
An Eclipse-Based Environment for Molecular Simulation
Henrique F. Bucher

Center for Computational Research
University at Buffalo

9 Norton Hall
Buffalo, NY 14260-1800

011-716-807-2543
henrique@bucher.com

Andrew J. Schultz
Dept of Chem.& Biol. Engineering

University at Buffalo
303 Furnas Hall

Buffalo, NY 14260-4200
011-716-645-2911 x2224

ajs42@eng.buffalo.edu

David A. Kofke
Dept of Chem.& Biol. Engineering

University at Buffalo
303 Furnas Hall

Buffalo, NY 14260-4200
011-716-645-2911 x2209
kofke@buffalo.edu

ABSTRACT
Etomica is an extensible framework for conducting molecular
simulations, and it comprises an API and a graphical IDE based
on the Eclipse framework. It is written almost entirely in Java,
and presently comprises about 1200 classes. In this paper we
describe the general structure of the Etomica API, and discuss
how we have integrated it into the Eclipse framework. Topics
discussed include the design of the simulation framework and the
handling of OpenGL graphics that permit real-time visualization
of the simulations.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: chemistry, physics,
engineering.

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation.

Keywords
Molecular simulation, API, IDE

1. INTRODUCTION
Molecular simulation [1] describes a collection of methods for
doing computer “experiments” on molecules, which are modeled
by postulating the force or energy that they feel due to each other's
presence. Put simply, the aim of molecular simulation is to
generate many arrangements of such molecules in ways that are
consistent with the laws of statistical mechanics. Observations and
measurements made on these configurations of model molecules
can help us understand the behavior of real molecules and the
materials they form.

The range of materials and phenomena that can be studied by
molecular simulation is vast and diverse. Examples include small
molecular systems such as water; macromolecules such as

polymers and proteins; lattice models such as those used to model
magnetic systems and surfactants; electronic and semiconductor
materials such as metals and silicon; complex nanostructured
phases, and so on. The methods used are primarily molecular
dynamics and Monte Carlo algorithms, applied with a diverse set
of specialized techniques that are each targeted to certain classes
of systems and phenomena.

For the past three decades molecular simulation has steadily
grown as a tool of engineering researchers and, more recently,
practitioners. This trend has not yet reached maturity; on the
contrary, it is likely that it will continue at least to some point
beyond the maturation of computing power, a time which itself is
not yet in sight. Interest in molecular simulation is expanding also
because it is crucial to activities conducted under the broad label
of “nanotechnology”, which aims to perform chemical and
materials engineering by manipulating matter at the molecular
scale. Advancement of this field is now a major national research
priority. In a different arena, molecular simulation has also
become increasingly appreciated as a powerful pedagogical tool,
inasmuch as it enables students to understand abstract material
behaviors and properties (such as entropy and viscosity) by
opening the window to their molecular origins.

Despite the need and promise of the broad use of molecular
simulation in science and engineering, there exist significant
obstacles to this outcome. The barriers were identified in the
recently-completed Vision 2020 Roadmap for Computational
Chemistry, (www.ccrhq.org/vision/index/roadmaps/ns15.html)
and include

• limited ability to obtain results of sufficient quality for
practical problem resolution

• insufficient practical usability of molecular simulation codes
for non-experts

• non-transferability of codes among experts

• narrowness, inextensibility, and close-source nature of
commercial software

• the lack of acquaintance of non-experts with the methods of
molecular simulation.

The first item, inability of simulation to consistently provide
reliable quantitative information, is a very prominent focus of the
molecular simulation research community, and great progress is
being made toward its resolution. As an example of the interest in
this issue, NIST in 2002 initiated the first of an biennial open
competition for scientists and engineers to calculate results for a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

set of problems (www.cstl.nist.gov/FluidSimulationChallenge).
The aim is “driving improvements in the practice of molecular
modeling, formalizing methods for the evaluation and validation
of simulation results with experimental data, and ensuring
relevance of simulation activities to industrial requirements.”
Real progress has been made in enabling simulation to describe
increasingly complex systems, such as polymers, electrolytes,
glasses, and water, and properties such as phase coexistence and
viscoelasticity. Over the same period, comparatively little
attention has been put toward resolving the other obstacles to
widespread adoption of molecular simulation; even worse, there is
nothing on the horizon indicating that they will be addressed soon.

These remaining barriers can be remedied in differing degrees
through the systematic application of modern programming tools
to molecular simulation software development. The obstacle here
is the inexperience and/or disinterest among front-line
developers/practitioners of molecular simulation methods in the
use of state-of-the-art programming tools, particularly object-
oriented approaches. This situation is understandable. Most
research supervisors cut their teeth on Fortran, which is fast and
extremely well suited for application to narrow computational
problems; for these same reasons it (or C) is often the language of
choice for current students, who have little incentive to perform
development that has broader impact. Any graduate students who
have more exposure to newer approaches lack the broad
experience in molecular simulation to use them well, and are
discouraged from pursuing such development because it really
isn’t the most effective way to solve their immediate research
problems. Of course, these are broad statements for which one
can find exceptions. The point is that current research practices
do not encourage activities that address the “less scholarly”
obstacles to broader adoption of molecular simulation. Moreover,
it is not a problem that can be delegated to computer scientists,
because effective and robust application of object-oriented
methods requires a deep understanding of the fundamentals and
techniques of molecular simulation.

This project aims to use the Eclipse application framework to
develop an advanced, interactive, GUI-based computational
environment for molecular and mesoscale modeling. We believe
that such a framework could nucleate an open-source movement
in molecular simulation, and make molecular simulation
accessible to a broader community for research and education
purposes. The key issues and considerations involved in this
development are

• Extensibility. We cannot expect to develop by ourselves the
components for every possible application of molecular
simulation, but if we develop an excellent framework we
hope that others will find it useful and add to it.

• Efficiency. Molecular simulations are computationally
intensive. A typical simulation can run for hours or days
before yielding a result. Simulated systems can range in size
from tens of atoms to hundreds of thousands of atoms. And
all of this might yield information about a few nanoseconds
of the life of the material! (which in many cases is plenty
long enough). Although it is important to get acceptable
performance, this consideration does not trump everything
else. No general-purpose code can outperform one that is
highly specialized to the problem at hand. We expect that
some users will be willing to trade off performance for ease
of use and other features that can be offered by an integrated
environment of reusable components.

• Versatility. The software should be suitable for interactive or
batch use, and work across a variety of platforms. Presently
molecular simulations are typically conducted by submitting
batch jobs to a remote machine, with results obtained some
time later. We want to support this use, but also enable the
ability to interact with the simulation, so that the user can
guide its direction or explore behaviors. Ideally it would be
possible to switch between batch and interactive use as
needed. We are also interested in educational applications,
in which we construct self-contained interactive simulations
that permit students to explore the molecular origins of
interesting physical concepts such as entropy and viscosity.

2. THE ETOMICA API
2.1 Design
Etomica is in part an Application Programming Interface (API)
for the construction of molecular simulations. In developing it, we
have identified the following major elements of a molecular
simulation

• Simulation: serves as a point of reference for all elements.
• Space: defines features of the physical space (e.g., whether it

is 1-, 2-, or 3-dimensional, a lattice or a continuum) in which
the simulation is conducted.

• Controller: the element through which all activities of the
simulation are managed.

• Species: defines the structure of the molecules; the number
of atoms and how they are arranged in the molecule.

• Potential: defines how the atoms interact.
• Phase: collects all the atoms that interact with each other. It

is not unusual for a simulation to involve multiple loosely
coupled Phase instances.

• Integrator: codes the algorithm used to generate
configurations of the molecules; an event model is used to
permit other elements to react to progress made in this
activity.

• DataSource: performs the calculations that yield property
measurements.

• Display: presents information about the simulation to the
user.

• Device: graphical element that permits the user to interact
with the simulation.

Data handling uses a model in which data flows from a source to a
sink, passing through transformations and accumulators along the
way. Physical units are handled in a consistent way; all quantities
are represented in a common unit system based on the picosecond,
the Dalton, and the Angstrom. Physical quantities for input and
output have associated dimensions (e.g., length, mass, time) that
can be used to identify choices of units (e.g., meters, kilograms,
seconds) used when inputting our outputting results. Many data
structures and behaviors are compartmentalized. Elementary
actions and activities are defined, and can be invoked via the user
interface or programmatically. A generic neighbor-listing facility
is developed for computational efficiency and scalability. The
Etomica structure overall has evolved in line with the generally
accepted object-oriented design patterns, with significant roles for
iterators, builders, factories, strategies, and so on [2].
Presently Etomica comprises more than 1200 classes.

2.2 Performance
Given the computationally intensive nature of molecular
simulation, and the premium placed on good computational
performance, we always have concern about how fast the codes
run. Java may be a liability in this regard, but we find the
performance to be acceptable for many purposes. Comparisons
with dedicated Fortran codes running equivalent algorithms find
that Etomica about 2 to 4 times slower. Depending on the problem
and the urgency that the results are needed, this may be just fine
or it may be prohibitive. We do find that performance scales well
with the size of the simulated system, and is no worse than
Fortran in this regard. Our Tinderbox benchmarks run
simulations of up to 40,000 atoms, and they take only about 9
times longer than an equivalent simulation having 1/8 as many
atoms (5000).

2.3 Applications
Etomica is the primary platform for research in molecular
thermodynamics performed in our research group. It has been
used in the study of liquid-vapor surface properties, the behavior
of associating fluids, effects of point defects and strain in solids,
miscibility of InGaN semiconductors, and the development and
understanding of free-energy methods. It has also seen many uses
in educational settings. In 1999 we used the codes as part of a
two-week workshop introducing high-school students to
molecular simulation. We did this again in 2000, and in 2001 we
used it as the basis for an honors course for freshmen. We use it
now in some undergraduate and graduate courses in Chemical and
Biological Engineering at the University at Buffalo, and have
plans to expand these applications further. Standalone modules
made with Etomica have (to our knowledge) been used in courses
in perhaps 10 universities.

3. THE ETOMICA IDE
3.1 General Features
Presently we are developing a molecular simulation Integrated
Development Environment (IDE) that is based on the Etomica
classes. We are building this on the Eclipse open-source
application development platform. The aim is to produce an
Office-like environment for building, running, monitoring,
viewing and analyzing molecular simulations. We envision being
able to cut-and-paste entire simulations or their components (e.g.
an individual phase), so that it becomes easy to save its state and
make copies to explore variations. Java’s serialization capabilities
provides the key functionality for these purposes. The same
technology can underlie remote-monitoring capabilities, in which
the IDE can attach to a remote process running a batch simulation
on a high-performance server, to monitor and perhaps tune its
behavior on-the-fly.
Features that we aim to incorporate in the IDE are as follows.

• views and/or editors generally designed to present and
configure each of the high-level components of a simulation.
These include Simulation, Phase, Species, Controller,
Integrator, Activity, Accumulator, Meter, and Atom classes,
among others. We have already developed Eclipse views for
the Simulation and Phase classes, as well as a general-
purpose reflection-based drillable property sheet that permits
editing of the properties of any object.

• interactive data analysis capabilities for plotting, tabulating,
transforming, and exporting the results of a simulation.

• the use of serialization to save and restore simulations, and
even to copy and paste entire simulations so variations on
them can be easily explored. As a sub-element of this, we
envision the ability to cut, copy, paste, and delete complete
simulations elements, so that (for example) a molecular
dynamics simulation could be easily transformed, on the fly,
into a Monte Carlo simulation (this involves swapping out
one Integrator for another, following the Strategy design
principle [2]). We would like to see the GUI capabilities
familiar to everyone using word-processing applications
brought to the realm of high-performance computing.

• wizards that guide the user through the process of assembling
a new simulation and analyzing or exporting the results.
This ensures, for example, that a hard-potential dynamics
integrator is not applied with a soft intermolecular potential
model. This functionality must adhere to the reflection
method of discovery, so that compatibility rules are brought
in with the classes, and are not hard-coded into the IDE.

• a complete help facility with documentation suitable for both
developers and users. We use Javadoc-formatted comments
extensively through all our codes, so to better facilitate the
creation of a thorough documentation of the API.

• the ability to import and export simulations as source code,
so that developers can easily move between graphical and
text-based modes, seamlessly integrating with the existing
Java-development and debugging capabilities of Eclipse.

• the ability to monitor and interact with simulations that are
running elsewhere as batch process. The idea is that a user
can launch a simulation on a high-performance machine, and
occasionally check up on it and perhaps modify its operation
by temporarily attaching the IDE.

A key principle in the Eclipse+Etomica integration effort is
ensuring the extensibility of the IDE. All Etomica API classes are
to be incorporated into the IDE via discovery in the classpath, and
Java's reflection capabilities are used to discover the editable
features of any simulation component. In this manner the IDE
capabilities grow naturally as the API expands. It should even be
possible to add functionality to the IDE while simulations are in
progress.

3.2 Visualization and OpenGL
When creating a plugin for creating chemistry simulations within
Eclipse, we need to include the ability to display the internals of
the ongoing simulation as a 3D display. Many applications
already do this as the graphics display plays an important role on
capturing critical aspects of the simulation. Visualizing initial and
final configuration states of such molecular systems is of great
help but having a means to understand how the system evolved to
reach such final configuration gives much more insight on the
underlying physics, especially for molecular dynamics problems.

Therefore we needed a 3D display that would present the
instantaneous state of the ongoing simulation and which could be
embedded in a SWT control.

As first choice for this work, we have used OpenGL as the 3D
graphics API of choice since it is fully supported on most
platforms. There is at least one full SWT/OpenGL wrapper
available
http://www.eclipse-plugins.info/eclipse/plugin_details.jsp?id=562

It uses Java’s JNI (Java Native Interface) to wrap every OpenGL
call and enumeration therefore enabling any Java program access
to the 3D world.

Because every OpenGL call is wrapped in a JNI routine, and
typically thousands of such calls are performed at every frame
update, we observed a noticeable latency added by the additional
software layer. Additionally, building complex 3D scenes writing
directly code in OpenGL may remind some of the old times of
writing simple programs using plain assembler – the final code is
often large and very difficult to maintain.

Still, there were desired features not available on this pure
OpenGL approach, as:

• Mouse and keyboard manipulators to allow an interactive user
experience in 3D

• Support to importing from common 3D file formats as 3D
Studio Max or OpenFlight

• Support to image file formats as JPEG, GIF, BMP
• Support for special effects (particles, cartooning)
The conclusion was that the wrapping was performed in a very
low level and what we needed was a scene builder with easy-to-
grasp functions as createSphere() or createBox().

This conclusion brought us to OpenSceneGraph, which is an open
source 3D scene builder (www.openscenegraph.org). It is
available for most unices and also Windows and MacOS, which
fulfills our cross-platform requirement. This package was before
successfully integrated with StreetScenes, a Qt-based traffic
simulation package developed at the Center for Computational
Research/State University of New York at Buffalo.
http://www.ccr.buffalo.edu/viz/content/streetscenes.htm.
However, OpenSceneGraph is itself a very large API, with
hundreds of C++ classes. And as JNI requires pure C, we had to
create a new software layer using C++ to bind both together,
which we call the OSGWrapper. The architecture is summarized
in Figure 1.

The OSGWrapper implementation is the central piece of this
binding. It translates calls from the OSGWrapper/java classes,
which are very high level as createObject() or object.setPosition(),
into the more complex C++ statements that set all necessary
OpenGL parameters according to a predefined set of defaults. The
ease with which OpenGL images can be rendered in the Eclipse
framework is illustrated by the code shown in Figure 2, which
renders an image (not shown here) in an Eclipse control.

The effect of offloading java from all latency-critical calls and
performing them at a low level language had the effect of
increasing the performance from roughly 10 frames per second to
around 200 frames per second for a small size simulation (~1000
atoms).

All graphics information was stored in the implementation layer
using a flyweight pattern [2], which allowed for efficient and
scalable use of memory, directly affecting performance.

3.3 Graphical Interface
So as to follow Eclipse's user interface guidelines [3], we chose to
represent Etomica's main data container with an Eclipse editor
(guideline 6.1), which was associated with the .etom file suffix.
This EtomicaEditor class is primarily responsible for:

1. setting up the physical initial configuration with atoms
(molecules) and phases

2. associating families of atoms with their respective potentials

3. planning activities to be performed on configurations as time-
stepping integrations and Monte Carlo simulations.

4. adding data collectors and displays for compiling and recording
the results of activities
5. starting a group of activities
6. visualizing the progress of those activities with 2D or 3D
graphical interfaces
One of the major challenges we faced was regarding guidelines
6.3 and 6.4, for historical reasons. Etomica was first designed to
run batch jobs. This means that for every Java process there would
never be more than a single simulation instance running. Several
Etomica classes took advantage of this premise to boost
performance but also to achieve cleaner code by storing defaults
and highly accessed objects as statically allocated instances.

Under Eclipse, simulations were run as separated threads to allow
for easy retrieval of information for display. These simulations
running simultaneously sometimes crashed or (less often) only
produced wrong results. This required some work to remove all
statically allocated instances, cleaning up default constructors,
which eventually led to a less coupled system.

No special views were created for Etomica. The design reused
already existent views as the property and outline views
(guideline 6.20) to help in displaying and configuring the
simulation. A special perspective for Etomica was also created to
make easier the initial set up of the environment.

OSGWrapper classes

(java/jar)

OSGWrapper implementation

(C++/JNI)

OpenSceneGraph (C++)

Eclipse

OpenGL

Graphics Hardware

Producer

(Win32, Mac)

osg4gtk

(Linux)

Figure 1 Software layers implementing the SWT/OpenGL
binding.

3.4 Discovery
Two specialized wizards were created - a new project wizard and
a new simulation wizard. The new project wizard is quite simple
and only sets up a new folder for containing further new
simulation files. The new Etomica document wizard in turn,
required writing a discovery class. One of the design requirements
was that all modifications and additions to Etomica—to both the

import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Group;
import org.eclipse.swt.widgets.Shell;

import osg.OrientedObject;
import osg.R enderWindow;

public class Simple {
 public Simple() {
 super();
 }
 public static void main(String[] args) {
 Display display = new Display();
 Shell shell = new Shell(display);
 FillLayout shell_layout = new FillLayout();
 shell.setLayout(shell_layo ut);
 shell.setSize(800, 800);
 Group group = new Group(shell, SWT.NONE);

 shell.open();

 int handle = group.handle;
 RenderWindow r1 = new RenderWindow(handle);

 OrientedObject.appendToSearchPath("C: \\OpenSceneGraph -Data");
 OrientedObject o1 = OrientedObje ct.createFromFile("molecule .osg");
 r1.addObject(o1);

 float[] xaxis = new float[]{1, 0, 0};
 while (!shell.isDisposed()) {
 display.readAndDispatch();
 r1.render();
 float delta = 0.2f;
 o1.rotate(delta, xaxis);
 }
 r1.dispose();
 display.dispose();
 }
}

 Figure 2. Simple program in Java/SWT to display and rotate
a 3D model.
main jar file and to the project's subfolder—should be
automatically apprehended by the system. Therefore the user had
the ability to choose among stock types or create its own sets of
simulations, specialized potentials, data sources, devices, meters
and so on.

An approach using XML files and extension points as
implemented for Eclipse's plugins was considered but discarded
afterwards for being hard to maintain for non-developers, and we
chose instead to implement a brute force scheme.
Eclipse already provides a notification framework based on the
IResourceChangeNotification interface and that was used to catch
modifications made after the plugin's initialization. However, for
the initial discovery process upon start we created a specialized
resource crawler to discover and query all classes derived from
our set of nine basic abstract classes. This task cannot be
accomplished by using Java class loaders directly because they do
not provide a method to list all classes they represent - they may
be located remotely, for example.
The solution was to crawl over two well defined sets of data:
1. All entries in the plugin's bundle whose URL resolve to a file;
2. All entries in the java.class.path system property.

Jar files were further traversed for single .class files. When found,
restrictions were placed so to allow only classes belonging to the
"etomica" package—or a subpackage. Classes (instances of
java.lang.Class) were then queried for assignment to one of those
base abstract classes cited before. If a match is found, the class
object is added to the list of available objects. This list is used
mainly to populate combo boxes to offer the user choices when
configuring a simulation. The NewEtomicaDocumentWizard, for
example, queries this registry and presents the user with a
selection of ready-to-use simulation templates or, if a custom
simulation is desired, with a selection of an available combination
of Space and master Potential. This framework allowed for an
added flexibility on a ongoing development effort as Etomica.

4. SUMMARY
Etomica is an API and an Eclipse-based development
environment for building, conducting, and analyzing molecular
simulations. It is still a work in progress. With it we aim to enable
a broader range of scientists, engineers, and educators to make use
of the powerful capabilities of molecular simulation.

5. ACKNOWLEDGMENTS
Development of Etomica is supported by the National Science
Foundation, and by an Eclipse Innovation Grant from IBM. HB is
supported in part by the University at Buffalo Center for
Computational Research. Thanks to Ruben Lopez for releasing
part of osgedit [4] code, essential for the integration OSG/Gtk.

6. REFERENCES
[1] Frenkel, D. and B. Smit, Understanding Molecular

Simulation: From Algorithms to Applications. 2nd ed. 2002,
San Diego: Academic Press.

[2] Erich Gamma et al. Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley, 1995).

[3] Eclipse User Interface Guidelines, Nick Edgar, Kevin
Haaland, Jin Li, and Kimberley Peter; Last updated:
February 2004. http://www.eclipse.org/articles/Article-UI-
Guidelines/Contents.html

[4] OSGEdit - an open editor for an open scene graph.
http://osgedit.sourceforge.net.

Figure 3. Screen shot of the Etomica-Eclipse IDE, showing a
configuration of atoms

