
A Tool for Programming Learning with
Pedagogical Patterns ∗

Leliane Nunes de Barros and
Ana Paula dos Santos Mota
Department of Computer Science.

University of São Paulo
Rua do Matão, 1010, Bloco C. Cidade

Universitária. 05508-090.
São Paulo, SP. Brazil.

leliane@ime.usp.br
alanis@linux.ime.usp.br

Karina Valdivia Delgado and
Patricia Megumi Matsumoto
Department of Computer Science.

University of São Paulo
Rua do Matão, 1010, Bloco C. Cidade

Universitária. 05508-090.
São Paulo, SP. Brazil.

kvd@ime.usp.br
patty@linux.ime.usp.br

ABSTRACT
Programming Patterns help create a shared language for
communicating insight and experience about programming
problems and their solutions. Inspired by this idea, we de-
veloped the ProPAT e-learning tool: an Eclipse IDE that
allows students of a first Computer Science course to learn
how to program using pedagogical patterns, i.e., a set of pro-
gramming patterns recommended by Computer Science ed-
ucators. ProPAT has been implemented as an Eclipse plug-
in with two main perspectives: the Teacher Perspective and
the Student Perspective. To identify some of the students’
mistakes, the ProPAT plug-in also includes a program di-
agnosis system that uses Model Based Diagnosis techniques
from the Artificial Inteligence.

Keywords
Computer-based Learning, Teaching Introductory Under-
graduate Programming, Debugging and Testing Tools.

1. INTRODUCTION
Writing a program for a novice involves many difficulties.
The attempts to deal with multiple impasses all at once can
make this task even worse. Research on programming psy-
chology points out two challenges that a novice programmer
has to handle [Winslow, 1996]:

1. learning a new programming language: the stu-
dent has to learn the syntax and semantics of a new
programming language.

∗This work is supported by an IBM Eclipse Innovation
Grant

2. learning how to program a solution to a given

problem: the student has to learn how to transform
a hand-written problem solution into a computer pro-
gram. Sometimes the novice knows how to solve a
problem by hand, but he is not able to write a program
to solve the same problem, e.g, solving a quadratic
equation.

Although a programming language has a lot of details, the
first challenge is not the most difficult part. Evidences show
that learning a second language is, in general, easier. A
hypothesis is that the student has already acquired abilities
to solve problems using the computer which is the common
skill to learn different languages.

Related to the second challenge, research on cognitive theo-
ries about programming learning has shown evidences that
experienced programmers store and retrieve old experiences
on problem solving that can be applied to a new problem
and can be adapted to solve it [Johnson and Soloway, 1984].
On the other hand, a novice programmer does not have any
real experiences, but only the primitive structures from the
programming language. Inspired on these ideas, a strat-
egy to teach how to program is to present small program-
ming pieces, instead of leaving the student to program from
scratch. That is the pedagogical patterns community pro-
posal. This community is a group of experienced educa-
tors engaged to recommend programming pieces for novices,
also called pedagogical programming patterns or elementary
programming patterns [Wallingford, 2001]. Supposing that
students who have learned these patterns will in fact con-
struct programs using them, i.e, starting their programs
from known pieces of code, an e-learning system could take
a number of advantages from this teaching strategy, such as:

• the e-learning system can establish a shared language
for communicating insights and experiences about prob-
lems and their solutions with the student. This can
provide significant benefits to the student since the
pedagogical patterns provide the terms and concepts
the student needs to know;



• an e-learning module for diagnosing problems in the
student program would be able to reason about the
patterns in a hierarchical fashion, i.e., to detect pro-
gramning mistakes in different levels of abstraction.

This is the same idea used by the PROUST system [Johnson
and Soloway, 1984] to teach PASCAL programming. The
difference with the present work is that PROUST does not
open its programming patterns (called programming plans
by the authors), i.e., the student has not access to them.
Instead, the programming plans are only used internally by
the system.

In this paper, we present a new Eclipse IDE for program-
ming learning based on pedagogical programming patterns.
Section 2 introduces the idea of pedagogical programming
patterns and how they can be used in an introductory course
for programming. Section 3 gives a brief definition of Eclipse
plug-ins and the perspectives created for ProPAT. Section
4 discusses the use of ProPAT perspectives and views. Fi-
nally, Section 5 describes our current work: a diagnosis mod-
ule for ProPAT that will use the pedagogical patterns in
an intelligent e-learning tool.

2. PEDAGOGICAL PROGRAMMING
PATTERNS IN THE CLASSROOM

”... The goal of patterns within the software community is
to create a body of literature to help software developers re-
solve recurring problems encountered throughout all of soft-
ware development. Patterns help create a shared language
for communicating insight and experience about these prob-
lems and their solutions. Formally codifying these solutions
and their relationships lets us successfully capture the body of
knowledge which defines our understanding of good architec-
tures that meet the needs of their users. Forming a common
pattern language for conveying the structures and mecha-
nisms of our architectures allows us to intelligibly reason
about them. The primary focus is not so much on technology
as it is on creating a culture to document and support sound
engineering architecture and design.”. From Patterns and
Software: Essential Concepts and Terminology Web site, by
Brad Appleton [Appleton, 2000].

Pedagogical programming patterns, also called elementary
programming patterns, are recommended solutions to com-
mon problems described in a way to ease their reuse. Pat-
terns are simple, synthetic and recommended by researchers
on programming teaching for novices [Porter and Calder,
2003]. A pattern relates a problem to a solution and pro-
vides information about the context in which it can be ap-
plied. Its potential use in programming teaching has been
explored by the pedagogical patterns community. Patterns
are available in the Web for C, C++ and Java [Wallingford,
2001], including: selection patterns [Bergin, 1999], repeti-
tion patterns [Astrachan and Wallingford, 1998] and others
[Bridgeman, 2002]. Porter and Calder [Porter and Calder,
2003] suggest a process to employ programming patterns
in the classroom and Proulx [Proulx, 2000] created a first
Computer Science course based on these patterns.

Pedagogical programming patterns can help novice pro-

grammers in two ways:

1. to learn terms, concepts and general strategies of pro-
gramming problem solving (in a higher abstraction
level);

2. to retrieve the syntax and learn how to use a program-
ming language, since its documentation includes a pro-
gram, that is an example of the pattern application for
a specific programming situation.

On the other hand, pedagogical programming patterns can
help a human tutor to:

a. recognize the student’s intentions;

b. establish a better communication with the student,
since they provide a common vocabulary about gen-
eral strategies for programming problem solving.

Some pattern examples are shown in Figure 1, where we
show a small part of the documentation of three loop pat-
terns: Loop with Sentinel, Loop with Flag and Counting
Loop. Notice that they correspond to distinct elementary
strategies, commonly used to solve sequence processing prob-
lems, as it is stated in the use/application column of Figure
1. A student that uses a strategy when another one would be
more naturally applied, will have difficulties to accomplish
his programming task.

The complete structure of pattern documentation used in
this work is composed of: pattern name, dependent patterns,
use/application, syntax, semantics and situation example.
The use/application of a pattern is a text that describes,
in general terms, a programming situation for which the
pattern can be applied. The syntax of the pattern is a
pseudo-code that includes: C code; other pattern names
and metadata (text between quotation marks). Metadata
are used to describe general programming terms and con-
cepts. Metadata and other pattern names must be replaced
by the student while constructing his own program solution.
The semantics describes how the pattern really works (in a
text format) and its syntax control flow (in a diagrammatic
format).

3. THE PROPAT PLUG-IN
ProPAT is a programming learning environment using ped-
agogical patterns, that has been built as an Eclipse plug-
in. ProPAT provides an IDE for a first Computer Science
course, i.e., an IDE for novice programmers. In this environ-
ment, the student is able to choose a programming exercise
and to construct a solution by selecting and adding peda-
gogical programming patterns into the editor [Delgado and
de Barros, 2004]. ProPAT also allows a teacher to add
new programming patterns and exercises, whose selection is
aimed to motivate the student to use the patterns.

3.1 An Eclipse Plug-in
This project has been first developed for the C programming
language. Therefore, some of the ProPAT plug-in features
were inherited from the original Eclipse CDT plug-in [CDT
Plug-in, 2000], an IDE for C programming, while others
were specially developed for this project. An Eclipse plug-
in is typically composed of a set of perspectives and views.



Figure 1: Pedagogical Programming Patterns Example

A perspective is a visual container (a window) for a set of
views. A view is used to: (i) open an editor; (ii) navigate in
a hierarchy of information (e.g. projects, files, classes and
concepts); or (iii) display properties for the active editor.
With the exception of the editor, modifications made in a
view are automatically saved. The layout of editors and
views is controlled by the active perspective.

3.2 ProPAT
The ProPAT plug-in inherited some views from the origi-
nal Eclipse CDT plug-in to compose two new perspectives:
the Student Perspective where the student can choose pro-
gramming exercises and develop solutions for them, through
pattern selections or write his own code; and the Teacher

Perspective used by the teacher to specify new exercises
and patterns that will be available to the student through
the Student Perspective. These two perspectives are de-
scribed in more details in the following sections.

An important feature of the ProPAT plug-in is the database
of patterns and exercises. ProPAT uses an XML database.
By using the Document Object Model (DOM) to create and
manipulate a hierarchy of data objects from an XML doc-
ument, it is possible to have a random access and modifi-
cation of its contents. There are two XML data models in
ProPAT: one for patterns and another for exercises.

4. HOW TO USE PROPAT
4.1 The Student Perspective
There are eight views available in the Student Perspective:
the Program Editor View, the Navigator View, the Patterns

Figure 2: ProPAT Student Perspective - Patterns

View and Pattern Info View



Figure 3: ProPAT Teacher Perspective - Patterns

View and Pattern Info View

View, Pattern Info View, the Metadata View, the Exercises
View, Exercise Description View and the Message Console
View.

The Pattern View (right hand side of Figure 2) contains
a list of all the pedagogical programming patterns stored in
the XML database. This View is connected to the Pattern

Info View (bottom of Figure 2) in such a way that the
student can select a pattern in the Pattern View and see
its description in the Pattern Info View. This description is
shown in an HTML style and contains the name, semantics,
syntax and example of usage of the pattern.

Through the Pattern View, the student can insert the code
(pattern syntax), in the Program Editor View (center of
Figure 2), of a selected pattern into his program. This code
may contain expressions between quotation marks (meta-
data) which means that the student is supposed to replace
it with another pattern or his own C code. It is interesting
to notice that the plug-in will not allow the insertion of a
pattern into a place in which it is not allowed, according to
the C syntax rules. If a student tries to do such a thing, the
plug-in will display an error message and will not insert the
code (pattern) into the program. By doing this, the student
can also have the opportunity to learn some simple syntaxe
rules of the programming language.

The Metadata View allows the student to navigate through
the list of metadata that has been used so far by the current
set of patterns. The names in this list, when selected, will
make a text box to pop-up, showing the metadata definition.
By understanding the definition of a metadata, the student
can also have the opportunity for learning new programming
concepts, such as initialization and update the counter.

The Exercises View is similar to the Pattern View. It
contains a list with the names of all the exercises available
in the XML database, organized by programming topics.

Each exercise is supposed to be related to one or more pat-
terns. The student’s challenge is to find out what are the
patterns to be used to solve the problem in a more suitable
way (i.e., the patterns that makes the program more clear
and/or simpler).

The Exercise Description View shows to the student the
description of a selected exercise in an HTML format and
contains the exercise name, the exercise problem specifica-
tion, and a set of bench tests.

The Student Perspective is organized in such a way that the
program editor and all its views can be visualized in the
same window, which is very convenient for the student. In
addition to this, there is a button for compiling and running
a program in the Perspective, making it easy for the novice
to test his solutions to the exercises through the Message

Console View, applying the bench test data from the ex-
ercise descriptions.

4.2 The Teacher Perspective
The Teacher Perspective (Figure 3) gives to ProPAT the
characteristics of an authoring learning tool, i.e., an e-learning
tool whose content can be defined by the teacher. It gives
flexibility and facilities to the teacher who is using pedagog-
ical programming patterns in his courses. This perspective
inherits all the features available in the Student Perspective
plus the necessary tools to edit, remove and add new pat-
terns and exercises. For this purpose it was created three
extra views: the Pattern Editor View, the Exercise Ed-

itor View and the Metadata Editor View.

In the Pattern Editor View, to edit or create a pattern,
the teacher must fill in a form, which corresponds to the
pattern documentation structure described in Section 2. Be-
sides that, there is an extra information that the teacher
must provide: the pattern insertion constraints, also called,
pattern insertion rules. This information is used by the Pro-

gram Editor View to check out some student’s mistakes
and to give him some explanations.

The exercises has also two new fields: program solution ex-
ample (in C code) and patterns suggestions made by the
teacher as the best recommendation for the exercise. Both
fields can be edited by the teacher through the Exercise

Editor View. One of the uses of the teacher program solu-
tion is to run it over some input bench test data and calcu-
late the expected output data (e.g. for automatic generation
of bench tests). Although the patterns suggestions informa-
tion has not yet been used, it will allow a richer interaction
with the student.

The Metadata Editor View is a text editor that allows
the teacher to define the concepts underlying a metadata,
which is the text that will be displayed to the students and
other teachers. This view can also help the teacher to use
the same metadata, as much as possible, while creating new
patterns. This is going to be a more important view in fu-
ture versions of ProPAT when it will be used, together with
the pattern names, to generate an ontology of programming
knowledge, i.e., a formal conceptualization of the program-
ming knowledge (also called in some educational tools as a
conceptual map) [].



5. DIAGNOSIS
We are currently working on adding a diagnosis module
to the ProPAT plug-in. This will be used to detect non-
syntatic errors in the student program (i.e., after it has been
compiled successfully).

The basic idea for diagnosing programs is to derive a com-
ponent/connection model directly from the student program
and the programming language semantics. This model must
identify components, connections, the program structure and
the system description. While in the automatic model-based
diagnosis of physical devices, a model of the device has to
be specified, called system description for diagnosing pro-
grams the system description is the atual student program
behavior which reflects its errors. The observations are the
incorrect outputs in the different points of the original pro-
gram code. The predictions are not made by the system,
but by the student and therefore this is the situation where
the student must communicate his programming goals to
the system.

To derive the component/connection model from the stu-
dent program we built a parser in ANTLR [Parr, 1989],
a language tool that provides a framework for constructing
recognizers, compilers, and translators from grammatical de-
scriptions containing Java, C, C++, or Python actions.

We propose an addition to the diagnosis method described
in [Mateis et al., 2000] so that Programming Patterns can
also be modeled as new components. Thus, the ProPAT

diagnosis module will be able to reason about patterns in a
hierarchical fashion, i.e., to detect program faults in different
levels of abstraction.

6. CONCLUSIONS AND FUTURE WORKS
In this work, we have presented the ProPAT e-learning tool:
an Eclipse IDE that allows students of a first Computer Sci-
ence course to program using pedagogical patterns. ProPAT

has been implemented as an Eclipse plug-in with two main
perspectives: the Teacher Perspective and the Student Per-
spective.

In the current version of the ProPAT system, teachers can
gather, insert and remove patterns and exercises, while the
students can solve a list of proposed exercises by inserting
pedagogical programming patterns in the editor. Students
can also compile and test their solutions based on the sample
inputs and outputs (bench tests) provided by the teacher in
the exercise descriptions.

An important part of the ProPAT plug-in is the indepen-
dent Databases for Patterns and Exercises, represented
as an XML database. To create and manipulate a hierarchy
of data objects from an XML document, we used the Doc-
ument Object Model (DOM), allowing random access and
modification of its contents.

In order to test ProPAT with students of a first Computer
Science course, one of the difficulties we are currently facing
is the decision on which collection of elementary patterns
to use. This decision requires the teacher commitment on
adding the elementary patterns by himself, according with
a set of problems. This is our effort to implement a course

using ProPAT for the 1st semester of 2006.

6.1 Acknowledgment
We would like to thank Fabio Kon for all the support he has
given for this project.

7. REFERENCES
Patterns and Software: Essential Concepts and
Terminology http://www.cmcrossroads.com/
bradapp/docs/patterns-intro.html.

Astrachan, O. and Wallingford, E. (1998). Loop Patterns.
http://www.cs.duke.edu/ ola/patterns/plopd/loops.html.

Barros, L. N., Delgado, K. V., and G.Machion, A. C.
(2004). An ITS for programming to explore practical
reasoning. In Proceedings of the Brazilian Conference on
Computer in Education.

Bergin, J. (1999). Patterns for Selection Version 4.
http://csis.pace.edu/ bergin/patterns/Patternsv4.html.

Bridgeman, S. (2002). Intro to Computing I.
http://cs.colgate.edu/faculty/stina/
courses/cosc/101/f02/syllabus.html.

CDT Plug-in (2000). The eclipse CDT Plug-in.
http://www.eclipse.org/cdt/.

Delgado, K. V. and de Barros, L. N. (2004). Propat: A
programming ITS based on pedagogical patterns. In
Proceedings of Intelligent Tutoring Systems, volume
3220 of Lecture Notes in Computer Science, pages
812–814. Springer Verlag.

Teaching Research and Development with the Eclipse
Platform (2004). http://eclipse.ime.usp.br.

Johnson, W. L. and Soloway, E. (1984). Proust:
Knowledge-based program understanding. In Proceedings
of the 7th international conference on Software
engineering, Florida, United States, pages 369 – 380.

Mateis, C., Stumptner, M., and Wotawa, F. (2000). A
Value-Based Diagnosis Model for Java Programs. In 11th
International Workshop on Principles of Diagnosis (DX).
http://www.dbai.tuwien.ac.at/staff/wotawa/dx2000c.ps.gz.

Parr, Terence. (1989). ANTLR: Parser Generator
http://www.antlr.org/.

Porter, R. and Calder, P. (2003). A pattern-based
problem-solving process for novice programmers. In
Proceedings of the fifth Australasian Conference on
Computing Education, pages 231–238. Australian
Computer Society, Inc.

Proulx, V. K. (2000). Programming patterns and design
patterns in the introductory computer science course. In
Proceedings of the thirty-first SIGCSE Technical
Symposium on Computer Science Education, pages
80–84. ACM Press.

Wallingford, E. (2001). The Elementary Patterns Home
Page.
http://www.cs.uni.edu/ wallingf/patterns/elementary/.

Winslow, E. (1996). Programming Pedagogy - A
Psyclological Overview. In ACM SIGCSE Bulletin. Vol.
28 No.3..


