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ABSTRACT 
One of the reasons why large-scale software development is 
difficult is the number of dependencies that software engineers 
need to face: e.g., dependencies among the software components 
and among the development tasks. These dependencies create a 
need for communication and coordination that requires continuous 
effort by software developers. Empirical studies, including our 
own, suggest that technical dependencies among software 
components create social dependencies among the software 
developers implementing these components. Based on this 
observation, we developed Ariadne, a Java plug-in for Eclipse. 
Ariadne analyzes a Java project to identify program dependencies 
and collects authorship information about the project by 
connecting to a configuration management repository. Through 
this process, Ariadne can “translate” technical dependencies 
among software components into social dependencies among 
software developers. This paper describes the design of Ariadne, 
how it identifies technical dependencies among software 
components, how it extracts information from configuration 
management systems and, finally, how it translates this into social 
dependencies. Ariadne’s purpose is to create a bridge between 
technical and social dependencies. 

Categories and Subject Descriptors 
H.4.1 [Information Systems Applications]: Office Automation 
– Groupware; H.5.3 [Information Interfaces and Presentation]: 
Group and Organization Interfaces - Computer-supported 
cooperative work. 

General Terms 
Design, Human Factors 

Keywords 
Collaborative software development, program dependencies, 
social dependencies. 
1. INTRODUCTION 
Researchers and practitioners have long recognized that 
breakdowns in communication and coordination efforts constitute 
a major problem in software development [4]. One of the reasons 
for this problem is the large number of dependencies that any 
software development effort involves: dependencies among 
activities in the development process and dependencies among 
different software artifacts. To overcome this problem, the field of 
software engineering has developed tools, approaches, and 
principles to manage dependencies. Configuration management 
and issue-tracking systems are examples of such tools. The 

adoption of software development processes ([11, 22]) 
exemplifies an organizational approach [9] to managing 
dependencies. Finally, information hiding [23] illustrates a 
fundamental principle that has been implemented as several 
mechanisms in programming languages, e.g. interfaces and 
polymorphism [18].  

In any one of these cases, the underlying goal is the same, 
to make dependencies more manageable. By minimizing 
dependencies it is possible to reduce the required 
communication and coordination of software developers. 
This relationship between coordination and dependencies 
has long been recognized. Parnas [23], for instance, 
recognized over 30 years ago that the principle of 
information hiding also brings managerial advantages: by 
dividing the work in independent modules, it is also 
possible to assign the implementation of these modules to 
different developers that can work on them in parallel. 
More recent ethnographic studies (e.g., Grinter [14] and de 
Souza et al. [7]) found that technical dependencies in 
source code create “social dependencies” among software 
developers. That is, given two dependent pieces of code, 
the developers responsible for developing each piece need 
to interact and coordinate in order to guarantee the smooth 
flow of work. In a quantitative approach, Morelli, Eppinger 
and Gulati [20] found out that these same dependencies can 
be used to predict communication frequency among team 
members in a manufacturer of electrical technologies: 

“Analyzing the frequency of each communication 
linkage reveals that nearly all of the frequent and 
most of the occasional coordination-type 
communications were predicted. … Such 
predictability suggests that regularly occurring 
communication linkages could be reliably 
planned with this project.” 

Later, similar results were found in the software 
development industry in a study of a telecommunications 
organization [24]. 
Despite this acknowledged relationship between 
dependencies and communication and coordination needs, 
this relationship has not been explored to facilitate and 
understand software development activities. Software 
development is indeed a strong candidate for exploring this 
relationship since (i) dependencies among software 
components can be automatically identified, and (ii) 
software is malleable, i.e., their dependencies, if so desired, 
can be more or less easily changed, and consequently the 



coordination of those developing it1. Ariadne, a plug-in for 
Eclipse, aims to fill this gap and explore this socio-technical 
relationship. In this paper, we describe Ariadne’s underlying 
architecture and API. By identifying these “social” dependencies, 
Ariadne is able to identify developers who are more likely to be 
communicating, as well as, developers whose similar 
dependencies make them likely to collaborate. Furthermore, it can 
even facilitate expertise identification [19] [8]. 

The rest of the paper is organized as follows. We begin by 
presenting the three types of dependencies that Ariadne supports, 
namely, technical, socio-technical, and social dependencies. More 
importantly, we describe our approach to extract program 
dependencies from the source code and how from code 
dependencies, we infer social dependencies between software 
developers. In the following section, we describe Ariadne’s 
architecture, including its configuration management (CM) 
module, dependency generation module and its visualization 
module. Finally, we make conclusions about our work and 
describe avenues for future work. 
2. TYPES OF DEPENDENCIES 
2.1 Technical Dependencies 
In software engineering, program dependence graphs (PDGs) are 
used to allow explicit representation and manipulation of program 
dependencies. According to Horwitz and Reps [16], formally, a 
PDG for a program P is a directed graph whose vertices are 
statements of P connected by edges that represent control and data 
dependencies. For simplicity purposes, researchers initially 
explored the construction of PDGs for simple programs: isolated 
procedures and programs that contain a single procedure. Later, 
interprocedural approaches were explored considering several 
procedure calls,their parameters and return types; which 
originated the term system dependence graph [1]. These graphs 
can be used to construct call graphs [17] that are used for 
interprocedural program optimization and program understanding 
[21]. According to Callahan and colleagues, a call graph 
“summarizes the dynamic invocation relationships between 
procedures. The nodes of the call graph are the procedures in the 
program. An edge (pl, p2) exists if procedure pl can call 
procedure p2 from some call site within pl. Hence, each edge may 
be thought of as representing some call site in the program” [3].  

2.2 Socio-Technical Dependencies 
By extracting dependencies in the source-code, a call-graph 
potentially unveils dependencies among software developers 
responsible for the software components [5-7]. For instance, 
assume that a software component a depends on another software 
component b and that a is being developed by developer A and b 
is being implemented by developer B. If a depends on b, we 
similarly find that developer A depends on developer B. That is, 
these software developers need to coordinate and communicate to 
guarantee the smooth flow of work [15, 24-26], even when 
programming constructs, like interfaces, are used [8]. The results 
of these empirical studies suggest that product dependencies 
create and reflect task dependencies between software developers, 
that is, product dependencies create a need for communication 
and coordination between developers, and, similarly, task 
                                                                    
1 Note that, as other researchers have pointed out, this relationship 
is not unique to software engineering. 

dependencies are reflected in the product dependencies. 
This translates into the need to populate the call-graph with 
‘social information.’ The goal is to create a data structure 
that describes which software developers depend on which 
other software developers for a given piece of code [7]. An 
example of this data-structure, called a social call-graph, is 
presented in Figure 1. A directed edge from package A to B 
indicates a dependency from A to B. Directed edges 
between authors and packages indicate authorship 
information. 
 

 
Figure 1 - Socio-technical dependencies. 

2.3 Social Dependencies 
Because social call-graphs describe both technical 
dependencies and authorship information, they can be used 
to generate sociograms describing the dependence 
relationship only among software developers, that is, 
dependencies between social developers because of 
dependencies in the source-code they are working on. A 
sociogram, as used in social network analysis [27], is a 
graphical representation of a set of items, vertices or nodes, 
connected to one another via links or edges. Figure 2 below 
presents an example of a sociogram created using Ariadne.  

Software developers can now use these sociograms to find 
out two important pieces of information: who they depend 
on and who depends on their work. We hypothesize that by 
identifying this “impact network”, developers can more 
easily coordinate their work. Indeed, we plan to test this 
hypothesis through a series of interviews (see section 4). 
We have used these sociograms to understand open/free 
source software development [6]. 



 
Figure 2 - Sociogram 

3. ARIADNE 
3.1 Features  
Ariadne is implemented as a Java plug-in to the popular Eclipse 
IDE. As such, Ariadne is integrated into this environment and 
makes use of several of the services it provides. Initially, the plug-
in uses Eclipse’s SearchEngine class to extract dependencies from 
a Java project’s source-code. Ariadne connects to the 
configuration management repository associated with a project to 
retrieve authorship information about the project. After that, the 
plug-in annotates the call-graph with the extracted authorship 
information to create a social call-graph (see section 2.2). Finally, 
the social-call graph is used to generate a sociogram that is 
displayed using the graphical framework JUNG (Java Universal 
Network/Graph Framework)2. 

Ariadne presents developers with three visualization options: 
technical dependencies, socio-technical dependencies and social 
dependencies. Our current implementation can present technical 
and socio-technical dependency visualization at three different 
levels of abstraction, based on the programming language’s 
hierarchy (e.g. packages, classes, methods in Java). Essentially, 
information is aggregated at each hierarchy level also to, 
potentially, average the different results provided by diverse call-
graph extractors [21]. For instance, class dependencies are 
displayed as the aggregation of method dependencies (i.e., the 
call-graph). All visualizations provided by Ariadne can be 
exported to Comma Separated Values formatted files, while 
sociograms can be exported to files suitable for use with social 
network tools like UCINet. 

Ariadne also supports the temporal analysis of all dependencies, 
similarly to TeCFlow [13]. That is, Ariadne can generate 
visualizations for graphs of snapshots in time, which allows us to 
study the evolution of a project’s technical and social 
dependencies.  

3.2 Ariadne’s Architecture 
Ariadne was initially implemented to analyze only Java projects 
and extract information from CVS repositories. We recently re-
designed it to be general enough to support various source 
languages, configuration management (CM) systems, and 
visualizations. By default, Ariadne has no knowledge of the 
source language to be analyzed or the type of CM repository 

                                                                    
2 http://jung.sourceforge.net 

where the source-code is stored. This is achieved through 
the usage of a layered architecture presented in Figure 3. As 
expected, the most important part is the configuration 
management and dependency management API. This API 
is used to isolate the programming language and 
configuration management tools from the visualizations 
provided by Ariadne. Through this approach, independent 
developers can contribute new functionality (configuration 
management tools and programming languages) to Ariadne, 
while reusing previous visualizations. And, at the same 
time, it is possible to easily design new visualizations to 
already supported programming languages and CM tools. 
 
 
 
  
 
 
 
 
 

Figure 3 – Ariadne’s architecture 
Multiple dependency generators, CM tools, and 
visualizations may be installed at the same time. We 
leverage Eclipse’s features to use the user’s context in 
Eclipse to determine which code generator and CM 
subsystem is used to extract the relevant information to 
Ariadne.  
Currently, we have implemented a code dependency 
infrastructure that analyzes Java code and Eclipse’s 
manifest and “plugin.xml” files. We built a CVS extractor 
used to connect to a project’s CVS repository (using 
Eclipse’s Team API), that annotates the dependencies with 
authorship information, and creates visualizations based on 
directed graphs. We have also built an infrastructure that 
imports source-control annotations from Rational 
Clearcase. These annotations are parsed and used to create 
social call-graphs and, ultimately, sociograms. 

To facilitate the understanding and usage of this API, 
Ariadne utilizes the façade design pattern [12] that 
aggregates methods to be used to query program 
dependency, authorship information and the combined 
information (the social call-graph). For example, 
developers may query the classes that depend on a 
particular class, the authors of a particular piece of code, all 
the authors of a file, how the ownership of a class changes 
from one release to the next, etc.  

Figure 4 below presents a UML class diagram for the 
program dependency and visualization parts only of this 
API. Both parts, as well as the visualization subsystem will 
be described in the following sections. 
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Figure 4 - Class diagram 

3.3 Program Dependency Information 
Ariadne has been designed to represent hierarchy levels in various 
programming languages.  These different levels can be thought of 
as two different types of code units:  Language Elements as well 
as Composite Language Elements.  Language Elements are 
defined as pieces of source-code that are not composed of smaller 
code units. For example, consider the case that a developer has 
chosen to analyze dependencies in a software project written in 
Java.  In this source-code there is a class A and a method of that 
class, b.  In our approach, method b is considered a Language 
Element because methods are the lowest level of the hierarchy in 
Java.  On the other hand, class A is a Composite Language 
Element because it is composed of methods – one of them being b 
– and possibly attributes. This is basically an implementation of 
the composite design pattern [12] to represent the relationship 
between programming language elements, in this case, Language 
Elements and Composite Language Elements. This pattern allows 
us to represent part-whole hierarchies as well as treat individual 
and composite objects in much the same way.  

In the first implementation of Ariadne, due to the design of the 
dependency generation subsystem, we were not able to identify in 
the sociogram the piece of code responsible for a social 
dependency. Therefore, we redesigned Ariadne to address this 
issue as described in Figure 4. Our current design defines a 
superclass Edge, which abstracts the two different possible types 
of edges, Author Edge and Language Element Edge. The first type 
of Edge models social dependencies, while the second one models 
program dependencies in the source-code. These two edges are 
connected by a relationship that is used to allow bi-directional 
navigation: given a technical dependency, which are the authors 
involved in the corresponding social dependency, and, given a 
social dependency, which are the programming elements involved 
in the corresponding technical dependency. 

The usage of the abstract class Edge allows us to abstract away 
the difference between the different edges in the visualization 
module, providing a generic way to draw edges. Furthermore, an 
edge can be queried for information about what piece of 
information it links.  We describe the visualization subsystem in 
more details in section 3.5. 

3.4 CM Information  
CM systems offer tremendous amounts of data that Ariadne aims 
to abstract into generic formats that developers can mine to 
produce informative visualizations. For our purposes, Ariadne 
models CM repositories in a generic way that allow views of a 
project’s data at one or many points in time, no matter which CM 

system is used. We believe we designed an API that is 
generic enough to capture the essential functionality that 
Ariadne requires of systems such as CVS, Subversion, and 
Clear Case, while still providing detailed authorship 
information from repositories. This is possible because the 
CM subsystem consists of a hierarchy of related classes that 
share a common resource heritage and exist inside a 
repository.  Ariadne associates one repository with each 
project in the workspace.  Repositories consist of branches, 
which represent the state of code in the repository at 
specific points in time (releases).  Branches do not exist 
until users dictate how the repository should be populated 
from the CM system.  Implementers may choose to have 
their plug-in select dates by which to break up the 
development timeline into meaningful states.  Branches are 
broken into collections of commit sets that group changes 
made at arbitrary points in time.  An example commit set 
could be all the resources a developer commits to the 
repository after fixing a bug.  Commit sets hold a collection 
of deltas that represent a set of changes made to a file.  
Deltas represent individual changes made to different parts 
of a file and contain the line number information for where 
a change began and ended.  The Ariadne core module uses 
this information to query the code dependency generator 
module for any language elements in the region. 

3.5 Visualization 
Ariadne's visualization subsystem allows developers to 
access information from the CM repository as well as the 
dependency information. In order to create visualizations, a 
developer must query Ariadne’s API for an instance of the 
Graph object. Our visualization framework utilizes some of 
the same design principles found in the JUNG project - 
specifically that we represent a Graph object as a generic 
container of Edges and Nodes. As such, Ariadne is capable 
of displaying any type of visualization that can be 
represented as entities and their connections. By doing that, 
we can reuse the same algorithms to draw technical and 
social dependency graphs since the Author and Language 
Element classes are subclasses of class Node (see Figure 4). 

Ariadne's default visualization is a simple directed graph 
with nodes representing authors and edges representing 
dependencies between authors. Alternatively, the developer 
may implement his visualization of choice – that may be a 
line-oriented approach as in the SeeSoft project [10] , 
treemaps, design structure matrices [2] or however else he 
chooses to visualize dependencies.  

4. CONCLUSIONS AND FUTURE 
WORK 
This paper described Ariadne, a plug-in to the Eclipse IDE 
that aims to reduce the gap between technical and social 
dependencies, and therefore facilitate the coordination of 
software development work. Ariadne was motivated by our 
own field studies of large-scale software development and 
reflects some of the insights that we learned from these 
studies. We described Ariadne’s features as well as 
architecture and presented parts of its API, which allows 
software developers to have access to source control and 
dependency information provided by multiple configuration 
management systems and programming languages. 



Furthermore, all visualizations are based on this API, therefore 
they can be easily reused. We plan to extend this API to fully 
explore the Eclipse plug-in model, so that, new visualizations can 
be created as new Eclipse plug-ins. Finally, we plan to adapt our 
plug-in so that developers can choose from many visualizations 
ranging from directed graphs, annotated class diagrams, or 
decorators inside the Eclipse workbench.  Decorators are simple 
visual clues (usually in the form of an icon) to developers that 
display additional information about resources in the workspace.  

Currently, we are in the last planning stages of a field evaluation 
of Ariadne with software developers from a large software 
development company and an open-source project. We want to 
understand the coordination problems faced by these developers 
and whether Ariadne can be used to minimize some of these 
problems. After this initial evaluation, we will make more 
improvements in Ariadne before releasing it to the public as an 
open-source tool. 
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