Unified Modeling
Language 1.5. Technical Report formal/03-03-01, 2003.

