Petri Nets tools integration through Eclipse

Adilson Arcoverde, Jr.
Centro de Informatica
Universidade Federal de
Pernambuco

aoaj@cin.ufpe.br

ABSTRACT

The lack of a standard file format to represent Petri net lim-
its the reuse of models among Petri net tools. In order to
reduce the impact of this limitation the Petri Net Markup
Language (PNML) has been proposed. PNML is an inter-
change file format for Petri nets based on XML. This pa-
per presents a framework, called EZPetri, based on PNML.
EZPetri is a perspective and a set of plug-ins of the Eclipse
platform. The union of Eclipse and PNML has demon-
strated itself to be an effective instrument for integrating
Petri net tools and applications. The paper discusses the
principles of the EZPetri, and presents one application in-
tegrated into the framework: Power Consumption Analysis
Framework. Such application has been developed with no
knowledge about EZPetri. This is a demonstration of the
integration facilities provided by the framework. EZPetri is
thus a fertile ground for combining existing Petri net tools
and applications into a single environment, offering the Petri
net community a new perspective of integration.

1. INTRODUCTION

Petri net is a powerful specification language useful for
modelling concurrent, asynchronous, distributed, parallel,
non deterministic, and/or stochastic systems [16]. It is also
a formal specification technique with powerful methods for
qualitative and quantitative analysis [15]. Since their intro-
duction by C. A. Petri in 1960, Petri nets have been widely
applied in many fields of science and industry.

There are several Petri net tools available for specific types
of net (high-level[7], timed[19], stochastic[5], etc.). The lack
of a standard has forced Petri net tool designers to create
their own file format. Thereby, a model created through a
Petri net tool cannot be read by other tools. This assertion
is true even for tools supporting the same Petri net type.

This situation has motivated the Petri net community to-
ward creating a Petri net interchange format. In order to
define a single XML-based file for any Petri net type, many
proposals were presented during the International Confer-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Gabriel Alves Jr.
Centro de Informatica
Universidade Federal de
Pernambuco

gaaj@cin.ufpe.br

Ricardo Lima
Departamento de Sistemas
Computacionais
Universidade de Pernambuco

ricardo@dsc.upe.br

ence on Application and Theory of Petri nets in 2000. The
most prominent of them was the Petri Net Markup Lan-
guage (PNML)(8].

The development of a computational tool to support
PNML would be the next step. Such a tool is supposed
to provide facilities for integrating existing Petri net tools
through importing/exporting functions.

This paper presents a new Petri net PNML-based tool,
called EZPetri. It takes advantage of the plug-in technology
offered by the Eclipse platform[13].

2. THE EZPETRI PROJECT

EZPetri is an extendable Eclipse-based tool suite that sup-
ports editing Petri nets, as well as importing/exporting Petri
nets from/to different Petri net tools. It takes advantage of
the plug-in technology of Eclipse to couple existing Petri net
tools and to implement new functionalities.

For instance, one may decide to build a new analysis
method for Time Petri nets. Instead of implementing a new
graphical interface, the developer may reuse all features al-
ready defined, such as editors, compilers, etc, and maintain
the focus on what really matters: the new analysis method.

PNML forms the kernel of EZPetri. It means that any
Petri net type may be represented through the PNML for-
mat in the EZPetri environment. Thus, it glues together the
integration facilities provided by Eclipse with the PNML in-
terchange format.

The project contributes to reducing the gap between
members of the Petri net community who use different Petri
net types, tools and file formats. Moreover, EZPetri im-
proves productivity in the development of new products by
offering several functionalities on a single development plat-
form. Figure 1 depicts the current state of the EZPetri
project. It also depicts the adopted design strategy. Each
plug-in accesses a single and shared PNML file.

.pnml
Eclipse Platform

Figure 1: EZPetri Architecture

B GPetri - teste pamt - Eclipne Platform =6}
Pio T6k Nadgste Tawch Promd Fun \ndow Heb MenuBar
S-A9S |0 /%-[® 7 - e
=T —— v x|[2 omaiom @ emepem x

X F

Tool Bar

I dud

et
oo

zerd
e

Navigator View Y (

Maviastoe Podiane Deiorer TN

¢ Outline View i \
i\ (LN L
L o |, .. Tabs (editor switch)

Figure 2: EZPetri Views and Editors

3. EZPETRI PERSPECTIVE

The design of the EZPetri perspective took into account a
problem known as loss of context. The problem occurs when
a user does not know where they are in the User Interface
(UI) or where to go to complete a task. A frequent cause of
the problem is the inclusion of an excessive number of views
and editors in the perspective. For instance, an object action
may differ between two distinct views or menu items may
vary with views. Therefore, the EZPetri perspective reduced
the number of views and editors as much as possible. This
decision yielded an intuitive (consistent) platform. As can
be seen in Figure 2, the EZPetri perspective is composed
of three views: navigator view, properties view, and outline
view. There is also the editor area, the menu bar and tool
bar.

The menu bar includes functionalities found in many com-
mercial tools: to create new files, help, arrange views and
so on. The tool bar works as a shortcut for functionalities
most used on the menu bar. Some options of these bars are
context-sensitive and are available only when a specific view
or editor is focused.

The navigator view enables users to show the workspace
area. It is useful to manage projects, folders and files. In
addition to ordinary tasks, such as creating a new folder
or invoking an editor to modify a file, specific functionalities
are available. For example, the user may right-click a PNML
file, choose the Compile To option, and translate PNML into
the file format of a specific Petri net tool.

The property view is useful to show and modify attributes
of selected objects. For instance, one may select a place and
edit its name, marking, etc.

The outline view displays attributes of specific files. A
tree structure is usually adopted in the outline view to rep-
resent attributes. A non-conventional usage of outline view
is provided by the EZPetri editor. It presents an overview of
the whole Petri net model (see Figure 2), when the EZPetri
graphical editor is activated. Such a view is useful for large
models. The user may choose the part of the specification
to be presented in the editor area by clicking on the corre-
sponding point of the outline view.

The editor area is a large blank box where specific file
formats are manipulated. EZPetri provides a multipage ed-
itor which is the parent of several editors. It uses tabs to
switch between different child editors, i.e., source (PNML),

and the graphical editor. When the user presses over Design
tab in the parent multipage editor, the graphical editor will
be displayed.

All editors in the multipage editor are supposed to imple-
ment a synchronization interface. Such an interface defines
methods to translate the editor contents into PNML, and
vice-versa. When one selects an editor through the multi-
page editor tab, the parent editor executes the method in
the corresponding interface to synchronize the contents of
the currently opened editor and the requested editor. In
order to not compromise performance, synchronization is
performed only when either users switch between editors, or
the work is saved.

4. THE MODELLING ENVIRONMENT

EZPetri contains a set of plug-ins for the graphical edition
of three types of Petri nets (place-transition Petri nets, time
Petri nets, and stochastic Petri nets). The type information
in the PNML tag is used by the editor to identify the Petri
net type.

These editors provide functionalities found in many Petri
net graphical editors: drawing by select-and-click, drag and
drop, resize, undo, redo, zoom in, zoom out, select all, se-
lect all of the same type, etc. The editor gives flexibility for
changing the source/target of an arc by dragging it to an-
other valid source/target. Some functionalities are enabled
in specific situations. For instance, select all of the same
type is enabled only when one transition or place, but never
both at the same time, is selected.

The editor includes an overview of the Petri net model in
the outline view. The overview is a small view with a picture
of the whole Petri net model. The corresponding area clicked
in the overview becomes visible in the editor area. This
innovative functionality is useful for large projects. It allows
users to rapidly move to a specific point of the model by
clicking on the corresponding area of the outline view. It
avoid the usage of the concept of page, adopted by some tools
(i.e. PNK). pages make the model difficult to understand
and edit, since designers are supposed to manage several
windows to work with a single net.

Alignment functionalities are useful to organize objects in
the model. Selecting two or more objects and right-clicking
over them, shows a popup menu that provides a number
of alignment functionalities. For instance, Align Left aligns
the left side of all selected objects with the left side of the
last selected objects. This includes object labels. The last
selected object is identified by a black border. Figure 3
exemplifies the usage of the alignment functionality.

Similarly, same size functionality applies the same width
and height to all selected object. The width and height used
will be that of the last object selected.

The graphical editor was developed using the Eclipse plug-
in Graphical Editing Framework(GEF)[6]. GEF assists the
task of building several GUIs.

5. COMPILERS

EZPetri compilers are used to translate from a specific de-
scription format into PNML, or vice-versa. By translating
from a file format into PNML, it is possible to reuse nets
modelled in different tools. The inverse process is useful to
export a PNML model to other Petri net tools. Notice that
is possible to convert from a given file format into another

Figure 3: Aligning left two places of the net

using PNML as an intermediated representation. The Docu-
ment Object Model (DOM) [20] was adopted to manipulate
the PNML file.

To guarantee compilers reuse, they were developed and
packaged in two different modules: core and ui. The core
provides translation functionality. It compiles from a spe-
cific format into PNML, and vice-versa. The wui provides a
popup menu option. When requested by the user, this menu
invokes the compiling feature provided by the core.

Two compilers have been developed: FEZPetri PNML
INA Compiler (Epic) and EZPetri PNML PEP Com-
piler (Eppc). Currently, both Epic and Eppc support
Place/Transition Petri nets. Additionally, Epic supports
Time Petri nets.

Epic converts the Integrated Net Analyzer (INA) [17] file
format into PNML, and vice-versa. INA is a well known
Petri net tool It provides a rich set of analysis techniques.

Eppc translates the Programming Environment based on
Petri nets (PEP) [1] formats into PNML, and vice-versa.
PEP is a comprehensive set of modelling, compilation, sim-
ulation and verification components, linked together within
a Tcl/Tk graphical user interface.

6. INAINTEGRATION

As discussed before, INA is one of the most used analysis
tool for Petri nets. In this section we will present the way
this tool was integrated into EZPetri.

INA is a shell tool and the interaction with this program
is made through menu options entered by command line.
Figure 4 shows a piece of INA initial dialog. For instance, if
A is pressed at this point, the loaded net will be analyzed.

Do You want to

edit 7 ... e E
fire 7 ... F
analyse 7 ... e e A
reducCe 7 e R
read the session report 7 S
delete the session report 7 D
change options 7 i, 0
quit 7 Q
choice >

Figure 4: A piece of INA’s initial dialog

Two important INA files were used for the integration
purpose. The COMMAND.ina file is generated when the
user decides to quit INA. All the commands entered during
an INA session are stored into this file. If this file exists when

INA starts, the question Same procedure as last time? Y/N
is presented. Answering <Y >, repeats the execution of the
commands entered the previous INA session. Another file
generated during an INA session is named SESSION.ina. It
contains every analysis result or deduction obtained during
the session.

Currently, some formal analysis methods provided by INA
are supported directly from EZPetri. Choosing the analysis
tab in the EZPetri editor, it is possible to analyze some
formal properties of the modelled net (see Figure 6).

£z x g
[~ Covered by transition invariants
[~ Bounded
[T Structurally Bounded
[~ Reversible
[~ Dead state reachable
[~ Bad state reachable
[~ Dead transition at initial marking
[~ Dynamically Conflict Free
v Live

Live when ignoring dead transitions

17

Live and safe

|

Main | Results 2
Source | PTMet | TimedMet | INA Analyser

Figure 5: EZPetri INA analyzer

Creates A

COMMAND.ina

EZPetri » Expect > INA

>

SESSION.ina

Reads

Produces

Analysis results

Figure 6: EZPetri INA analyzer

In order to invoke the analysis functions provided by INA,
EZPetri explicitly generates the COMMAND. ina file. The set
of commands included in the file depends on the properties
selected in the EZPetri INA analyzer (see Figure 6). The
Expect[12], which is employed to simulate keyboards inter-
actions, executes the INA program'. The SESSION.ina file
produced by INA analysis is shown to EZPetri user.

Figure 7 depicts the analysis of liveness and ordinary
properties of net presented in Figure 77.

!The Expect is executed using the java.lang. Runtime and
java.lang. Process classes.

= X 8
INA Analysis Results

2 General Analisys Results

J Ordinary
A Live

Close

Main |Results 2
Source | PTMet | TimedMet | INA Analyser

Figure 7: Result of the EZPetri INA analyzer

7. POWER CONSUMPTION ANALYSIS
FRAMEWORK - PCAF

In power critical embedded systems, energy consumption
may be regarded to the processor and to specific hardware
device. Despite of processor hardware optimization, proces-
sor consumption is affected by the software dynamic behav-
ior [18], meaning that the software power analysis is crucial.
In order to improve designs, methods for design space ex-
ploration play an important. For instance, they are useful
to improve the performance and energy consumption. Many
embedded computing applications are power critical. Some
examples are portable medical instruments, notebook com-
puters, personal digital assistant and cellular phones.

A new approach based on Colored Petri Net for analyzing
software power cost was proposed in [9]. This work explores
Colored Petri Nets as a formal description language. The
simulation mechanism is used to capture behavioral patterns
that characterize energy consumption. The atomic behav-
ior associated to consumption is the processor instruction
set. During the program execution flow, each instruction
changes the internal processor context. The program flow
is modelled as a Colored Petri Net, where each processor
state is modelled as a place, the internal context as a data
structure within a token, and instructions as transitions that
processes this token. The instruction behavior is defined by
an associated CPN-ML code (a Standard ML Language sub-
set) [10].

Some CPN processor architecture models [3][2] are based
on the architectural/RTL hardware model, i.e. based on
its internal functional units (pipeline stages, Icache and
Dcache). In contrast, this approach models processor only
by its instruction set. Models based on architectural/RTL
hardware have to be feed with very detailed hardware con-
sumption data related with implementation technologies.
Such information is not often available to the system de-
signer [14]. On other hand, instruction-level power model
can be implemented through simple physical measures [11].
The proposed CPN model explicitly represents control and
data dependencies, hence allowing mapping consumption
features to software structures.

In order to integrate this work to EZPetri, the Power Cost
Analysis Framework (PCAF) has been developed. It imple-
ments functions such as codes entities identification (Patches
and Clusters) and consumption analysis. The result gener-
ated by the analysis is shown in a GUI as charts and ta-
bles. Figure 8 exemplifies a PCAF result. Additionally, a
portable document format (pdf) file containing the result is
generated.

To reach the result, several operations are executed by this
framework. It starts by loading the machine-code file, which
is translated into a CPN model. The next step is to send the
model to the CNP-Tools proxy. This is performed through
a TCP/IP channel. Then, the proxy loads the model in
the CPN-Tools. A TCP/IP connection is established be-
tween the PCAF and the proxy using the Comms/CPN[4].
The CPN-Tools analyzes the model and generates the en-
ergy consumption information. Finally, the proxy sends such
information to PCAF, which mounts the charts and tables
presented to the user.

Power Cost Analysis Framework

Model: psort_fs_cf.bin

Instruction | Consump... | Execution | [A]
0.105 =
0.047

Number of Instructions: 229
Energy: 397.18%8%5w 0.047
0,047
0,047
0.108
0.047

Mean Energy: 1.7344536899563319 uw)

L

A
Greatest Consumer Patch: Patch 6

Patch | Execution | Consumption. .. | Percentua. .. Patch Execution | Conzump tion(nd)
1 74 63 1.5 15 | [0,00
2 4 273 0.69

3 0 1.05 0.27

4 0 16,11 406

5 1100 74.55 18.78

3 1435 104.22 2,30 be

Patches | Exeassion [consumptio... |

16,9, 14 5 0.47

11,13,15,17, 19, 21 0 0.00

IS] 4

Figure 8: Tables presented in the user interface

8. CONCLUSIONS

The paper has described a framework for the development
of Petri net applications and integrating existing Petri net
tools. The framework joins together the PNML interchange
file format with extension facilities provided by the Eclipse
platform. The combination of these technologies has demon-
strated itself to be an effective instrument for integrating
Petri net tools and applications.

A description of the EZPetri architecture and its imple-
mentation have been provided. The paper has detailed the
EZPetri perspective, including their editors and views. The
EZPetri modelling environment has also been briefly dis-
cussed.

The successful and quick integration of two existing Petri
net tools, namely INA[17] and PEP[1], into EZPetri has
demonstrated the potential of the framework for import-
ing/exporting Petri net file formats of other Petri net tools.
It must be highlighted that the PEP and INA plug-ins re-
quired less than sixteen hours (each) to be implemented.

Additionally, a graphical frontend for the INA tool has been
implemented. Using this INA frontend is possible to in-
voke several formal analysis methods provided by INA. This
closer integration between INA and EZPetri increases de-
signers productivity.

We have demonstrated that EZPetri can be extended to
incorporate Petri net applications. In particular, we have
described a Petri net based application, named Power Cost
Analysis Framework - PCAF developed with no knowledge
of EZPetri and their integration into the framework.

We believe that the EZPetri framework offers more than
just another tool for the Petri net community. It offers them
a perspective of real integration. Through collaboration,
corporate professionals, researchers, members of academia,
and individual developers can further the goal of producing
interoperable Petri net based products and offerings.

9. ADDITIONAL AUTHORS

Additional authors:
Paulo Maciel (Centro de Informadtica - Universidade Federal
de Pernambuco, email: prmm@cin.ufpe.br)
Meuse de Oliveira Jr. (Centro de Informética - Universidade
Federal de Pernambuco, email: mnoj@cin.ufpe.br)

10. REFERENCES

[1] B. Best and B. Grahlmann. Pep - more than a petri
net tool. In LCNS, volume 1055, pages 397—401.
Springer-Verlag, 1996.

[2] F. Burns, A. Koelmans, and A. Yakovlev. Wcet
analysis of superscalar processor using simulation with
coloured petri nets. International Journal of
Time-Critical Computing Systems,.

[3] F. Burns, A. Koelmans, and A. Yakovlev. Modelling
of superscala processor architectures with
design/CPN. In Jensen, K., editor, Daimi PB-532:
Workshop on Practical Use of Coloured Petri Nets
and Design/CPN, Aarhus, Denmark, 10-12 June
1998, pages 15-30. Aarhus University, 1998.

[4] G. Gallasch and L. M. Kristensen. Comms/CPN: A
communication infrastructure for external
communication with design/CPN. In 8rd Workshop
and Tutorial on Practical Use of Coloured Petri Nets
and the CPN Tools (CPN’01) / Kurt Jensen (Ed.),
pages 75-90. DAIMI PB-554, Aarhus University, Aug.
2001. InternalNote: Submitted by: hr.

[5] P. Haas. Stochastic Petri Nets: Modelling, Stability,
Simulation. Springer-Verlag, New York, 2002.

[6] R. Hudson. How to get started with the GEF.
http://www.eclipse.org/gef, 2003.

[7] K. Jensen. An introduction to high-level petri nets. In
Int. Symp. on Circuits and Systems, Proceedings,
Kyoto, Japan, volume 2, pages 723-726, New York,
1985. IEEE. NewsletterInfo: 25.

[8] M. Jiingel, E. Kindler, and M. Weber. Towards a
generic interchange format for petri nets. In 21st
International Conference on Application and Theory
of Petri Nets Aarhus., June 26-30 2000.

[9] M. N. Junior, P. Maciel, R. Barreto, and F. Carvalho.
Towards a software power cost analysis framework
using colored petri net. In PATMOS 2004, volume
3254, pages 362-371. LNCS Kluwer Academic
Pubishers, September 2004.

[10] L. Kristensen, S. Christensen, and K. Jensen. The
practitioner’s guide to coloured petri nets.
International Journal on Software Tools for
Technology Transfer: Special section on coloured Petri
nets, 2(2):98-132, 1998.

[11] T. Laopoulos, P. Neofotistos, C. Kosmatopoulos, and
S. Nikolaidis. Current variations measurements for the
estimation of software-related power consumption.
IEEE Instrumentation and Measurement Technology
Conference, May 2002.

[12] D. Libes. Expect: Scripts for controlling interactive
processes. Computing Systems, (4), 1991.

[13] D. Lipcoll, D. Lawrie, and A. Sameh. Eclipse Platform
Technical Overview. Object Technology International
Inc., July 2001.

[14] S. D. Marcello Lajolo, Anand Raghunathan and
L. Lavagno. Cosimulation-based power estimation for
syste-on-chip design. IEFE Transactions on Very
Large Scale Integration (VLSI) System, 10(3):253-266,
June 2002.

[15] T. Murata. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4):541-580,
April 1989.

[16] G. Rozemberg and W. Reisig. Informal introduction
to petri nets. 1998.

[17] P. Starke and S. Roch. INA - Integrated Net Analyzer
- Version 2.2. Humbolt Universitdt zu Berlin - Institut
fiir Informatik, 1999.

[18] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: A first step towards software
power minimization. IEEE Transactions on Very
Large Scale Integration Systems, 2(4):437-445,
December 1994.

[19] J. Wang. Timed Petri Nets, Theory and Application.
Kluwer Academic Publishers, 1998.

[20] World Wide Web Consortium (W3C) (ed.),
http://www.w3.0org/DOM. Document Object Model,
2000.

