
Bridging the Gap between Technical and Social
Dependencies with Ariadne

Erik Trainer1 Stephen Quirk1 Cleidson de Souza1,2 David Redmiles1
1Donald Bren School of Information and Computer

Sciences
University of California, Irvine

Irvine, CA, USA – 92667

2Departamento de Informática
Universidade Federal do Pará

Belém, PA, Brazil – 66075

[etrainer, squirk, cdesouza, redmiles]@ics.uci.edu

ABSTRACT
One of the reasons why large-scale software development is
difficult is the number of dependencies that software engineers
need to face: e.g., dependencies among the software components
and among the development tasks. These dependencies create a
need for communication and coordination that requires continuous
effort by software developers. Empirical studies, including our
own, suggest that technical dependencies among software
components create social dependencies among the software
developers implementing these components. Based on this
observation, we developed Ariadne, a Java plug-in for Eclipse.
Ariadne analyzes a Java project to identify program dependencies
and collects authorship information about the project by
connecting to a configuration management repository. Through
this process, Ariadne can “translate” technical dependencies
among software components into social dependencies among
software developers. This paper describes the design of Ariadne,
how it identifies technical dependencies among software
components, how it extracts information from configuration
management systems and, finally, how it translates this into social
dependencies. Ariadne’s purpose is to create a bridge between
technical and social dependencies.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Automation
– Groupware; H.5.3 [Information Interfaces and Presentation]:
Group and Organization Interfaces - Computer-supported
cooperative work.

General Terms
Design, Human Factors

Keywords
Collaborative software development, program dependencies,
social dependencies.
1. INTRODUCTION
Researchers and practitioners have long recognized that
breakdowns in communication and coordination efforts constitute
a major problem in software development [4]. One of the reasons
for this problem is the large number of dependencies that any
software development effort involves: dependencies among
activities in the development process and dependencies among
different software artifacts. To overcome this problem, the field of
software engineering has developed tools, approaches, and
principles to manage dependencies. Configuration management
and issue-tracking systems are examples of such tools. The

adoption of software development processes ([11, 22])
exemplifies an organizational approach [9] to managing
dependencies. Finally, information hiding [23] illustrates a
fundamental principle that has been implemented as several
mechanisms in programming languages, e.g. interfaces and
polymorphism [18].

In any one of these cases, the underlying goal is the same,
to make dependencies more manageable. By minimizing
dependencies it is possible to reduce the required
communication and coordination of software developers.
This relationship between coordination and dependencies
has long been recognized. Parnas [23], for instance,
recognized over 30 years ago that the principle of
information hiding also brings managerial advantages: by
dividing the work in independent modules, it is also
possible to assign the implementation of these modules to
different developers that can work on them in parallel.
More recent ethnographic studies (e.g., Grinter [14] and de
Souza et al. [7]) found that technical dependencies in
source code create “social dependencies” among software
developers. That is, given two dependent pieces of code,
the developers responsible for developing each piece need
to interact and coordinate in order to guarantee the smooth
flow of work. In a quantitative approach, Morelli, Eppinger
and Gulati [20] found out that these same dependencies can
be used to predict communication frequency among team
members in a manufacturer of electrical technologies:

“Analyzing the frequency of each communication
linkage reveals that nearly all of the frequent and
most of the occasional coordination-type
communications were predicted. … Such
predictability suggests that regularly occurring
communication linkages could be reliably
planned with this project.”

Later, similar results were found in the software
development industry in a study of a telecommunications
organization [24].
Despite this acknowledged relationship between
dependencies and communication and coordination needs,
this relationship has not been explored to facilitate and
understand software development activities. Software
development is indeed a strong candidate for exploring this
relationship since (i) dependencies among software
components can be automatically identified, and (ii)
software is malleable, i.e., their dependencies, if so desired,
can be more or less easily changed, and consequently the

coordination of those developing it1. Ariadne, a plug-in for
Eclipse, aims to fill this gap and explore this socio-technical
relationship. In this paper, we describe Ariadne’s underlying
architecture and API. By identifying these “social” dependencies,
Ariadne is able to identify developers who are more likely to be
communicating, as well as, developers whose similar
dependencies make them likely to collaborate. Furthermore, it can
even facilitate expertise identification [19] [8].

The rest of the paper is organized as follows. We begin by
presenting the three types of dependencies that Ariadne supports,
namely, technical, socio-technical, and social dependencies. More
importantly, we describe our approach to extract program
dependencies from the source code and how from code
dependencies, we infer social dependencies between software
developers. In the following section, we describe Ariadne’s
architecture, including its configuration management (CM)
module, dependency generation module and its visualization
module. Finally, we make conclusions about our work and
describe avenues for future work.
2. TYPES OF DEPENDENCIES
2.1 Technical Dependencies
In software engineering, program dependence graphs (PDGs) are
used to allow explicit representation and manipulation of program
dependencies. According to Horwitz and Reps [16], formally, a
PDG for a program P is a directed graph whose vertices are
statements of P connected by edges that represent control and data
dependencies. For simplicity purposes, researchers initially
explored the construction of PDGs for simple programs: isolated
procedures and programs that contain a single procedure. Later,
interprocedural approaches were explored considering several
procedure calls,their parameters and return types; which
originated the term system dependence graph [1]. These graphs
can be used to construct call graphs [17] that are used for
interprocedural program optimization and program understanding
[21]. According to Callahan and colleagues, a call graph
“summarizes the dynamic invocation relationships between
procedures. The nodes of the call graph are the procedures in the
program. An edge (pl, p2) exists if procedure pl can call
procedure p2 from some call site within pl. Hence, each edge may
be thought of as representing some call site in the program” [3].

2.2 Socio-Technical Dependencies
By extracting dependencies in the source-code, a call-graph
potentially unveils dependencies among software developers
responsible for the software components [5-7]. For instance,
assume that a software component a depends on another software
component b and that a is being developed by developer A and b
is being implemented by developer B. If a depends on b, we
similarly find that developer A depends on developer B. That is,
these software developers need to coordinate and communicate to
guarantee the smooth flow of work [15, 24-26], even when
programming constructs, like interfaces, are used [8]. The results
of these empirical studies suggest that product dependencies
create and reflect task dependencies between software developers,
that is, product dependencies create a need for communication
and coordination between developers, and, similarly, task

1 Note that, as other researchers have pointed out, this relationship
is not unique to software engineering.

dependencies are reflected in the product dependencies.
This translates into the need to populate the call-graph with
‘social information.’ The goal is to create a data structure
that describes which software developers depend on which
other software developers for a given piece of code [7]. An
example of this data-structure, called a social call-graph, is
presented in Figure 1. A directed edge from package A to B
indicates a dependency from A to B. Directed edges
between authors and packages indicate authorship
information.

Figure 1 - Socio-technical dependencies.

2.3 Social Dependencies
Because social call-graphs describe both technical
dependencies and authorship information, they can be used
to generate sociograms describing the dependence
relationship only among software developers, that is,
dependencies between social developers because of
dependencies in the source-code they are working on. A
sociogram, as used in social network analysis [27], is a
graphical representation of a set of items, vertices or nodes,
connected to one another via links or edges. Figure 2 below
presents an example of a sociogram created using Ariadne.

Software developers can now use these sociograms to find
out two important pieces of information: who they depend
on and who depends on their work. We hypothesize that by
identifying this “impact network”, developers can more
easily coordinate their work. Indeed, we plan to test this
hypothesis through a series of interviews (see section 4).
We have used these sociograms to understand open/free
source software development [6].

Figure 2 - Sociogram

3. ARIADNE
3.1 Features
Ariadne is implemented as a Java plug-in to the popular Eclipse
IDE. As such, Ariadne is integrated into this environment and
makes use of several of the services it provides. Initially, the plug-
in uses Eclipse’s SearchEngine class to extract dependencies from
a Java project’s source-code. Ariadne connects to the
configuration management repository associated with a project to
retrieve authorship information about the project. After that, the
plug-in annotates the call-graph with the extracted authorship
information to create a social call-graph (see section 2.2). Finally,
the social-call graph is used to generate a sociogram that is
displayed using the graphical framework JUNG (Java Universal
Network/Graph Framework)2.

Ariadne presents developers with three visualization options:
technical dependencies, socio-technical dependencies and social
dependencies. Our current implementation can present technical
and socio-technical dependency visualization at three different
levels of abstraction, based on the programming language’s
hierarchy (e.g. packages, classes, methods in Java). Essentially,
information is aggregated at each hierarchy level also to,
potentially, average the different results provided by diverse call-
graph extractors [21]. For instance, class dependencies are
displayed as the aggregation of method dependencies (i.e., the
call-graph). All visualizations provided by Ariadne can be
exported to Comma Separated Values formatted files, while
sociograms can be exported to files suitable for use with social
network tools like UCINet.

Ariadne also supports the temporal analysis of all dependencies,
similarly to TeCFlow [13]. That is, Ariadne can generate
visualizations for graphs of snapshots in time, which allows us to
study the evolution of a project’s technical and social
dependencies.

3.2 Ariadne’s Architecture
Ariadne was initially implemented to analyze only Java projects
and extract information from CVS repositories. We recently re-
designed it to be general enough to support various source
languages, configuration management (CM) systems, and
visualizations. By default, Ariadne has no knowledge of the
source language to be analyzed or the type of CM repository

2 http://jung.sourceforge.net

where the source-code is stored. This is achieved through
the usage of a layered architecture presented in Figure 3. As
expected, the most important part is the configuration
management and dependency management API. This API
is used to isolate the programming language and
configuration management tools from the visualizations
provided by Ariadne. Through this approach, independent
developers can contribute new functionality (configuration
management tools and programming languages) to Ariadne,
while reusing previous visualizations. And, at the same
time, it is possible to easily design new visualizations to
already supported programming languages and CM tools.

Figure 3 – Ariadne’s architecture
Multiple dependency generators, CM tools, and
visualizations may be installed at the same time. We
leverage Eclipse’s features to use the user’s context in
Eclipse to determine which code generator and CM
subsystem is used to extract the relevant information to
Ariadne.
Currently, we have implemented a code dependency
infrastructure that analyzes Java code and Eclipse’s
manifest and “plugin.xml” files. We built a CVS extractor
used to connect to a project’s CVS repository (using
Eclipse’s Team API), that annotates the dependencies with
authorship information, and creates visualizations based on
directed graphs. We have also built an infrastructure that
imports source-control annotations from Rational
Clearcase. These annotations are parsed and used to create
social call-graphs and, ultimately, sociograms.

To facilitate the understanding and usage of this API,
Ariadne utilizes the façade design pattern [12] that
aggregates methods to be used to query program
dependency, authorship information and the combined
information (the social call-graph). For example,
developers may query the classes that depend on a
particular class, the authors of a particular piece of code, all
the authors of a file, how the ownership of a class changes
from one release to the next, etc.

Figure 4 below presents a UML class diagram for the
program dependency and visualization parts only of this
API. Both parts, as well as the visualization subsystem will
be described in the following sections.

CM and Dependencies API

CVS CC Java XML

Eclipse

V1 V2 VN ……….

Graph

Edge Node

AuthorLangElmt

CompLangElmnt

AuthorEdgeLangElmtEdge

11

1

Figure 4 - Class diagram

3.3 Program Dependency Information
Ariadne has been designed to represent hierarchy levels in various
programming languages. These different levels can be thought of
as two different types of code units: Language Elements as well
as Composite Language Elements. Language Elements are
defined as pieces of source-code that are not composed of smaller
code units. For example, consider the case that a developer has
chosen to analyze dependencies in a software project written in
Java. In this source-code there is a class A and a method of that
class, b. In our approach, method b is considered a Language
Element because methods are the lowest level of the hierarchy in
Java. On the other hand, class A is a Composite Language
Element because it is composed of methods – one of them being b
– and possibly attributes. This is basically an implementation of
the composite design pattern [12] to represent the relationship
between programming language elements, in this case, Language
Elements and Composite Language Elements. This pattern allows
us to represent part-whole hierarchies as well as treat individual
and composite objects in much the same way.

In the first implementation of Ariadne, due to the design of the
dependency generation subsystem, we were not able to identify in
the sociogram the piece of code responsible for a social
dependency. Therefore, we redesigned Ariadne to address this
issue as described in Figure 4. Our current design defines a
superclass Edge, which abstracts the two different possible types
of edges, Author Edge and Language Element Edge. The first type
of Edge models social dependencies, while the second one models
program dependencies in the source-code. These two edges are
connected by a relationship that is used to allow bi-directional
navigation: given a technical dependency, which are the authors
involved in the corresponding social dependency, and, given a
social dependency, which are the programming elements involved
in the corresponding technical dependency.

The usage of the abstract class Edge allows us to abstract away
the difference between the different edges in the visualization
module, providing a generic way to draw edges. Furthermore, an
edge can be queried for information about what piece of
information it links. We describe the visualization subsystem in
more details in section 3.5.

3.4 CM Information
CM systems offer tremendous amounts of data that Ariadne aims
to abstract into generic formats that developers can mine to
produce informative visualizations. For our purposes, Ariadne
models CM repositories in a generic way that allow views of a
project’s data at one or many points in time, no matter which CM

system is used. We believe we designed an API that is
generic enough to capture the essential functionality that
Ariadne requires of systems such as CVS, Subversion, and
Clear Case, while still providing detailed authorship
information from repositories. This is possible because the
CM subsystem consists of a hierarchy of related classes that
share a common resource heritage and exist inside a
repository. Ariadne associates one repository with each
project in the workspace. Repositories consist of branches,
which represent the state of code in the repository at
specific points in time (releases). Branches do not exist
until users dictate how the repository should be populated
from the CM system. Implementers may choose to have
their plug-in select dates by which to break up the
development timeline into meaningful states. Branches are
broken into collections of commit sets that group changes
made at arbitrary points in time. An example commit set
could be all the resources a developer commits to the
repository after fixing a bug. Commit sets hold a collection
of deltas that represent a set of changes made to a file.
Deltas represent individual changes made to different parts
of a file and contain the line number information for where
a change began and ended. The Ariadne core module uses
this information to query the code dependency generator
module for any language elements in the region.

3.5 Visualization
Ariadne's visualization subsystem allows developers to
access information from the CM repository as well as the
dependency information. In order to create visualizations, a
developer must query Ariadne’s API for an instance of the
Graph object. Our visualization framework utilizes some of
the same design principles found in the JUNG project -
specifically that we represent a Graph object as a generic
container of Edges and Nodes. As such, Ariadne is capable
of displaying any type of visualization that can be
represented as entities and their connections. By doing that,
we can reuse the same algorithms to draw technical and
social dependency graphs since the Author and Language
Element classes are subclasses of class Node (see Figure 4).

Ariadne's default visualization is a simple directed graph
with nodes representing authors and edges representing
dependencies between authors. Alternatively, the developer
may implement his visualization of choice – that may be a
line-oriented approach as in the SeeSoft project [10] ,
treemaps, design structure matrices [2] or however else he
chooses to visualize dependencies.

4. CONCLUSIONS AND FUTURE
WORK
This paper described Ariadne, a plug-in to the Eclipse IDE
that aims to reduce the gap between technical and social
dependencies, and therefore facilitate the coordination of
software development work. Ariadne was motivated by our
own field studies of large-scale software development and
reflects some of the insights that we learned from these
studies. We described Ariadne’s features as well as
architecture and presented parts of its API, which allows
software developers to have access to source control and
dependency information provided by multiple configuration
management systems and programming languages.

Furthermore, all visualizations are based on this API, therefore
they can be easily reused. We plan to extend this API to fully
explore the Eclipse plug-in model, so that, new visualizations can
be created as new Eclipse plug-ins. Finally, we plan to adapt our
plug-in so that developers can choose from many visualizations
ranging from directed graphs, annotated class diagrams, or
decorators inside the Eclipse workbench. Decorators are simple
visual clues (usually in the form of an icon) to developers that
display additional information about resources in the workspace.

Currently, we are in the last planning stages of a field evaluation
of Ariadne with software developers from a large software
development company and an open-source project. We want to
understand the coordination problems faced by these developers
and whether Ariadne can be used to minimize some of these
problems. After this initial evaluation, we will make more
improvements in Ariadne before releasing it to the public as an
open-source tool.

5. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under awards 0205724 and 0326105, IBM through the
Eclipse Innovation Program, and by the Brazilian Government
under CAPES grant BEX 1312/99-5.

6. REFERENCES
1. Aho, A.V., Sethi, R. and Ullman, J.D. Compilers: Principles,

Techniques and Tools. Addison-Wesley, 1986.
2. Browning, T.R. Applying the Design Structure Matrix to

System Decomposition and Integration Problems: A Review
and New Directions. IEEE Transactions on Engineering
Management, 48 (3). 292-306.

3. Callahan, D., Carle, et. al. Constructing the Procedure Call
Multigraph. IEEE Transactions on Software Engineering, 16
(4). 483-487.

4. Curtis, B., Krasner, H. and Iscoe, N. A field study of the
software design process for large systems. Communications
of the ACM, 31 (11). 1268-1287.

5. de Souza, C.R.B., Dourish, P., Redmiles, D., et. al., From
Technical Dependencies to Social Dependencies. in
Workshop on Social Networks for Design and Analysis:
Using Network Information in CSCW, (Chicago, IL, 2004).

6. de Souza, C.R.B., Froehlich, J. and Dourish, P., Seeking the
Source: Software Source Code as a Social and Technical
Artifact (to appear). in ACM Conference on Group Work,
(Sanibel Island, FL, USA, 2005).

7. de Souza, C.R.B., Redmiles, D., Cheng, L.-T., Millen, D. and
Patterson, J., How a Good Software Practice thwarts
Collaboration - The Multiple roles of APIs in Software
Development. in Foundations of Software Engineering,
(Newport Beach, CA, USA, 2004), ACM Press, 221-230.

8. de Souza, C.R.B., Redmiles, D., Cheng, L.-T., Millen, D. and
Patterson, J., Sometimes You Need to See Through Walls -
A Field Study of Application Programming Interfaces. in
Conference on Computer-Supported Cooperative Work
(CSCW '04), (Chicago, IL, USA, 2004), ACM Press, 63-71.

9. de Souza, C.R.B., Redmiles, D., et. al., Management of
Interdependencies in Collaborative Software Development:
A Field Study. in International Symposium on Empirical
Software Engineering, (Rome, Italy, 2003), 294-303.

10. Eick, S.G., Steffen, J.L. and Sumner, E.E. SeeSoft --
tool for visualizing line oriented software. IEEE
Transactions on Software Engineering, 11 (18). 957-
968.

11. Fuggetta, A., Software Processes: A Roadmap. in
Future of Software Engineering, (Limerick, Ireland,
2000).

12. Gamma, E., Helm, R., et. al. Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

13. Gloor, P.A., TeCFlow - A Temporal Communication
Flow Analyzer for Social Network Analysis. in
Workshop on Social Networks for Design and
Analysis: Using Network Information in CSCW,
(Chicago, IL, USA, 2004).

14. Grinter, R.E. Recomposition: Coordinating a Web of
Software Dependencies. JCSCW, 12 (3). 297-327.

15. Grinter, R.E., Recomposition: Putting It All Back
Together Again. in Conference on Computer
Supported Cooperative Work, 1998, 393-402.

16. Horwitz, S. and Reps, T., The use of program
dependence graphs in software engineering. in
International Conference on Software Engineering,
(Melbourne, Australia, 1992), 392-411.

17. Lakhotia, A., Constructing call multigraphs using
dependence graphs. in SIGPLAN-SIGACT Symposium
on Principles of Programming Languages,
(Charleston, South Carolina, USA, 1993),, 273-284.

18. Larman, G. Protected Variation: The Importance of
Being Closed. IEEE Software, 18 (3). 89-91.

19. McDonald, D.W. and Ackerman, M.S., Just Talk to
Me: A Field Study of Expertise Location. in
Conference on Computer Supported Cooperative Work
'98, (Seattle, Washington, 1998), 315-324.

20. Morelli, M.D., Eppinger, S.D. and Gulati, R.K.
Predicting Technical Communication in Product
Development Organizations. IEEE Transactions on
Engineering Management, 42 (3). 215-222.

21. Murphy, G., Notkin, D., Griswold, W.G. and Lan,
E.S.-C. An Empirical Study of Static Call Graph
Extractors. ACM TOSEM, 7 (2). 158-191.

22. Nutt, G.J. The evolution toward flexible workflow
systems. Distributed Systems Engineering, 1995.

23. Parnas, D.L. On the Criteria to be Used in
Decomposing Systems into Modules. Communications
of the ACM, 15 (12). 1053-1058.

24. Sosa, M.E., Eppinger, S.D. et. al. Factors that
influence Technical Communication in Distributed
Product Development: An Empirical Study in the
Telecommunications Industry. IEEE Transactions on
Engineering Management, 49 (1). 45-58.

25. Sosa, M.E., Eppinger, S.D. et. al. Identifying Modular
and Integrative Systems and Their Impact on Design
Team Interactions. ASME Journal of Mechanical
Design, 125. 240-252.

26. Sosa, M.E., Eppinger, S.D. et. al. The Misalignment of
Product Architecture and Organizational Structure in
Complex Product Development. Management Science,
50 (12). 1674-1689.

27. Wasserman, S. and Faust, K. Social Network Analysis:
Methods and Applications. Cambridge University
Press, Cambridge, UK, 1994.

