
PFAST: An Eclipse-based Integrated Tool Workbench for
Facilities Design

Thomas Mampilly
Department of Computer Science and

Engineering
The Ohio State University

mampilly@cse.ohio-state.edu

Rajiv Ramnath
Department of Computer Science and

Engineering
The Ohio State University

ramnath@cse.ohio-state.edu

Shahrukh Irani
Department of Industrial, Welding

and Systems Engineering
The Ohio State University

irani.4@osu.edu

ABSTRACT
In this paper, we examine PFAST, an Eclipse-based integrated
tool workbench targeted at rapidly integrating software tools for
planning and optimizing manufacturing facilities. We describe the
integrated-tool architecture, built on top of the Eclipse Rich Client
Platform, which alleviates many of the problems faced by an
earlier version of the system. We also describe our experiences in
analyzing the requirements of the disparate tools that compose the
system, the problems we faced in implementing the system, and
the lessons learned. This paper highlights the successful
introduction of Eclipse-based tool integration into the
manufacturing facilities planning domain.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Eclipse

General Terms
Performance, Design, Experimentation, Human Factors,
Standardization.

Keywords
Eclipse, Integration, Tool Integration, Rich Client Platform, Plug-
in Architecture, Facility Design, Production Flow Analysis,
Interdisciplinary Engineering.

1. INTRODUCTION
In order to adapt to a changing environment, a system must have
the ability to be quickly modified or reconfigured to meet a new
set of requirements. This ability to adapt is even more prominent
when new technologies are being researched and developed –
prototypes may need to be rapidly developed in order to expedite
the testing and validation of new research. In the manufacturing
domain, research is being conducted into finding new methods to
design efficient factories that can adapt to changing product
requirements and volumes. The move from monolithic
architectures to increasingly modular systems has promoted
adaptability to a great extent, but analysis tools are needed to plan
and optimize how the modular factory should be designed or
reconfigured.
The Production Flow Analysis and Simplification Toolkit
(PFAST) [1] allows manufacturing facilities to be designed based
on grouping similar products into product families and

complementary groups of machines into machine cells. These
groups or units can then be configured and recomposed to form
manufacturing facilities that conform to “Lean Thinking.” PFAST
is continuously evolving, as an application, with new research in
algorithms and strategies for facility layout being employed to
create and update various analysis tools. The design process for
facilities to be designed or reconfigured using PFAST is also not
fixed, so tools have to be used in various combinations and
sequences, with a high degree of user interactivity. Next, each
new design process needs to be analyzed, tested, validated and
compared to other processes in order to arrive at an optimal
design process. Third party tools also need to be employed to
increase the functionality of PFAST while minimizing
development time. Integration requirements of these tools also
need to be met by the architecture of PFAST.
The ideal solution that meets the requirements of PFAST is an
integrated tool framework. This would allow developers to
modify each tool, relatively, independently of one another, and
compose each system or subsystem as a configurable composition
of tools. Tool integration frameworks are often built, from the
bottom up, based on requirements specific to the project. In order
to enable the focus of effort to be on developing research, rather
than application development, it is important to leverage existing
tool integration infrastructure. The Eclipse platform and the
Eclipse RCP provide an ideal infrastructure that enables the rapid
development and integration of tools. In this paper we describe
our experiences in introducing Eclipse to a new domain by
building an integrated tool workbench for factory design using the
Eclipse RCP.

2. BACKGROUND
2.1 Eclipse
Eclipse [2] is an infrastructure for building integrated
development tools. Integration in Eclipse is enabled by an XML-
based mechanism to define plug-ins. Each plug-in is a component
that provides a specific service within the context of the system.
The system is composed of several plug-ins each of which is
integrated either by connecting to an extension point of another
plug-in or by providing extension points into which other plug-ins
can connect. The Eclipse platform provides dynamic discovery,
linking and execution of plug-ins. Tool integration can be
achieved in Eclipse by employing four levels of integration [3]
within the context of tool relationships [4][5]:

Invocation Integration - Eclipse provides an operating system
independent means of registering specific resource types with
specific tools. The resources can then be launched in separate
window instances with the corresponding tool being responsible
for handling all aspects of the resource’s contents.

Data Integration - Data integration allows tools to share data
between each other using the underlying file system. Eclipse
enables data integration using a resource manager that accesses
shared data using standard file access.

API Integration - Eclipse’s plug-in architecture enables API level
integration by allowing tools to be integrated into the system by
describing tool APIs in the plug-in manifest.

UI Integration - Eclipse provides several UI frameworks to enable
disparate tools to be integrated into a single seamless application.
Tools can also be integrated by registering themselves as
interested in events generated by other tools.

The Eclipse RCP (Rich Client Platform) is a subset of Eclipse that
enables sets of plug-ins to be developed and deployed as
standalone applications, independent of the Eclipse development
environment. The integrated tool workbench discussed in this
paper is built on the Eclipse RCP.

2.2 PFAST
PFAST (Production Flow Analysis and Simplification Toolkit) is
software that has automated the manual methods of Production
Flow Analysis (PFA) [6]. PFA is a comprehensive method for
material flow analysis, part family formation, design of
manufacturing cells, and facility layout design. Each stage in PFA
attempts to eliminate delays in production flows and operational
wastes in a progressively smaller area of the factory. PFAST
offers a facilities planner the ability to design four types of
layouts to achieve the goals of PFA: Functional layout, Cellular
layout, Modular layout, and Hybrid layout.
Research has shown [1] [7] that factory design cannot be thought
of as a cookie-cutter process with one strategy being applicable to
all types of manufacturing facilities. Specific design strategies
must be chosen to meet the particular requirements of a specific
facility. Even within a particular design strategy, tools may need
to be used within the context of a specific process with specific
algorithms and visualization techniques being applicable in
different circumstances. In this paper we will examine one design
strategy, the Cellular layout strategy, in depth to gain an
understanding of the specific requirements of tool integration
within the context of the strategy and to demonstrate how the
Eclipse RCP can meet these requirements.

2.3 Cellular Layout Strategy for Facility
Design
Each tool in this section is analyzed with respect to the integration
requirements of both the input and output data of the tool. These
requirements are described in terms of the 4 levels of integration
as described in section 2.1 along with user interaction
requirements. Also, certain tools are optional to the design
process. The integration framework must provide the capability to
leave such tools out.
The cellular layout strategy can be decomposed into the following
constituent tool types:

2.3.1 Product Mix Segmentation
This is an optional tool within the Cellular layout strategy. This
tool allows users to filter the input data based on certain criteria as
described below:
Tool Criteria 1: Part-Quantity – The product mix is sorted in
descending order of volume of production of each part.
Tool Criteria 2: Part-Quantity-Revenue – The product mix is
sorted in descending order of volume of production and revenue
generated by each part.
Input integration requirements – Data level integration. The input
to the product mix segmentation tool is independent of other tools
within the framework and can be read directly from the input file.
Output integration requirements - Data level integration - The
output of the tool produces a filtered version of the original input
file, in the same format as the original input file.
User interaction - The user needs to be able to select the criteria
with which to filter the input data and needs to be able to select
sets of input data points.

2.3.2 Cluster Analysis
This is an essential tool that clusters the product mix based on the
similarities of flow routes (manufacturing process steps) between
products.
Input integration requirements – Data level integration. The input
to the Cluster Analysis tool is dependent on the product mix
segmentation tool and can be read directly from the output file of
that tool or directly from the input file if the product mix
segmentation tool is unavailable.
Output integration requirements - Data level integration. Since
the tool needs to be run only once per analysis session, the output
of the tool (similarity and cluster information structures) can be
defined using standard data integration formats such as XML.
User interaction - Depending on user requirements, the ability to
choose a specific clustering algorithm may need to be made
available to the user.

2.3.3 Multivariate Analysis
This is an optional tool that heuristically determines the optimum
number of clusters or cells in the product mix.
Input integration requirements – Data level integration. The input
to the Multivariate Analysis tool is dependent on the Cluster
Analysis tool and can be read directly from that output file.
Output integration requirements - UI level integration. The output
of the tool is the optimum range of clusters or cells in the facility
layout. This tool can be run multiple times within a single design
session and must therefore automatically update any visualization
of these clusters.
User interaction - The user must have control over the criteria
with which to establish the optimum cluster range.

2.3.4 Visualization Tools
Input integration requirements – UI level integration. The input to
the visualization tools are dependent upon other tools in the
process and must be dynamically updated.

Output integration requirements - UI level integration. The output
of the tool is a visualization of certain attributes of the data and
must be constantly updated.
User interaction - Selections made in one visualization tool must
be made visible to other visualization tools

2.3.4.1 Visualizations
Each visualization tool is other than the Tree view tool is an
optional tool. However, each additional visualization tool
provides enables the user to make better design decisions.
Tree view - Displays the clusters in a tree format and allows the
user to select the number of clusters (value of K) to be formed.
Load Profile view - 3D bar chart showing the workload on each
machine within a cell or cluster.
PQ Analysis view - Line plot showing the relationship between
products and their production volumes.
PQ$ Analysis view - Scatter plot showing the relationship
between products, their production volumes and the revenue
generated by them.
Flow Diagram view - Shows details of flow between machines
within a cell or cluster.
Details view - Shows details of each product in the input data in a
tabular format.

2.4 Summary of Integration Requirements
Figure 1 below shows how the tools are interconnected.

Figure 1. PFAST RCP Application Tool Interconnection.
Tools shown as dotted boxes represent optional tools. The flow
of data needed for integrating the tools within the process is
shown by the thick arrow on the right side of the diagram.
It can be seen from the above section (section 2.3) that integration
requirements are not fixed across all tools. The level of
integration varies from simple data integration to seamless UI
integration. Since the design process is flexible, user interaction is
of high importance. Users need to be able to adjust the design
process based on specific design requirements and select tools and
their functionalities in as simple a manner as possible. Not all
tools are essential to the factory design process; therefore, the
ability to include or exclude certain tools from the workbench
must be available. All features of a particular tool may not be
required within specific design processes. The ability to activate
and de-activate certain tool features must be available. Ongoing
research and changing user requirements may require existing
tools to be modified, extended or replaced, and new tools to be
incorporated into the design process. As an aside, the analysis of
requirements (see Section 2.3) assumes that the tools are written
in a common language. However, the use of external tools written

in other languages may be required. The level of integration may,
therefore, encompass API integration, in addition to the other
levels of integration identified.

3. INTEGRATED TOOL WORKBENCH
FOR FACTORY DESIGN
3.1 Existing Architecture
PFAST is currently implemented as a standalone MFC
application. The modularity of the current design is minimal with
limited use of object-oriented concepts. There are; however, some
benefits to the model-view architecture used by MFC applications
[8]. Separation of the document or data of the application from its
presentation or views allows for different levels of integration.
Data level integration can be achieved by loading data into
different document structures. UI level integration can be
achieved by associating multiple views with different document
structures.
Integration with external tools, written in different languages, is
difficult but achievable through technologies such as CORBA,
DCOM and RMI [9]. The current architecture does not permit
tools to be deactivated or limited in functionality easily, although
this can be achieved through (mostly minor) code changes. Since
the modularity of the existing architecture is minimal, updating
existing tools or adding new tools requires existing code to be
modified with the possibility of changes affecting the system in
an unpredictable manner [10].

3.2 The PFAST Integrated Tool Workbench
3.2.1 Implementation
PFAST was implemented within the Eclipse RCP framework,
taking advantage of the existing tool integration infrastructure and
other features as described below.
Each tool described in section (2.3) was implemented as a
separate Eclipse plug-in.

Figure 2. PFAST RCP Application architecture.

The main plug-in, essential to the Cellular strategy, is the Cluster
Analysis plug-in. The algorithms related to this plug-in were
implemented in the MFC version of PFAST. These algorithms
were bundled into a shared library, which can be called using the
Java Native Interface (JNI). The output produced by the calls to
native code is stored in the shared workspace and can therefore be
used through data level integration by the main RCP application.
The Multivariate Analysis plug-in was implemented using a third
party open source library. Data level integration was used to
obtain input for the plug-in. UI level integration was enabled

The process of creating shared libraries from existing native code
was a laborious, time-taking process involving large amounts of
movement of code between classes and the creation of new
classes to replace procedural code.

using a standard SWT widget (Text box) along with the Eclipse
selection listener.
The Visualization plug-in extends the main RCP application. All
individual visualization tool plug-ins extend the main
visualization plug-in and can therefore be notified of changes
simultaneously. Each plug-in is notified of events generated by
other tools in the system according to the Observer pattern [11].
These plug-ins implement event handlers to perform the specific
functions in response to these events, and according to the
visualization requirements.

3.2.3 Lessons Learned
Eclipse’s dynamic plug-in discovery allows tools to be added and
removed as and when necessary while allowing the system to
behave as expected. This was particularly useful when testing
different visualization libraries as it permitted similar plug-ins to
be created for each one and compared with one another.
Overcoming problems due to Java version differences were also
made simpler through the ability to swap plug-ins in and out of
the application.

Dynamic plug-in discovery allows non-essential tools to be
omitted from the plug-in folder as and when necessary. When the
RCP application is loaded by the Eclipse platform, only the plug-
ins in the plug-in folder will be loaded and integrated. Since there
is a minimal amount of coupling between plug-ins, omitting any
non-essential plug-ins from the plug-in folder will not have a
detrimental effect on the system and it will perform according to
expectations.

Initially, various visualization plug-ins were implemented as
extensions to the main RCP Application. This proved to be quite
inefficient in terms of how each event was handled: each plug-in
needed to listen for changes in the system. The move to an
inheritance-type design for the visualization plug-ins allowed this
problem to be overcome. A single host plug-in (the Visualization
plug-in) is notified of relevant changes in the system, and this
plug-in then processes the notification as required, calling specific
members of its extensions. This type of design allows plug-ins to
be categorized and handled accordingly.

One of the most important advantages that the new architecture
provides is the ability to test and validate new ideas. In a matter of
weeks, two new ideas were implemented and tested. A method to
determine the optimal range of clusters or cells in a facility layout
was implemented, tested and validated. A multi-attribute
visualization method to visualize clusters was tested on several
datasets and was determined to not be as useful as initially
assumed. Figure 3. PFAST RCP Application.

The integration requirements for each tool as described earlier
(see Section 2.3) were adhered to and several features of Eclipse
were leveraged to enable a quick realization of the requirements.
The relationship between the integration requirements of each
tool and the Eclipse features used to realize them are shown
below (see Table 1).

The rapid development of multiple plug-ins was accomplished by
leveraging the user interface features available in the Eclipse
platform. SWT widgets and JFace UI components allowed the
focus of the development to be on choosing the right tools for the
facility design strategy rather than getting mired in developing
user interface features such menu bars, data structure viewers, and
dialogs.

3.2.2 Problems Encountered
4. FUTURE WORK As mentioned in section (3.2.1), individual visualization tools

extend the Visualization plug-in. The Eclipse plug-in registry API
enables the processing of extensions iteratively, allowing a host
plug-in to query the members of its extensions and process them
as required. Although this feature allows the decoupling of
extensions from their host plug-ins, the plug-in registry API
involves a definite learning curve. Implementing extension
processing had to be done with care making sure that the design
was unambiguous while providing enough information for
specific callbacks to be implemented.

The process by which a facility designer arrives at a solution to a
design problem may involve using specific tools in a specific
order, and as new tools are added to the tool base, this process
may have to evolve as well. Tool integration within the context of
a particular process [12] can be implemented by defining tools
using a tool modeling language and the process in which they act
using a process modeling language. Future work on PFAST will
attempt to make use of existing modeling languages and, if
necessary, adapt them to the requirements of PFAST.

Integration with third party or open source libraries was
problematic at times due to the move from Java 1.4 to Java 1.5. It
was necessary to roll back to Java 1.4 frequently to find the best
solution to the integration problems. On one occasion it was
necessary to switch to a different library due to Java version
incompatibilities. This was however relatively painless and was
accomplished simply by creating a new plug-in that used the new
library. This allowed plug-ins to be swapped in and out of use
when Java version compatibility became an issue.

PFAST consists of four layout strategies: Functional layout,
Cellular layout, Modular layout, and Hybrid layout; however,
only the Cellular layout strategy been implemented in the Eclipse
RCP framework to date. We intend to implement all four
strategies, thereby allowing the user to choose a design strategy
based on the specific requirements of the facility to be designed or
reconfigured.

Table 1. Integration requirements and their corresponding Eclipse features

Tool Type Tool Integration Requirements Eclipse Features Used

Analysis Clustering Tool
Data level integration & API level
integration Private workspace file access, JNI calls

 Multivariate
Analysis Data level integration & UI level integration

Private workspace file access SWT Text box &
selection listener

Visualization Tree view Data level integration & UI level integration
Private workspace file access JFace Tree viewer
& selection listener

 Graph visualizations Data level integration, UI level integration Private workspace file access & selection listener

 Details table Data level integration, UI level integration
Private workspace file access JFace Table viewer
& selection listener

 Flow Diagram
Data level integration, API level integration,
UI level integration

Private workspace file access, JNI calls &
selection listener

5. CONCLUSIONS
The Eclipse RCP in conjunction with our integrated tool
architecture enables PFAST to keep up with technological
advancements with minimal integration overhead. Using the
Eclipse RCP, we were able to interchange tool plug-ins within a
given facility design strategy without the need to modify any
source code.
The PFAST RCP application was tested on various data sets and
the ability to use different tools depending on specific
requirements of the data translated into a huge advantage in terms
of testing and validating research ideas. In the past, very large
amounts of time were spent in analyzing and formalizing new
methodologies before their implementation due to the high cost
and turnaround time for integrating the new method into the
largely monolithic system. With the new architecture, however, it
is easily apparent that new ideas can be implemented with
negligible development effort and they can be then tested and if
necessary disregarded before spending unnecessarily large
amounts of analysis time. This result highlights the success of the
introduction of Eclipse into the facilities planning domain.
A few commercial and open source tools were integrated into
PFAST. The process was simple and efficient, even in light of
some compatibility issues. This kind of modularity will help
PFAST grow quickly by allowing the quick integration of
research tools being developed at other locations and by allowing
PFAST to be integrated with commercial software systems.

6. REFERENCES
[1] Irani, S. A., Zhang, H., Zhou, J., Huang, H., Udai, T. K. &

Subramanian S. Production Flow Analysis and
Simplification Toolkit. International Journal of Production
Research, 38(8), 1855-1874. 2000.

[2] www.eclipse.org.
[3] Amsden, J. Levels of Integration: Five Ways You Can

Integrate with the Eclipse Platform. Eclipse Corner Article.
March, 2001.

[4] Wasserman, A. Tool Integration in Software Engineering
Environments. Lecture Notes in Computer Science, #467,
Springer-Verlag, Fred Long, ed., ISBN 3-540-53452-0.
1990.

[5] Thomas, I., Nejmeh, B. A. Definitions of Tool Integration for
Environments. IEEE Software, v.9 n.2, p.29-35, March 1992.

[6] Irani, S.A. & Zhou, J. (1999). Production Flow Analysis.
Industrial Engineering Applications and Practice: A Users'
Encyclopedia (CD-ROM, ISBN 0-9654599-0-X), A.K. Mital
& J.G. Chen (Eds), International Journal of Industrial
Engineering, Cincinnati, OH. 1999.

[7] Irani, S.A., Zhou, J., Huang, H. & Udai, T.K. Enhancements
in Facility Layout Tools using Cell Formation Techniques.
Proceedings of the 2000 NSF Design and Manufacturing
Research Conference, Vancouver, BC (Canada), January 3-
6, 2000.

[8] G. Shepherd, S. Wingo, MFC Internals: Inside the MFC
Architecture. Addison-Wesley, 1994.

[9] Bechini, A., Foglia, P., and Prete, C. A. Use of a
CORBA/RMI gateway: characterization of communication
overhead. In Proceedings of the 3rd international Workshop
on Software and Performance. ACM Press, New York, NY,
150-157. 2002

[10] Parnas, D. L. On the criteria to be used in decomposing
systems into modules. Communications of ACM 15, 12 (Dec.
1972), 1053-1058. 1972.

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc. 1995.

[12] Pohl, K. and Weidenhaupt, K. A contextual approach for
process-integrated tools. In Proceedings of 5th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. Springer-Verlag New York, New
York, NY, 176-192. 1997.

	1. INTRODUCTION
	2. BACKGROUND
	2.1 Eclipse
	2.2 PFAST
	2.3 Cellular Layout Strategy for Facility Design
	2.3.1 Product Mix Segmentation
	2.3.2 Cluster Analysis
	2.3.3 Multivariate Analysis
	2.3.4 Visualization Tools
	2.3.4.1 Visualizations

	2.4 Summary of Integration Requirements
	3. INTEGRATED TOOL WORKBENCH FOR FACTORY DESIGN
	3.1 Existing Architecture
	3.2 The PFAST Integrated Tool Workbench
	3.2.1 Implementation
	3.2.2 Problems Encountered
	3.2.3 Lessons Learned

	4. FUTURE WORK
	5. CONCLUSIONS
	6. REFERENCES

