
Relo: Helping Users Manage Context during Interactive
Exploratory Visualization of Large Codebases

Vineet Sinha
vineet@csail.mit.edu

Rob Miller
rcm@mit.edu

David Karger
karger@mit.edu

MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
32 Vassar Street, Cambridge, MA 02139

ABSTRACT
As software systems grow in size and use more third-party
libraries and frameworks, the need for developers to understand
unfamiliar large codebases is rapidly increasing. In this paper, we
present a tool, Relo, that supports developers’ understanding by
allowing interactive exploration of code. As the developer
explores relationships found in the code, Relo builds and
automatically manages the context in a visualization, thereby
helping build the developer’s mental representation of the code.
Developers can group viewed artifacts or use the viewed items to
ask Relo for further exploration suggestions. Relo is built as an
Eclipse plug-in integrated into the Java Tooling (JDT), and uses a
standard, RDF, based backend allowing for maintaining code
relationships and performing inferences about the relationships.

See also the related demonstration & poster at OOPSLA

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces;
D.2.6 [Programming Environments]: Graphical environments,
Interactive environments.

General Terms
Management, Design, Human Factors.

Keywords
Program Comprehension, Program Understanding, Software
Visualization, Large Software Systems.

1. INTRODUCTION
As software grows in size and complexity, developers face
increasing difficulties in comprehending it and maintaining a
coherent mental model of the code. Techniques like object-
oriented programming and design patterns have helped control
complexity in large projects by allowing developers to create and
use appropriate abstractions and encapsulate inessential details.
Unfortunately, these techniques make certain parts of program
comprehension harder, requiring a developer reading the code to
follow multiple forms of relationships. For example, following a
function call, once a simple task, now also requires keeping track
of inheritance and polymorphism. This task of being forced to
follow multiple different relationships when trying to understand
a portion of the code results in developers losing their context
while exploring code.

In this paper, we present a program comprehension tool called
Relo that aims to help developers deal with the different types of
relationships in the software system. Relo allows developers to
direct their exploration through the code while providing support

for managing the context of the explored code. This support for
explicitly showing the explored code surroundings via
incremental visualizations, allows developers to build a consistent
mental model (representation) of the code. Relo uses simple
techniques to ensure developers’ control over the visualization,
while leveraging visual constraints to generate diagrammatic
representations of the code. Additionally, Relo builds on these
control primitives by automatically doing simple searches and
adding or removing code artifacts.

Prior work on program comprehension [1, 5, 6, 7] has shown
that while developers examine small codebases in a systematic
manner, they use an as-needed bottom-up exploration strategy for
large codebases. Relo visualizations therefore start with a single
code artifact (such as a package, class, or method), from which a
developer can browse the different types of relationships,
incrementally adding more code artifacts. Relo helps developers
in building a consistent representation of the code by showing
artifacts in expected positions using visual constraints such as
containment and left-to-right ordering in the diagram. As
developers manage the visualization by adding, removing, or
grouping artifacts, the traversed relationships, artifacts, and
chunks are shown to help maintain the developers’ context.

Relo visualizations show only a small manageable part of the
code and like concern graphs [14] do not include irrelevant
details, allowing a developer to focus on the important
relationships. Relo visualizations try to be intuitive to developers,
showing code artifacts in diagrams similar to UML class
diagrams, while at the same time allowing developers to zoom in
to view and edit code using text editors embedded in the diagram.
Developers can therefore abstract to a high level, or focus-in to
see code. Relo further helps maintain developers’ understanding
of the code by providing explicit support for managing the
amount and presentation of information to the developer based on
his/her interaction with code elements.

2. PREVIOUS WORK
Relo’s strength comes from providing an intuitive interface for an
incremental user-directed exploration of large projects. Previous
approaches to user-directed exploration have done so by using
multiple distinct views each supporting only a single
predetermined relationship (like inheritance or method-call
hierarchy). Such views occur commonly as tree widgets in most
IDE’s, but result in a loss of context when attempting to work
with more than one relationship; developers using more than one
tree view need to keep track of how the views are connected.
JQuery [4] tries bringing the multiple relationships together in a
single tree-view. It allows developers to perform queries on nodes
in an as needed manner, and then uses query results to populate
children of the node. Difficulties in using JQuery come from
having the tree view’s children relation represent different kinds
of relationships at different levels: for some parts of the tree, the

OOPSLA'05 Eclipse Technology eXchange (ETX) Workshop.
Oct. 16-20, 2005, San Diega, California, USA.
Copyright 2005 ACM

children may represent containment, but for other parts, they may
represent method calls. Relo also overcomes the loss in context by
bringing the different relationships together in a single view, but
uses diagrammatic constraints, such as containment or left-to-
right ordering, to represent the different relationships.

Visualization approaches have focused on the presentation of
code information instead of exploration capabilities. Reiss’
FIELD [15] system used graphical widgets but supported user-
directed exploration across one relationship only. SHriMP
Views [2] supports comprehension by using multiscale graph
visualization, fisheye-lens distortion, and zooming in on targeted
pieces of code. Its expansion in a user-directed manner happens
only along the containment axis – users cannot select a code
artifact of interest and choose to expand the visualization across a
relation of interest. This approach of showing all siblings even
when interested in a different relation tends to overwhelm [3]. In
contrast Relo allows the user to direct the expansion (and
contraction) of the diagram on important parts by explicitly
choosing relationships. While SHriMP does provide capabilities
for choosing relationships and nodes, it uses global filters and are
not designed do not support exploration as part of the user's
interaction with the visualization. For example, it is hard to get
the system to first focus on inheritance in some parts of the
visualization and later on method calls in other parts.

Another visualization approach, the TkSee Visualizer [16]
supports users performing queries to build a visualization for
graphical exploration and displays relationships using a radial
layout. It however limits the user control of the visualization and
does not allow zooming or removal of irrelevant items. Items are
added by users specifying queries in a dialog box outside the
visualization, instead of allowing the users to leverage contextual
information to browse as shown to be needed by users [13]. Relo
further uses visual constraints to present nodes in expected
locations. Relo visualizations are similar to those proposed when
studying navigation behaviors of programmers in traditional
IDE’s [17], but also provide for incremental exploration in
building the visualization.

Compared to the previous techniques, Relo takes a hybrid
approach: Relo leverages user-directedness in reducing cognitive
overhead from viewing multiple elements, and uses a graph-based
view with automatic layout, placing nodes and children in
predictable locations. Further, Relo uses direct-manipulation
browsing techniques, like handles (described later) to implicitly
query and build the relevant graph for users. Design tools with
reverse-engineering capabilities like Rational Rose [9],
TogetherJ [10], and Fujaba [11] provide another kind of support
for program comprehension. However, these design tools are
aimed at developers who already understand the code, allowing
them to create diagrams as documentation. Relo instead focuses
on exploration involved in the comprehension process.

3. WALKTHROUGH
Relo is built with the intent of supporting developers explore the
static structure of code, in a UML like visualization. We illustrate
how Relo would be used by a developer for typical
comprehension task. For this example, we use a task similar to
that used by JQuery [4]. The task involves a developer working
with the JHotDraw [12] project, a GUI framework for building
drawing applications consisting of figures like rectangles,
triangles, ellipses, etc. A developer needing to add a feature that
operates on figures would like to understand how to manipulate

them. In attempting this task, the developer will try to understand
the code, by likely taking a few steps:

1. Find a class implementing figures.
2. Understand it by examining a few methods in this class.
3. Go up the inheritance tree, to find a suitably general

base class representing all figures.
4. Find code that manipulates figures by calling methods

in this general base class.
5. Select an appropriate manipulating class, and examine

its methods to duplicate relevant functionality.
A developer following the above steps will typically make

rapid progress in the first three steps, finding a starting class
(using simple heuristics and search queries), examining it, and
selecting an appropriate base class. However, at step 4, when the
developer selects a method that is called for manipulating figures
and tries to examine the callers, he will have difficulty in keeping
track of the various examined code artifacts. The difficulty will
occur because of the desire to maintain a context when examining
the roles of nodes connected by multiple relationships – in this
case: the inheritance, containment, and method calls relationships.

This scenario would be simple with Relo. As the developer
looks at the code, he will find that JHotDraw has a number of
packages, with one being called figures. The developer would
look at that package, and find that the class EllipseFigure
would be a relevant starting point for his/her exploration. The
developer would then just need to select the class, and open it in
Relo (as shown in Figure 1a).

Figure 1a shows that the class has 15 members, and the
developer clicks on the menu to see a list. Considering the method
basicMoveBy as interesting, he clicks on the method name in the
menu and thereby adds the method to the diagram for future
examination. Once added, the developer clicks on the class, and is
presented with a handle indicating the class inherits from another
class (shown in Figure 1b). The developer clicks on this handle to
show superclasses, and continues his exploration to find a relevant
base class by clicking upwards (Figure 2).

Figure 1a: Relo started by opening EllipseFigure

Figure 1b: Adding method and showing the classes handles

Figure 2: After clicking on the inheritance handles

Once the developer has an idea of the inheritance tree of
figures, he chooses to expand the AbstractFigure class. After
double-clicking to see all public methods, the developer removes

methods irrelevant to his task (manipulating figures) by clicking
on the ‘x’ in the corner, and examines the available methods to
select one for expansion. Deciding that the addFigureChange-
Listener method is part of the general framework for
manipulating figures, the developer decides to expand it.

The developer is presented with Figure 3, which shows the
implementation of the method. After finding the implementation
relevant, the developer will want to find a relevant caller of
addFigureChangeListener. The developer collapses the
AbstractFigure class and clicks on the caller handle, Relo
continues to build the graph (shown in Figure 4), and has begun to
act as both a call-hierarchy browser as well as an inheritance-
hierarchy browser.

Figure 3: Expanding the class AbstractFigure and the

method addFigureChangeListener

Figure 4: Asking for callers of addFigureChangeListener

Once presented with figure 4, the developer can easily select
the relevant classes that manipulate figures, and does not have two
worry about the connecting inheritance, containment, and method

calls relationships. As the developer continues with his task, he
can go on to build a larger visualization and choose to refine the
generated diagram at every step, so that the visualization helps in
his understanding of the code base.

4. USER DIRECTED EXPLORATION
Relo provides capabilities to show arbitrary code artifacts
together, using browsing handles to help manage the artifacts, and
annotations to group artifacts into larger chunks. It further links
itself to exploration in Eclipse so that developers can easily switch
between Relo and other navigation tools.

4.1. Browsing Handles
Developers browse the code in Relo diagrams by using “handles”
to navigate and extend the visualization with simple clicks.
Instead of requiring the developer to navigate property dialogs or
context menus to configure relationships to be shown or filtered
as done by most visualization tools, Relo presents context
sensitive buttons on the currently selected code element. For
example, as shown in Figure 1b, when a class is selected, it will
sprout handles for different relationships that could be followed
from the class (extends, extended-by). Clicking on a handle will
make the visualization grow by showing more items having the
appropriate relationship, i.e. following the selected handles
relationship. Handles are only shown on the most common
relationships for exploration when they will result in a
modification of the view, i.e. a class that is not extended by other
classes will not show the extended-by handle (as in Figure 1b).
This also results in handle clicks appearing as ‘instantiating’ the
handles as relations to code artifacts; after a click, all the
relationships of the handle’s type will be shown and the handle
will no longer be shown on the source code element.

4.2. Linked Exploration
Relo automatically synchronizes to explorations made by the
developer in other Eclipse views. This allows the developer to
work using the standard views, and at any time decide that he has
possibly lost context, and would like a Relo visualization to help
him. When asked to open such a visualization, Relo uses the
developer’s exploration history, presents the developer with a
dialog to select how far back to go, finds both the code elements
viewed and the relationships traversed, and then shows these
nodes and relationships while building the diagram. Once linked,
Relo continues to track the developer’s exploration in the other
views and updates the visualization to help provide context to the
developer. Use of the package explorer, call-hierarchy view, or
the type-hierarchy view, result in the respective containment,
method call, or inheritance relations being inferred and shown to
the developer. With this bootstrapped diagram generated, the
developer can switch to using Relo for his exploration and have
the benefits of the various automatic and explicitly invoked agents
(described in section 5).

4.3. Annotations
As developers understand code, their understanding moves from a
structural model to a model consisting of data-flow and functional
abstractions [5]. For example, systems using model-view-
controller architectures can have the associations between
components (model-controller or view-controller) carefully
separated into factories in the code, however, a particular view of
the code could have such relationships added by the developer.
Relo helps users maintain these forms of understanding by

providing support for basic types of annotations. It allows
developers to interactively create named relations between items
being shown, group components into chunks, and add comments
to the visualization, to allow the developers to represent formed
higher level abstractions when examining the code [1]. These
annotated diagrams can then be saved for future reference or for
communicating with other developers. Thus, important properties
of the system that might not necessarily be in the code can be
annotated into a live visualization connected with the code.

5. MANAGING CODE ELEMENTS
Relo builds on the basic exploration capabilities by providing
support for managing the code elements in the visualization. Relo
provides a set of view-based agents that are either live
(continuously monitoring the visualization) or are triggered
explicitly by the developer.

5.1. Live Agents
Live agents monitor one of a number of events on the shown code
artifacts and make modifications to the generated visualization.
One such agent automatically draws the containing class or
package when there are multiple artifacts that share the parent.
Other agents listen to code artifact selection, creation, or other
user-performed actions, and then either add elements or vary
properties of the visualization. By adding these obvious code
artifacts to the diagram, Relo is able to reduce the information that
needs to be understood by the developer even though information
is added to the visualization. Similarly, Relo also draws direct
inheritance relations between elements shown in the visualization.
These simple agents thus work together in providing an intelligent
experience to the user. Since these agents only provide simple
basic functionality, the developer using Relo has the feeling of
still being in control of the interface and the elements presented.

5.2. AutoBrowsing
Relo builds on top of the agent infrastructure to help developers
explore by implementing an Autobrowse feature. Autobrowse
tries to model a simple directed exploration activity by a
developer, between two or more selected items. It effectively does
a breadth first search finding other hidden artifacts that are
relevant to more than one visible item. Since some relationships,
like inheritance, are considered more important than others, they
are searched first, with the system terminating after an item is
added to the view. Developers can repeat autobrowse to add more
items. They can also select a subset of items in order to have
autobrowse explore only the smaller set.

5.3. User Control
With agents automatically adding elements, the system needs to
support developers removing these added items (by using one of
the handles). By default, an agent would be triggered again, and
could result in the developer-removed item being added again. In
such cases, Relo keeps track of all such exceptions to the agent’s
actions that have been performed, and does not automatically
allow agents to create such elements. A developer using
autobrowse can take advantage of these user driven exceptions in
the system, when on finding added item to not be relevant, the
developer can remove the added item and run autobrowse again;
since the system tracked the removed item, it is not added
automatically. Thus, developers can see how artifacts are related
while ignoring noise artifacts like utility artifacts or obvious
connecting code artifacts.

6. PRESENTING CODE ELEMENTS
Relo only lays out newly added elements, while making code
elements previously moved by the developer have their positions
fixed. It further shows the addition, removal, or moving of
elements by the system using animation so that the developers do
not loose context while working with the system. While
maintaining the context, Relo tracks how much detail must be
shown (in each code artifact’s view), as well as how to constrain
the layout of an artifact.

6.1. Levels of Detail
In order to minimize cognitive overhead on developers, every
element presented in a Relo visualization, defaults to showing as
little information as possible. Developers can semantically zoom-
in by double clicking on an element or selecting the expand
handle (‘+’) to show more details. For classes, this means starting
with only the class name, and at the first expansion level showing
the children members having public access. For methods,
expansion would mean showing the method implementation in an
editor view. Instead of expanding a code artifact to show all
public members, developers can also use the more items menu to
get a list of children and add only the relevant items. Like
expanding, developers can also collapse code artifacts by clicking
on the ‘-’ handle, and can selectively eliminate artifacts by
clicking on the ‘x’ handle.

6.2. Constrained display of elements
Relo tries to reduce cognitive overhead by using topological
constraints to assist in providing a default layout of code
elements, so that elements are found at expected locations.
Wherever possible, inheritance edges are drawn vertically,
method calls horizontally, and containment is shown by visual
nesting. Children are shown by default in class-diagram based
defaults: package children are shown using a graph layout engine,
while class children are shown using a vertical layout. In cases
when the containment hierarchy is not important, children are laid
out independently of the parent. Relo allows developers to select
an element and get it to break from its current layout, into one of
these three options. In addition, as mentioned previously, to
reduce clutter, Relo uses agents that automatically add obvious
relationships to items that have not been ‘broken’, i.e. code
artifacts that are not laid out vertically next to each other, such as
the default layout of methods in a class.

6.3. Automatic Chunking
In some cases, code artifacts can contain a large number of
members. Packages and classes in some codebases can have over
100 members. In order to control the layout of the large number of
elements, these items are automatically grouped using one of a
few simple heuristics. By default, grouping is based on access
(public, protected, private), followed by members being grouped
by name similarity. The goal of the automatic chunking is to get
the number of elements at any level down to less than 10
elements, and Relo therefore uses different types of the available
chunking in turn to reduce the number of shown items.

7. INTEGRATION WITH ECLIPSE
The primary goal of Relo is in supporting developers work with
large codebases. To accomplish this, we have built Relo
integrated into the Eclipse IDE. In order to enable working
rapidly on large codebases, having agents operating continuously

on the shown items, and without consuming a large memory
footprint, Relo compiles the entire underlying codebase into a
database. This database stores all nodes with their relationships as
triples of the form <source, relationshipType, destination> and
uses the W3C standard RDF [19] to store in a database. In order
to provide the implementation access to the different
representations of java element, Relo builds a mapping engine for
converting the four representations: Eclipse’s Java Parser
ASTNodes, Eclipse’s Java UI Elements, RDF Resources, and
Relo’s visible Artifacts. With a mapping engine available, Relo
leverages the incremental builder framework of Eclipse and
transparently extracts the relevant relationships into the database.
Adding support for any Eclipse language, involves building a
mapping engine, providing a extractor of relationships for the
compiler, and providing any user-interface customizations.

8. EVALUATION AND FUTURE WORK
In order to evaluate the usefulness of Relo, we have started

conducting formative evaluations using the tool on projects of
over 150,000 lines of code. Developers have found Relo useful in
tasks where their exploration strategy typically needs more than
2-3 hops to find their target. Since these developers examine the
code using an ‘opportunistic strategy’, i.e., not examining the
code in a systematic manner, one developer doing a task can find
Relo to be very useful while another developer doing the same
task can find Relo to not be useful. We are targeting to
characterize these situations and find means for Relo to help
developers be more ‘opportunistically successful’. We are also
investigating multiple types of views to help developers
understand codes at different levels of granularity.

9. CONCLUSION
We have presented a program comprehension tool Relo,

which uses software visualization to help manage developers
context and support comprehension in large software project. We
have conducted a preliminary evaluation of the tool and
regardless of bugs, developers have found Relo to be useful and
have wanted to use it in their development tasks. Relo is built as
an integrated plug-in into the Eclipse environment, and is to be
made freely available from: http://relo.csail.mit.edu

REFERENCES
[1] B. Shneiderman. “Software Psychology: Human Factors in

Computer and Information Systems.” Winthrop Publishers
Inc., 1980

[2] M.-A. Storey, H. Muller, and K. Wong. “Manipulating and
documenting software structures using SHriMP views”,
ICSM 1995.

[3] M.-A. Storey, H. Muller, and K. Wong. “How Do Program
Understanding Tools Affect How Programmers Understand
Programs?”, WCRE 1997.

[4] Doug Janzen and Kris De Volder. “Navigating and
Querying Code Without Getting Lost”, AOSD 2003.

[5] N. Pennington. “Stimulus structures and mental
representations in expert comprehension of computer
programs”. Cognitive Psychology, 19:295-341, 1987.

[6] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R.
Lampert. “Designing documentation to compensate for

delocalized plans”. Communications of the ACM,
31(11):1259-1267, 1988.

[7] M.-A. Storey, F. Fracchia, and H. Muller. “Cognitive design
elements to support the construction of a mental model
during software visualization”. IWPC’97.

[8] Sim, S.E. and Holt, R. C. “The Ramp-Up Problem in
Software Projects: A Case Study of How Software
Immigrants Naturalize”, ICSE 1998

[9] Rational Rose, IBM, http://www.ibm.com/software/rational/
[10] Together Technologies, Borland Software Corp.,

http://www.borland.com/together/
[11] Fujaba Tool Suite, Universität Paderborn Software Engg.

Group. http://wwwcs.uni-paderborn.de/cs/fujaba/
[12] JHotDraw. http://www.jhotdraw.org/
[13] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and

David R. Karger. “The perfect search engine is not enough:
a study of orienteering behavior in directed search”. CHI
2004.

[14] Martin P. Robillard , Gail C. Murphy, “Concern graphs:
finding and describing concerns using structural program
dependencies”, In ICSE 2002, Orlando, Florida

[15] Reiss, S. “Visualization for Software Engineering –
Programming Environments”, Chapter 18, pages 259-276,
in “Software Visualization”, ed. Stasko et al.

[16] Wang, L. “Animated Exploring of Huge Software
Systems”, Masters Thesis, School of Information
Technology and Engineering, University of Ottawa, 2002

[17] Ko, A. J., Aung, H., and Myers, B. A. (2005). “Eliciting
Design Requirements for Maintenance-Oriented IDEs: A
Detailed Study of Corrective and Perfective Maintenance
Tasks”. ICSE 2004.

[18] Lindgaard, G., “Usability Testing and System Evaluation: A
Guide for Designing Useful Computer Systems”, 1994,
Chapman and Hall, London, U.K. ISBN 0-412-46100-5

[19] O. Lassila and R. Swick. “Resource description framework
(RDF): Model and syntax specification”,
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222,
February 1999. W3C Recommendation

	ABSTRACT
	INTRODUCTION
	PREVIOUS WORK
	WALKTHROUGH
	USER DIRECTED EXPLORATION
	Browsing Handles
	Linked Exploration
	Annotations

	MANAGING CODE ELEMENTS
	Live Agents
	AutoBrowsing
	User Control

	PRESENTING CODE ELEMENTS
	Levels of Detail
	Constrained display of elements
	Automatic Chunking

	INTEGRATION WITH ECLIPSE
	EVALUATION AND FUTURE WORK
	CONCLUSION
	REFERENCES

