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ABSTRACT 
Etomica is an extensible framework for conducting molecular 
simulations, and it comprises an API and a graphical IDE based 
on the Eclipse framework.  It is written almost entirely in Java, 
and presently comprises about 1200 classes. In this paper we 
describe the general structure of the Etomica API, and discuss 
how we have integrated it into the Eclipse framework.  Topics 
discussed include the design of the simulation framework and the 
handling of OpenGL graphics that permit real-time visualization 
of the simulations.   

Categories and Subject Descriptors 
J.2 [Physical Sciences and Engineering]: chemistry, physics, 
engineering. 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation. 

Keywords 
Molecular simulation, API, IDE 

1. INTRODUCTION 
Molecular simulation [1] describes a collection of methods for 
doing computer “experiments” on molecules, which are modeled 
by postulating the force or energy that they feel due to each other's 
presence. Put simply, the aim of molecular simulation is to 
generate many arrangements of such molecules in ways that are 
consistent with the laws of statistical mechanics. Observations and 
measurements made on these configurations of model molecules 
can help us understand the behavior of real molecules and the 
materials they form. 

The range of materials and phenomena that can be studied by 
molecular simulation is vast and diverse. Examples include small 
molecular systems such as water; macromolecules such as 

polymers and proteins; lattice models such as those used to model 
magnetic systems and surfactants; electronic and semiconductor 
materials such as metals and silicon; complex nanostructured 
phases, and so on.  The methods used are primarily molecular 
dynamics and Monte Carlo algorithms, applied with a diverse set 
of specialized techniques that are each targeted to certain classes 
of systems and phenomena. 

For the past three decades molecular simulation has steadily 
grown as a tool of engineering researchers and, more recently, 
practitioners.  This trend has not yet reached maturity; on the 
contrary, it is likely that it will continue at least to some point 
beyond the maturation of computing power, a time which itself is 
not yet in sight.  Interest in molecular simulation is expanding also 
because it is crucial to activities conducted under the broad label 
of “nanotechnology”, which aims to perform chemical and 
materials engineering by manipulating matter at the molecular 
scale.  Advancement of this field is now a major national research 
priority. In a different arena, molecular simulation has also 
become increasingly appreciated as a powerful pedagogical tool, 
inasmuch as it enables students to understand abstract material 
behaviors and properties (such as entropy and viscosity) by 
opening the window to their molecular origins. 

Despite the need and promise of the broad use of molecular 
simulation in science and engineering, there exist significant 
obstacles to this outcome.  The barriers were identified in the 
recently-completed Vision 2020 Roadmap for Computational 
Chemistry, (www.ccrhq.org/vision/index/roadmaps/ns15.html) 
and include 

• limited ability to obtain results of sufficient quality for 
practical problem resolution  

• insufficient practical usability of molecular simulation codes 
for non-experts 

• non-transferability of codes among experts 

• narrowness, inextensibility, and close-source nature of 
commercial software 

• the lack of acquaintance of non-experts with the methods of 
molecular simulation.   

The first item, inability of simulation to consistently provide 
reliable quantitative information, is a very prominent focus of the 
molecular simulation research community, and great progress is 
being made toward its resolution.  As an example of the interest in 
this issue, NIST in 2002 initiated the first of an biennial open 
competition for scientists and engineers to calculate results for a 
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set of problems (www.cstl.nist.gov/FluidSimulationChallenge).  
The aim is “driving improvements in the practice of molecular 
modeling, formalizing methods for the evaluation and validation 
of simulation results with experimental data, and ensuring 
relevance of simulation activities to industrial requirements.”  
Real progress has been made in enabling simulation to describe 
increasingly complex systems, such as polymers, electrolytes, 
glasses, and water, and properties such as phase coexistence and 
viscoelasticity.  Over the same period, comparatively little 
attention has been put toward resolving the other obstacles to 
widespread adoption of molecular simulation; even worse, there is 
nothing on the horizon indicating that they will be addressed soon. 

These remaining barriers can be remedied in differing degrees 
through the systematic application of modern programming tools 
to molecular simulation software development.  The obstacle here 
is the inexperience and/or disinterest among front-line 
developers/practitioners of molecular simulation methods in the 
use of state-of-the-art programming tools, particularly object-
oriented approaches. This situation is understandable. Most 
research supervisors cut their teeth on Fortran, which is fast and 
extremely well suited for application to narrow computational 
problems; for these same reasons it (or C) is often the language of 
choice for current students, who have little incentive to perform 
development that has broader impact.  Any graduate students who 
have more exposure to newer approaches lack the broad 
experience in molecular simulation to use them well, and are 
discouraged from pursuing such development because it really 
isn’t the most effective way to solve their immediate research 
problems.  Of course, these are broad statements for which one 
can find exceptions.  The point is that current research practices 
do not encourage activities that address the “less scholarly” 
obstacles to broader adoption of molecular simulation.  Moreover, 
it is not a problem that can be delegated to computer scientists, 
because effective and robust application of object-oriented 
methods requires a deep understanding of the fundamentals and 
techniques of molecular simulation. 

This project aims to use the Eclipse application framework to 
develop an advanced, interactive, GUI-based computational 
environment for molecular and mesoscale modeling. We believe 
that such a framework could nucleate an open-source movement 
in molecular simulation, and make molecular simulation 
accessible to a broader community for research and education 
purposes. The key issues and considerations involved in this 
development are 

• Extensibility. We cannot expect to develop by ourselves the 
components for every possible application of molecular 
simulation, but if we develop an excellent framework we 
hope that others will find it useful and add to it. 

• Efficiency. Molecular simulations are computationally 
intensive.  A typical simulation can run for hours or days 
before yielding a result. Simulated systems can range in size 
from tens of atoms to hundreds of thousands of atoms.  And 
all of this might yield information about a few nanoseconds 
of the life of the material! (which in many cases is plenty 
long enough).  Although it is important to get acceptable 
performance, this consideration does not trump everything 
else. No general-purpose code can outperform one that is 
highly specialized to the problem at hand. We expect that 
some users will be willing to trade off performance for ease 
of use and other features that can be offered by an integrated 
environment of reusable components. 

• Versatility.  The software should be suitable for interactive or 
batch use, and work across a variety of platforms. Presently 
molecular simulations are typically conducted by submitting 
batch jobs to a remote machine, with results obtained some 
time later. We want to support this use, but also enable the 
ability to interact with the simulation, so that the user can 
guide its direction or explore behaviors. Ideally it would be 
possible to switch between batch and interactive use as 
needed.  We are also interested in educational applications, 
in which we construct self-contained interactive simulations 
that permit students to explore the molecular origins of 
interesting physical concepts such as entropy and viscosity. 

2. THE ETOMICA API 
2.1 Design 
Etomica is in part an Application Programming Interface (API) 
for the construction of molecular simulations. In developing it, we 
have identified the following major elements of a molecular 
simulation 

• Simulation: serves as a point of reference for all elements. 
• Space: defines features of the physical space (e.g., whether it 

is 1-, 2-, or 3-dimensional, a lattice or a continuum) in which 
the simulation is conducted. 

• Controller: the element through which all activities of the 
simulation are managed. 

• Species: defines the structure of the molecules; the number 
of atoms and how they are arranged in the molecule. 

• Potential: defines how the atoms interact. 
• Phase: collects all the atoms that interact with each other. It 

is not unusual for a simulation to involve multiple loosely 
coupled Phase instances. 

• Integrator: codes the algorithm used to generate 
configurations of the molecules; an event model is used to 
permit other elements to react to progress made in this 
activity. 

• DataSource: performs the calculations that yield property 
measurements. 

• Display: presents information about the simulation to the 
user. 

• Device: graphical element that permits the user to interact 
with the simulation. 

Data handling uses a model in which data flows from a source to a 
sink, passing through transformations and accumulators along the 
way. Physical units are handled in a consistent way; all quantities 
are represented in a common unit system based on the picosecond, 
the Dalton, and the Angstrom. Physical quantities for input and 
output have associated dimensions (e.g., length, mass, time) that 
can be used to identify choices of units (e.g., meters, kilograms, 
seconds) used when inputting our outputting results. Many data 
structures and behaviors are compartmentalized. Elementary 
actions and activities are defined, and can be invoked via the user 
interface or programmatically. A generic neighbor-listing facility 
is developed for computational efficiency and scalability. The 
Etomica structure overall has evolved in line with the generally 
accepted object-oriented design patterns, with significant roles for 
iterators, builders, factories, strategies, and so on [2]. 
Presently Etomica comprises more than 1200 classes. 
 



2.2 Performance 
Given the computationally intensive nature of molecular 
simulation, and the premium placed on good computational 
performance, we always have concern about how fast the codes 
run.  Java may be a liability in this regard, but we find the 
performance to be acceptable for many purposes. Comparisons 
with dedicated Fortran codes running equivalent algorithms find 
that Etomica about 2 to 4 times slower. Depending on the problem 
and the urgency that the results are needed, this may be just fine 
or it may be prohibitive.  We do find that performance scales well 
with the size of the simulated system, and is no worse than 
Fortran in this regard.  Our Tinderbox benchmarks run 
simulations of up to 40,000 atoms, and they take only about 9 
times longer than an equivalent simulation having 1/8 as many 
atoms (5000). 

2.3 Applications 
Etomica is the primary platform for research in molecular 
thermodynamics performed in our research group.  It has been 
used in the study of liquid-vapor surface properties, the behavior 
of associating fluids, effects of point defects and strain in solids, 
miscibility of InGaN semiconductors, and the development and 
understanding of free-energy methods.  It has also seen many uses 
in educational settings. In 1999 we used the codes as part of a 
two-week workshop introducing high-school students to 
molecular simulation.  We did this again in 2000, and in 2001 we 
used it as the basis for an honors course for freshmen. We use it 
now in some undergraduate and graduate courses in Chemical and 
Biological Engineering at the University at Buffalo, and have 
plans to expand these applications further. Standalone modules 
made with Etomica have (to our knowledge) been used in courses 
in perhaps 10 universities. 

3. THE ETOMICA IDE 
3.1 General Features 
Presently we are developing a molecular simulation Integrated 
Development Environment (IDE) that is based on the Etomica 
classes. We are building this on the Eclipse open-source 
application development platform. The aim is to produce an 
Office-like environment for building, running, monitoring, 
viewing and analyzing molecular simulations. We envision being 
able to cut-and-paste entire simulations or their components (e.g. 
an individual phase), so that it becomes easy to save its state and 
make copies to explore variations. Java’s serialization capabilities 
provides the key functionality for these purposes.  The same 
technology can underlie remote-monitoring capabilities, in which 
the IDE can attach to a remote process running a batch simulation 
on a high-performance server, to monitor and perhaps tune its 
behavior on-the-fly. 
Features that we aim to incorporate in the IDE are as follows. 

• views and/or editors generally designed to present and 
configure each of the high-level components of a simulation.  
These include Simulation, Phase, Species, Controller, 
Integrator, Activity, Accumulator, Meter, and Atom classes, 
among others.  We have already developed Eclipse views for 
the Simulation and Phase classes, as well as a general-
purpose reflection-based drillable property sheet that permits 
editing of the properties of any object. 

• interactive data analysis capabilities for plotting, tabulating, 
transforming, and exporting the results of a simulation. 

• the use of serialization to save and restore simulations, and 
even to copy and paste entire simulations so variations on 
them can be easily explored.  As a sub-element of this, we 
envision the ability to cut, copy, paste, and delete complete 
simulations elements, so that (for example) a molecular 
dynamics simulation could be easily transformed, on the fly, 
into a Monte Carlo simulation (this involves swapping out 
one Integrator for another, following the Strategy design 
principle [2]). We would like to see the GUI capabilities 
familiar to everyone using word-processing applications 
brought to the realm of high-performance computing. 

• wizards that guide the user through the process of assembling 
a new simulation and analyzing or exporting the results.  
This ensures, for example, that a hard-potential dynamics 
integrator is not applied with a soft intermolecular potential 
model.  This functionality must adhere to the reflection 
method of discovery, so that compatibility rules are brought 
in with the classes, and are not hard-coded into the IDE. 

• a complete help facility with documentation suitable for both 
developers and users.  We use Javadoc-formatted comments 
extensively through all our codes, so to better facilitate the 
creation of a thorough documentation of the API. 

• the ability to import and export simulations as source code, 
so that developers can easily move between graphical and 
text-based modes, seamlessly integrating with the existing 
Java-development and debugging capabilities of Eclipse. 

• the ability to monitor and interact with simulations that are 
running elsewhere as batch process. The idea is that a user 
can launch a simulation on a high-performance machine, and 
occasionally check up on it and perhaps modify its operation 
by temporarily attaching the IDE.  

A key principle in the Eclipse+Etomica integration effort is 
ensuring the extensibility of the IDE. All Etomica API classes are 
to be incorporated into the IDE via discovery in the classpath, and 
Java's reflection capabilities are used to discover the editable 
features of any simulation component. In this manner the IDE 
capabilities grow naturally as the API expands.  It should even be 
possible to add functionality to the IDE while simulations are in 
progress. 

3.2 Visualization and OpenGL 
When creating a plugin for creating chemistry simulations within 
Eclipse, we need to include the ability to display the internals of 
the ongoing simulation as a 3D display. Many applications 
already do this as the graphics display plays an important role on 
capturing critical aspects of the simulation. Visualizing initial and 
final configuration states of such molecular systems is of great 
help but having a means to understand how the system evolved to 
reach such final configuration gives much more insight on the 
underlying physics, especially for molecular dynamics problems. 

Therefore we needed a 3D display that would present the 
instantaneous state of the ongoing simulation and which could be 
embedded in a SWT control.  

As first choice for this work, we have used OpenGL as the 3D 
graphics API of choice since it is fully supported on most 
platforms.  There is at least one full SWT/OpenGL wrapper 
available  
http://www.eclipse-plugins.info/eclipse/plugin_details.jsp?id=562 



It uses Java’s JNI (Java Native Interface) to wrap every OpenGL 
call and enumeration therefore enabling any Java program access 
to the 3D world.   

Because every OpenGL call is wrapped in a JNI routine, and 
typically thousands of such calls are performed at every frame 
update, we observed a noticeable latency added by the additional 
software layer. Additionally, building complex 3D scenes writing 
directly code in OpenGL may remind some of the old times of 
writing simple programs using plain assembler – the final code is 
often large and very difficult to maintain. 

Still, there were desired features not available on this pure 
OpenGL approach, as:  

• Mouse and keyboard manipulators to allow an interactive user 
experience in 3D 

• Support to importing from common 3D file formats as 3D 
Studio Max or OpenFlight 

• Support to image file formats as JPEG, GIF, BMP 
• Support for special effects (particles, cartooning) 
The conclusion was that the wrapping was performed in a very 
low level and what we needed was a scene builder with easy-to-
grasp functions as createSphere() or createBox().  

This conclusion brought us to OpenSceneGraph, which is an open 
source 3D scene builder (www.openscenegraph.org). It is 
available for most unices and also Windows and MacOS, which 
fulfills our cross-platform requirement. This package was before 
successfully integrated with StreetScenes, a Qt-based traffic 
simulation package developed at the Center for Computational 
Research/State University of New York at Buffalo. 
http://www.ccr.buffalo.edu/viz/content/streetscenes.htm. 
However, OpenSceneGraph is itself a very large API, with 
hundreds of C++ classes. And as JNI requires pure C, we had to 
create a new software layer using C++ to bind both together, 
which we call the OSGWrapper.   The architecture is summarized 
in Figure 1.  

The OSGWrapper implementation is the central piece of this 
binding. It translates calls from the OSGWrapper/java classes, 
which are very high level as createObject() or object.setPosition(), 
into the more complex C++ statements that set all necessary 
OpenGL parameters according to a predefined set of defaults. The 
ease with which OpenGL images can be rendered in the Eclipse 
framework is illustrated by the code shown in Figure 2, which 
renders an image (not shown here) in an Eclipse control. 

The effect of offloading java from all latency-critical calls and 
performing them at a low level language had the effect of 
increasing the performance from roughly 10 frames per second to 
around 200 frames per second for a small size simulation (~1000 
atoms).  

All graphics information was stored in the implementation layer 
using a flyweight pattern [2], which allowed for efficient and 
scalable use of memory, directly affecting performance. 

3.3 Graphical Interface 
So as to follow Eclipse's user interface guidelines [3], we chose to 
represent Etomica's main data container with an Eclipse editor 
(guideline 6.1), which was associated with the .etom file suffix. 
This EtomicaEditor class is primarily responsible for:  

1. setting up the physical initial configuration with atoms 
(molecules) and phases 

2. associating families of atoms with their respective potentials 

3. planning activities to be performed on configurations as time-
stepping integrations and Monte Carlo simulations. 

4. adding data collectors and displays for compiling and recording 
the results of activities 
5. starting a group of activities 
6. visualizing the progress of those activities with 2D or 3D 
graphical interfaces 
One of the major challenges we faced was regarding guidelines 
6.3 and 6.4, for historical reasons. Etomica was first designed to 
run batch jobs. This means that for every Java process there would 
never be more than a single simulation instance running. Several 
Etomica classes took advantage of this premise to boost 
performance but also to achieve cleaner code by storing defaults 
and highly accessed objects as statically allocated instances.  

Under Eclipse, simulations were run as separated threads to allow 
for easy retrieval of information for display. These simulations 
running simultaneously sometimes crashed or (less often) only 
produced wrong results. This required some work to remove all 
statically allocated instances, cleaning up default constructors, 
which eventually led to a less coupled system. 

No special views were created for Etomica. The design reused 
already existent views as the property and outline views 
(guideline 6.20) to help in displaying and configuring the 
simulation. A special perspective for Etomica was also created to 
make easier the initial set up of the environment. 
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Figure 1 Software layers implementing the SWT/OpenGL 
binding. 

3.4 Discovery 
Two specialized wizards were created - a new project wizard and 
a new simulation wizard. The new project wizard is quite simple 
and only sets up a new folder for containing further new 
simulation files. The new Etomica document wizard in turn, 
required writing a discovery class. One of the design requirements 
was that all modifications and additions to Etomica—to both the 



 

import org.eclipse.swt.SWT;  
import org.eclipse.swt.layout.FillLayout;  
import org.eclipse.swt.widgets.Display;  
import org.eclipse.swt.widgets.Group;  
import org.eclipse.swt.widgets.Shell;  
 
import osg.OrientedObject;  
import osg.R enderWindow;  
 
public class Simple {  
 public Simple() {  
  super();  
 } 
 public static void main(String[] args) {  
  Display display = new Display();  
  Shell shell = new Shell(display);  
  FillLayout shell_layout = new FillLayout();  
  shell.setLayout(shell_layo ut);  
  shell.setSize(800, 800);  
  Group group = new Group(shell, SWT.NONE);  
 
  shell.open();  
 
  int handle = group.handle;  
  RenderWindow r1 = new RenderWindow(handle);  
 
  OrientedObject.appendToSearchPath("C: \\OpenSceneGraph -Data");  
  OrientedObject o1 = OrientedObje ct.createFromFile( "molecule .osg" );  
  r1.addObject(o1);  
 
  float[] xaxis = new float[]{1, 0, 0};  
  while (!shell.isDisposed()) {  
   display.readAndDispatch();  
   r1.render();  
   float delta = 0.2f;  
   o1.rotate(delta, xaxis);  
  } 
  r1.dispose( ); 
  display.dispose();  
 } 
} 

 Figure 2. Simple program in Java/SWT to display and rotate 
a 3D model. 
main jar file and to the project's subfolder—should be 
automatically apprehended by the system. Therefore the user had 
the ability to choose among stock types or create its own sets of 
simulations, specialized potentials, data sources, devices, meters 
and so on.  

An approach using XML files and extension points as 
implemented for Eclipse's plugins was considered but discarded 
afterwards for being hard to maintain for non-developers, and we 
chose instead to implement a brute force scheme.  
Eclipse already provides a notification framework based on the 
IResourceChangeNotification interface and that was used to catch 
modifications made after the plugin's initialization. However, for 
the initial discovery process upon start we created a specialized 
resource crawler to discover and query all classes derived from 
our set of nine basic abstract classes. This task cannot be 
accomplished by using Java class loaders directly because they do 
not provide a method to list all classes they represent - they may 
be located remotely, for example.  
The solution was to crawl over two well defined sets of data:  
1. All entries in the plugin's bundle whose URL resolve to a file; 
2. All entries in the java.class.path system property.  

Jar files were further traversed for single .class files. When found, 
restrictions were placed so to allow only classes belonging to the 
"etomica" package—or a subpackage. Classes (instances of 
java.lang.Class) were then queried for assignment to one of those 
base abstract classes cited before. If a match is found, the class 
object is added to the list of available objects. This list is used 
mainly to populate combo boxes to offer the user choices when 
configuring a simulation. The NewEtomicaDocumentWizard, for 
example, queries this registry and presents the user with a 
selection of ready-to-use simulation templates or, if a custom 
simulation is desired, with a selection of an available combination 
of Space and master Potential. This framework allowed for an 
added flexibility on a ongoing development effort as Etomica. 

4. SUMMARY 
Etomica is an API and an Eclipse-based development 
environment for building, conducting, and analyzing molecular 
simulations. It is still a work in progress. With it we aim to enable 
a broader range of scientists, engineers, and educators to make use 
of the powerful capabilities of molecular simulation. 
   

5. ACKNOWLEDGMENTS 
Development of Etomica is supported by the National Science 
Foundation, and by an Eclipse Innovation Grant from IBM.  HB is 
supported in part by the University at Buffalo Center for 
Computational Research. Thanks to Ruben Lopez for releasing 
part of osgedit [4] code, essential for the integration OSG/Gtk. 
 

6. REFERENCES 
[1] Frenkel, D. and B. Smit, Understanding Molecular 

Simulation:  From Algorithms to Applications. 2nd ed. 2002, 
San Diego: Academic Press. 

[2] Erich Gamma et al. Design Patterns: Elements of Reusable 
Object-Oriented Software ( Addison-Wesley, 1995 ). 

[3] Eclipse User Interface Guidelines, Nick Edgar, Kevin 
Haaland, Jin Li, and Kimberley Peter; Last updated: 
February 2004.  http://www.eclipse.org/articles/Article-UI-
Guidelines/Contents.html 

[4] OSGEdit - an open editor for an open scene graph. 
http://osgedit.sourceforge.net. 
 

 
Figure 3. Screen shot of the Etomica-Eclipse IDE, showing a 
configuration of atoms

 


