
An Approach to Workflow Modeling and Analysis

Hemant Kr. Meena, Indradeep Saha, Koushik Kr. Mondal, T.V. Prabhakar
Dept of Computer Science and Engineering

IIT Kanpur
tvp@iitk.ac.in

ABSTRACT
In this paper we present a new approach to workflow analysis. We
model the workflow using Activity diagrams, convert the Activity
diagrams to Petri nets and use the theoretical results in the Petri
nets domain to analyze the equivalent Petri nets and infer
properties of the original workflow. We have demonstrated the
possibility by developing an Eclipse plug-in, which can be used to
model workflows using Activity Diagrams and then analyze these
workflow models using Petri nets.

Categories and Subject Descriptors
D.2.2[Software Engineering]: Design Tools and Techniques -
Computer-aided software engineering (CASE), Petri Nets

General Terms
Design

Keywords
workflow, activity diagrams, Petri nets, Eclipse, workflow
analysis.

1. INTRODUCTION
Workflow modeling is an important phase in automating a
process. However, modeling alone is not sufficient, as one should
able to comment on certain properties of the given model. In this
paper we present an approach to workflow analysis using Petri
Nets. We first introduce workflow, Petri nets, and Eclipse in
sections 2, 3, and 4 respectively. We then present our work in
section 5. We propose to use activity diagrams for workflow
modeling and then use Petri nets to analyze the workflow so
modeled. Our work demonstrates that properties of a workflow
can be inferred from its corresponding Petri net model. We have
also built a plug-in on Eclipse [17], which provides an editor for
workflow modeling using activity diagram. We then analyze this
diagram by converting it into a corresponding Petri net model. We
end this paper with some screenshots of our Eclipse plug-in and
reviewing some related work in section 6 and 7 respectively.

2. WORKFLOW
Workflow refers to automation of business processes, in whole or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
OOPSLA, October 16–17, 2005, Saniego, CA, USA.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of
procedural rules [5]. A workflow management system (WFMS) is
a software package that is used to define, create and manage the
execution of workflows. While designing a workflow, one
describes which tasks have to be done and in what order. So
process approach is given more importance. Hence it is important
that a good modeling language is used to design a workflow.

3. PETRI NETS
A Petri net is a directed graph with two types of nodes called
places and transitions. An arc connects two nodes. A connection
can be from a place to a transition or from a transition to a place.

A formal definition of Petri nets is as follows [2]:

A Petri Net is a 5-tuple, PN = (P, T, F, W, M0) where:

P = {p1, p2, p3… pm} is a finite set of places,

T = {t1, t2, t3… tn} is a finite set of transitions,

F ⊆ (P × T) ∪ (T × P) is a set of arcs,

W: F → {1, 2, 3……..} is a weight function,

M0: P → {0, 1, 2, 3…….} is the initial marking,

P ∩ T = Φ and P ∪ T ≠ Φ

Marking denotes initial distribution of tokens among places. A
transition is said to be enabled if each of its input place contains at
least that number of tokens which is equal to arc joining the place
and transition. An enabled transition may fire i.e. tokens are
removed from its input places and added to output places.

While representing graphically, places are drawn as circles,
transitions as rectangles, tokens as black dots, and arcs as arrows.

Here we present some useful properties of Petri nets:

Reachability: We start with some initial distribution of tokens
among places, which we call initial marking of the given Petri net.
When an enabled transition fires, the distribution of tokens
change. Starting with an initial marking we can construct a
reachability tree, which will produce all possible reachable
markings. Since a marking represents a state in Petri net, from a
reachability tree we can find out all possible reachable states of
the given Petri net.

Coverability: Given a Petri net with initial marking M0, a
reachable marking M1 is said to be coverable if there exist another
marking M2 whose distribution of tokens among places is either
greater or equal to that of M1.

Boundedness: A given Petri net with initial marking M0 is said to
be bounded if for any reachable marking, the number of tokens in
each place does not exceed a finite value.

Safeness: A given Petri net with initial marking M0 is safe, if it is
bounded and maximum allowable token in each place is 1.

Liveness: A given Petri net with initial marking is said to be live,
if from any reachable marking it is possible to fire any transition
after some firing sequence. A transition t is said to be dead, if it
can never be fired. If in a firing sequence we reach a point where a
particular transition cannot be fired, then the net is in a potential
deadlock.

4. ECLIPSE
Eclipse is a new way of looking at how we build tools, developed
with a new vision -- a platform-centric rather than a tool-centric
way of thinking. The bare bone Eclipse Platform is a “Universal
IDE” -- an IDE for anything and nothing in particular [16].
Eclipse can provide meaningful integration across several tool
stacks, which was hitherto impossible. Thus when we write our
own tool plug-in which hooks into well-defined plug-in points in
the Eclipse platform we teach Eclipse to solve a new problem
rather than bolting a monolithic tool on top of it. Eclipse provides
an open platform for both GUI and non-GUI based application
development tools to run on a wide range of operating systems.
Eclipse thus has an open extensible structure based on plug-ins, a
plug-in being the smallest unit of functionality that Eclipse
recognizes. A plug-in provides mechanisms for extending itself by
defining extension points. Other plug-ins can extend these
extension points by defining extensions.

5. OUR APPROACH
We propose a new approach to workflow modeling and analysis.
Workflow modeling needs a language that is intuitive and easy to
use. At the same time, mere modeling of workflow is not
sufficient. It is necessary to analyze a workflow model to look for
possible flaws and further improvements. As for the modeling
language Activity diagrams from UML 2.0 provide a good option.
For analysis we need a more formal tool, and we get that in Petri
nets. So we map the workflow model into corresponding Petri
nets model for analysis. Finally we implement this on Eclipse.
Above mentioned aspects are discussed in details below:

5.1 ACTIVITY DIAGRAMS for MODELING
WORKFLOWS
Activity diagram from UML 2.0 provides all the basic constructs
needed. Major constructs for workflow modeling are sequence,
parallel path, alternative path and iteration. Activity diagram
constructs, start, end, fork, decision, and activity can be used for
modeling all these constructs. Start can be used to indicate
beginning of a process where as end can be used to indicate the
end of a process. Fork can be used for splitting a process into
several parallel execution paths. Decision can be used for
providing alternative paths. We can also model iteration by
connecting two decisions.

5.2 ACTIVITY DIAGRAM to PETRI NETS
An Activity diagram can be mapped to a Petri net, which includes
all kinds of control flow [4]. Here activity and fork nodes are
mapped to Petri net transitions and start, end, and decision nodes
are mapped to places. Connections are mapped in such a way that
always there is an arc either from transition to place or place to
transition.

Figure 1 shows an Activity diagram and Figure 2 shows the
corresponding Petri net obtained after converting it.

Action 4

Action 3 Action 1 Action 2

Decision

Start

End

Figure 1. An example of Activity diagram

start

P0

P1
P2

P3

end

Figure 2. Petri Net mapping of Fig. 1

5.3 PETRI NETS for ANALYZING
WORKFLOWS
A huge amount of work has been done on Petri nets so far and
hence a large number of results are available. One needs to find
out a set of results, which can help in analyzing workflows. Two
such useful methods are coverability tree and incidence matrix.

A coverability tree is actually a reachability tree with some
modification to take care of the case when the given Petri net is
not bounded.

The coverability tree of a given Petri net with initial marking M0
is constructed using the following algorithm [2]:

1. Label the initial marking M, as the root and tag
it "new."

2. While "new" markings exist, do the following:

a. Select a new marking M.

If M is identical to a marking on the path from the root to M, then
tag M

1. “old" and go to another new marking.

2. If no transitions are enabled at M, tag M "dead-end."

3. While there exist enabled transitions at M, do the
following for each enabled transition t at M:

a. Obtain the marking M' that results from firing
t at M.

b. On the path from the root to M if there exists
a marking M" such that M'(p)>M"(p) for each
place p and M' ≠ M", i.e., M" is coverable,
then replace M'(p) by ω for each p such that
M'(p) > M"(p).

c. Introduce M' as a node, draw an arc with label
t from M to M', and tag M' "new."

We can also use an Incidence matrix [2] to calculate reachable
marking from a given marking after firing a particular transition.

Using both coverability tree and incidence matrix we can study
some properties of Petri nets, which are helpful in analyzing
corresponding workflow from which the Petri net has been
constructed. Three such useful properties are boundedness,
safeness, and deadlock. If we start with an initial marking where
there is only one token in the start place and no token in other
places, then absence of boundedness indicates that a particular
place have infinite number of tokens. So this indicates that we can
never reach the end place without having left some tokens in other
places. In workflow domains this implies that we can never end an
activity without leaving some reference to it.

Safeness property in workflow domain will ensure that we
don’t have more than reference to an object to be processed. This
makes sense since there is no need of processing two same objects
when one is needed.

Deadlock property is very useful from workflow point of view
as it indicates that the corresponding workflow has some activity
which cannot be reached hence the design has some flaws.

From the above discussion it is clear that from Petri net
analysis we can often comment on the properties of a workflow.

5.4 IMPLEMENTING as ECLIPSE PLUG-IN
We demonstrate the possibility of our approach by developing an
Eclipse plug-in [19]. The flow of our tool on Eclipse is as given in
Figure 3. A workflow editor is provided which can be used for
modeling workflow using activity diagrams syntax. Then user can
convert the workflow model to corresponding Petri net model. We
generate the Petri nets in PNML format [3], which is a
standardized XML based interchange format for representing Petri
Nets. This is useful for importing and exporting a Petri net model.
This Petri net model, in turn, may be fed into the Petri net
analyzer, which does above-mentioned analysis using which we
can comment on the original workflow model.

We implement the activity diagram editor using a well-known
design pattern called the model-view-controller (MVC) [18]. As
the name suggests, MVC consists of three kinds of objects. The
model represents the actual thing that is persisted and restored.
The view represents how we display the model. Controller
handles user input. In MVC pattern, model and view remains
decoupled from each other. This helps in increasing flexibility and
reuse. Also we can have multiple views of the same model. Using
already available features of Eclipse, we could implement MVC.
For implementing the view part we use SWT and Draw2d
frameworks of Eclipse. For implementing the controller part we
use the Graphical Editing Framework (GEF) of Eclipse.

Petri nets analyzer

PNML

Petri nets

Activity Diagrams

Convert

Represent

Analysis

Figure 3. Dataflow of our tool

6. SCREENSHOTS OF OUR TOOL

Figure 4. Screen shot showing an Activity diagram

Figure 5. Screen shot showing the results of analysis

 5

7. RELATED WORK
Van Der Aalst et al has proposed Petri nets for both modeling
and analyzing workflows in [11], [12], [13], [14]. Petri nets
have been enhanced with time, color and hierarch to enhance
their modeling power [15]. The problem with this is, Petri nets
are not an easy language for modeling workflows. However,
there are not many theoretical results available with high-level
Petri nets, which can be used for analysis[2].

Activity diagram has been argued by many as an alternative for
modeling workflows. After Van Der Aalst et al identified
workflow patterns [9], it has been shown that they can be
modeled using Activity diagrams [10]. There have been efforts
for defining semantics for activity diagram, so that execution of
the workflow models can be done ([6], [7], [8]).

8. CONCLUSION AND FURTHER WORK
We have proposed a new way of looking at analysis of
workflows. Modeling of workflows should be done in a
language, which is easy and more intuitive to work with like
Activity diagrams. But analysis has to be done in a more formal
language like Petri nets. We demonstrate this by giving an
Eclipse based tool, which can model workflows using Activity
diagrams, and then analyze the model using Petri nets. We have
so far mentioned three properties of Petri nets, which are useful
in commenting on workflow models. More such properties can
be looked for and at the same time more constructs from activity
diagrams can be added.

9. REFERENCES
[1] W.M.P van der Aalst and Kees van Hee, Workflow

Management, Models, Methods, and Systems

[2] Tadao Murata, Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE, Vol. 77, No. 4

[3] Billington et al., The Petri Net Markup Language:
Concepts,Technology, and Tools [Online]. Available:
http://www.informatik.huberlin.de/top/pnml/download/abo
ut/PNML_CTT.pdf

[4] Harald Storrle. "Semantics of Control-Flow in UML 2.0
Activities," vlhcc, pp. 235-242, 2004 IEEE Symposium on
Visual Languages - Human Centric Computing
(VLHCC'04), 2004.

[5] Workflow management coalition [Online].
http://www.wfmc.org/standards/docs/TC-
1011_term_glossary_v3.pdf

[6] Rik Eshuis, Roel Wieringa. A formal semantics for UML
Activity Diagrams – Formalising workflow models,
Technical Report CTIT-01-04, U. Twente, Dept. Of
Computer Science, 2001.

[7] Rik Eshuis, Roel Wieringa. Verification support for
workflow design with UML activity graphs, In Proc.24th
Intl. Conf. on Software Engineering (ICSE’02), pages 166-
176. IEEE, 2002.

[8] Rik Eshuis, Roel Wieringa. A real time execution semantics
for UML activity diagrams, In H. Hussmann, editor, Proc.

4th Intl. Conf. Fundamental approaches to software
engineering (FASE’01), number 2029 in LNCS, pages 76-
90. Springer Verlag, 2001.

[9] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.
Kiepuszewski, and A.P. Barros. Workflow Patterns, BETA
Working Paper Series, WP 47, Eindhoven University of
Technology, Eindhoven, 2000

[10] Stephen A white, Process Modelling Notations and
Workflow patterns. [Online] http://www.omg.org/bp-
corner/bp-files/Process_Modeling_Notations.pdf

[11] W.M.P. van der Aalst. The application of Petri nets to
workflow management, The Journal of Circuits, Systems
and Computers, 8(1):21-66, 1998.

[12] W.M.P. van der Aalst. Woflan: A Petri-net-based
Workflow Analyzer, Systems Analysis - Modelling -
Simulation, 35(3):345-357, 1999.

[13] W.M.P. van der Aalst. Workflow Verification: Finding
Control-Flow Errors using Petri-net-based Techniques, In
Business Process Management: Models, Techniques, and
Empirical Studies, volume 1806 of Lecture Notes in
Computer Science, pages 161-183. Springer-Verlag,
Berlin, 2000.

[14] W.M.P. van der Aalst and A.H.M. ter Hofstede.
Verification of Workflow Task Structures: A Petri-net-
based Approach, Information Systems, 25(1):43-69, 2000.

[15] W.M.P. van der Aalst, K.M. van Hee, G.J. Houben, Petri
nets and related formalisms, Proceedings of the second
Workshop on Computer-Supported Cooperative Work.

[16] Shavor et al., The Java Developer’s Guide to Eclipse, 3rd
ed, Addison-Wesley, 2003.

[17] [Online] http://www.eclipse.org

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns, Addison-Wesley.

[19] http://www.cse.iitk.ac.in/~soft_arch/petri/

