
Integrating Information Sources for
Visualizing Java Programs

Jeff Michaud Margaret-Anne Storey Hausi Müller

Dept. of Computer Science
University of Victoria, BC Canada

email:{jmichaud,mstorey,hausi}@csr.uvic.ca

Abstract

This paper describes the integration of
information sources to support the exploration of
source code and documentation of Java programs.
There are many public domain tools that are available
for extracting information and documentation from
Java programs. We describe how data integration and
presentation integration were used to enable the
visualization of this information within a software
exploration environment.

1 Introduction

Software visualization is considered by many
researchers to be a useful and powerful tool for helping
programmers understand large and complex programs.
Consequently, there are many visualization tools that
have been developed for exploring software code and
documentation .

Clearly the effectiveness of a particular
visualization relies heavily on the pertinence and
accuracy of the information being visualized. A
visualization’s usefulness depends on 1) the relevance
and accuracy of the information being displayed, 2) the
coherence of the representation used to display the
information, and 3) the methods provided to the user
for navigating and exploring the presented information.
This paper focuses on how information that is needed
during software maintenance can be integrated and
subsequently browsed in a software exploration
environment.

Information sources for software visualization can
be roughly categorized into four general categories:

o Source code artifacts and relationships
o Architectural abstractions and relationships
o Documentation (for example, history

information and design decisions)
o Metrics and other analysis results

All of these information sources are required at
some point during software maintenance. When trying
to understand a complex fragment of source code, the
ability to cross reference information is required. For
instance, a programmer trying to understand a class in
Java may like to have instant access to colour-coded
source code that has control flow and data flow
dependencies available as hypertext links. In addition,
the programmer may wish to rapidly access any
available Javadocs, documentation or diagrams
describing the role of the class in the system’s
architecture. In addition, there may be a need to view
metrics that describe the size or complexity of the class
under examination.

Ideally a maintainer would like to be able to access
these pieces of information without having to run
distinct tools for each of these items separately. If
separate tools are used, integrating the collected
information and saving it for future use is cumbersome
and is often therefore not attempted. Moreover,
missing information may lead to mistakes during future
maintenance.

For Java, there are many public domain tools
available, such as parsers, source code browsers,
analysis tools and documentation generators.
However, there are few environments that seamlessly
integrate or even allow the seamless integration of
these different tools to be used during software
maintenance. This paper describes how some public
domain tools have been integrated in a software
exploration environment using data and presentation
integration methods [1]. By reusing existing tools in
this fashion, we avoid reinventing a wheel, and instead
demonstrate how a powerful machine can be built from
several wheels.

The rest of this paper is organized as follows.
Section 2 briefly describes the SHriMP software
exploration environment. Section 3 describes how
information from public domain tools can be integrated
within multiple cross-referenced views in SHriMP.
Section 4 presents a scenario of how the resulting
visualizations can be used during the exploration of a

Java program. Section 5 describes future work and
suggests other information sources that could be
additionally integrated into a visualization
environment. Section 6 concludes the paper.

2 SHriMP Views

The SHriMP visualization technique was originally
designed to enhance how programmers understand
programs [2,3]. SHriMP presents a nested graph view
of a software architecture. Program source code and
documentation are presented by embedding marked up
text fragments within the nodes of the nested graph.
Finer connections among these fragments are
represented by a network that is navigated using a
hypertext link-following metaphor. SHriMP combines
this hypertext metaphor with animated panning and
zooming motions over the nested graph to provide
continuous orientation and contextual cues for the user.

SHriMP employs a fully zoomable interface for
exploring software. This interface supports three
zooming approaches: geometric, semantic and fisheye
zooming [4]. A user browsing a software hierarchy
may combine these approaches to magnify nodes of
interest. Geometric zooming is the simplest type of
zooming. A part of the nested view is simply scaled
around a specific point in the view. Geometric
zooming causes other information to be elided.
Fisheye zooming allows the user to zoom on a
particular piece of the software, while preserving
contextual information. Information that is of interest
appears larger than other information which is reduced
in size accordingly.

SHriMP also provides a semantic zooming method.
When magnified, a selected node will display a
particular view depending on the task at hand. For
example, when zooming on a node representing a Java
package, the node may display its children (packages,
classes, and interfaces). Alternatively, it may show its
Javadoc, if it exists. Other possible views may include
annotation information, code editors or other graphical
displays. A node representing a class or interface may
display its children (attributes and operations) or it may
display the corresponding source code. SHriMP
determines which view to show according to the action
that initiated the zoom action. For example, if a user
clicks on a link within a source code view, SHriMP
will zoom to the appropriate node and display the
source code within that node

SHriMP is language independent and can be used
for browsing any information space. In this paper we
describe how SHriMP is applied to visualizing and
exploring Java programs. Previously [5] we used a
Java parser that is not available to the general public as
well as some other ad hoc tools for obtaining program

artifacts, relationships, HTML’ized source code,
architectural information and documentation to display
in SHriMP. In the next section we describe how a
redesign of SHriMP enabled us to make use of various
public domain tools for obtaining information for
software visualization.

3 Integrating Information Sources

Many software visualization tools tend to focus on
a very specific collection of information views to
enhance the understanding of a software system.
However, few tools address all of the information
categories mentioned in Section 1 (i.e. source code
artifacts and relationships, architectural abstractions,
documentation and history information, metrics and
analysis information).

More recently, there is a trend towards building
extensible and customizable tools that promote the
integration of additional views (e.g., PBS [5], Rigi [6],
Shimba [7], Dali [8] and Bauhaus Rigi [9]). With the
need for extensibility in mind, SHriMP has recently
been redesigned and reimplemented using Java Beans
[10]. A primary goal of its new component based
architecture was to allow tool interoperability via data
integration, control integration and presentation
integration.

The next three subsections describe the different
tools that we use to collect architectural information,
HTML’ized source code, and Javadocs. The final
subsection describes how these information sources are
cross-referenced and subsequently displayed within
SHriMP.

3.1 Extracting architectural information
from Java programs

The first tool that is needed is one that can extract
architectural information from the Java source code.
The public domain tool, JavaRE [11], analyzes Java
programs and outputs architectural information in the
XMI format (cf. Fig. 1) [12]. XMI is the XML
Metamodel Interchange format that represents a
combined effort from the W3C and the OMG. XMI is
built upon UML, MOF, and XML. It is standard
industry practice to represent an object-oriented system
in UML. What XMI provides is a standard method to
serialize this information in a file in order to exchange
the model information between tools. The XMI file
thus contains expressed in XML all the UML
architecture model elements such as packages, classes,
methods, attributes, and some important relationships
that exist between these model elements such as
inheritance and associations. Rational Rose [13] and
other modeling tools are now moving to support XMI
as an exchange format.

Since the SHriMP tool does not import XMI as a
format, we wrote an extractor (XMI2RSF) that extracts
the relevant information from the XMI file and
expresses it in RSF (Rigi Standard Format) [14]. RSF
is structured as a flat text file and is an attributed nodes
and arcs format. As the XMI is collected, a complete
in-memory model of the architecture is created before
writing it out as RSF (cf. Fig. 2). To do this, two steps
are performed with each model element. First, the
model element is parsed and then stored in an object
designed to hold the type of model element in question.
Second, the object is then inserted into the in-memory
model such that it is pointed to by its owner. For
instance, a method is owned by its class, a class by its
package, etc.

Figure 1: Step 1, the Java source code is parsed in order to
extract UML class diagram architecture elements.

Figure 2: Step 2, The XMI is parsed and stored in an in-
memory model that reflects its UML structure.

Once the entire model is in memory, the model is

ready to be output in RSF format. Each class has a
toRSF() method that serializes the model element

into RSF. These toRSF() methods provide us with
the opportunity to tie data provided by the other tools
into the RSF. In Section 3.4 we will refer to these
toRSF() methods again when we discuss how
information gathered from different sources is cross-
referenced.

3.2 Obtaining HTML’ized Java code

The Javasrc [15] tool is used to provide an
enhanced set of HTML pages that allows browsing of
the source code as if it were a website. All references
in the code to classes, methods, and attributes are
linked back to their definitions providing a quick and
easy method for traversing the source code. As an
added feature, Javasrc creates an organized and
complete listing of all references for each class,
method, and attribute. While browsing the source
code, clicking on the source code definition of a class,
method or attribute will bring the user to a special
reference page containing a list of references to the
selected item which can be used for numerous tasks
such as impact analysis and determining how coupled a
system is.

Java file and directory naming conventions are
followed in the generation of all files and directories by
the tool. This means that directory names reflect the
package organization and file names match one to one
with the class names (with a ‘.html’ extension).
Reference pages are also named after the classes but
end with ‘_ref.html’. Every line of code within each of
the enhanced HTML pages is accessible through an
HTML anchor labeled with that line number (for
example, UmlItem.html#25 would bring the user to
line 25 of the UmlItem class). Similarly, methods have
HTML anchors that are conveniently named after the
method itself. The use of these naming conventions
turns out to be useful when combining the data from
each of these tools (as explained in Section 3.4)

3.3 Generating Javadocs

The Javadoc [16] tool works in a similar fashion to
the Javasrc HTML generating tool just described.
Javadocs can be generated for the entire program and
can be a very useful means of exploring a software
system. This tool generates several Javadoc files that
provide information on several different levels of
granularity including the project level, the package
level, and the class level. API information, user
documentation, and class structure are each detailed in
the Javadocs in an easy to use structure. Javadoc takes
the form of a series of HTML pages with file and
directory naming conventions that once again follow
the Java naming standards.

3.4 Integrating Information Sources

This subsection describes how data, control and
presentation integration techniques are used to improve
tool interoperability with SHriMP.

3.4.1 Data Integration

According to Wasserman [1], data integration
involves the sharing of data among tools and the
managing of relationships among data objects
produced by different tools. Data integration can be
achieved using file exchange or through interprocess
communication. Another common approach is to rely
on a shared repository that can be accessed by multiple
tools.

In our case, data integration is achieved using small
custom built programs and scripts to gather and cross-
reference information from multiple sources. Figure 3
illustrates the different steps required. First the source
code architecture is captured using the Java to XMI
tool (JavaRE). Next the enhanced HTML version of
the source code and the Javadoc are generated using
Javasrc and Javadoc. Finally, the XMI2RSF tool is
used to extract the architecture elements from the XMI
while generating the necessary additional RSF node
attribute information that cross-references the
architectural elements with the enhanced HTML source
code and the Javadocs.

Figure 3: Three public domain tools (JavaRE, Javasrc, and
Javadoc) in conjunction with one tool written by us are used
to produce the needed RSF for SHriMP. Only the XMI is
parsed in the XMI2RSF tool while the HTML'ized source
code and Javadoc are incorporated without parsing.

As mentioned in Section 3.1, the XMI is parsed into
an in-memory model and is ready to be output as RSF.
Each of the objects has a toRSF() method that is
called to serialize the model element contained within
it. These toRSF() methods supply access points for
inserting additional code to create the RSF that will
link to the additional information generated by the

other two tools. This additional code will make use of
the package, class, method, and attribute names
available from the in-memory model to compose links
to the files (and parts of files) provided by the Javasrc
and Javadoc tools. Since both of these tools
consistently follow a set of conventions for naming
their files and directories, writing the code to compose
these links is simply achieved (cf. Fig. 4).

An important point here is that no parsing of the
data provided by the Javasrc and Javadoc tools is
required in order to effectively associate their data into
the architecture.

Figure 4: Step 3, while the RSF is generated for each model
element, additional RSF is generated to link to the
information provided by the other tools without having to
parse the HTML’ized source code and Javadoc information.

In order to make it simple to repeat the data
integration process, a script was created that simply
calls all of the needed programs (all of which are in
Java) in the correct order with the needed parameters.
The script is setup to be easy to change in order to be
applied to parse different Java programs. A
mechanism for calling this script and inputting the
required parameters will be integrated within the
SHriMP user interface.

3.4.2 Presentation Integration

Presentation integration implies a mechanism to
ensure consistency at the user interface level

 [1]. For example, we integrate Swing widgets
[17] that can be easily tailored to have a common look-
and-feel.

In addition to this we suggest that presentation
integration should also reflect ease of navigation
between and coherence of multiple views of
information sources. A logical, organized structure is
required so that all the information gathered can be
appropriately displayed and easily manipulated when
necessary. One choice for this organizing structure is
to use a software architecture view. So far we have
been using the implementation architecture that

documents the organization of the source code. For
Java, the implementation architecture [9] consists of a
hierarchy of packages that contain classes, interfaces or
other packages. Classes may contain methods and
attributes1.

The hierarchical structure of the architecture is
represented using a nested graph with the parent-child
relationship showing subsystem containment (cf. Fig.
5). Nodes in the graph represent packages, classes,
methods, attributes and so on. However, other
relationships, such as inheritance, could alternatively
be used for the parent-child relationships. The choice
of parent-child relationship is fully configurable by the
end-user at run-time. For example, parent nodes could
represent superclasses, with their embedded children
nodes representing subclasses.

Figure 5: A SHriMP view of a Java program. Three of

the displayed nodes (top left, bottom two) show packages in
the program. The top left and bottom right nodes are opened
to show the classes and interfaces in these packages. The
bottom left node shows the Javadoc for that package. The
top right node shows the source code for that class.

Additional relationships are visualized using arcs

layered over the nested graph. In Fig. 5, coloured arcs
represent relationships such as extends (i.e. an
inheritance relationship), implements (when a class
implements an interface) and hastype (when a class
uses an object of a particular type).

Collected information is displayed at the

1 Inner (nested) classes are currently not supported as
the JavaRE tool does not identify them. We intend to
design and implement this functionality if it is not
provided by the next version of JavaRE.

appropriate architectural level. The nodes in the graph
are used as containers for different views. For
example, a package node can contain a graphical view
of its children (classes and interfaces) or it may contain
a view showing its Javadoc. A class node may contain
a graphical view of its children (attributes and
methods), its Javadoc, or its HTML’ized source code.
Moreover, other views that are implemented using
Swing [17] can be displayed within the nodes.
Choosing which view to display is dependent on the
stake holder’s goal and reason for viewing the
visualization.

Navigation between views is facilitated by the data
integration of the information sources. The links from
one node to another are captured in the RSF node
attribute information gathered when the XMI
information is annotated by the Javasrc and Javadoc
output. Section 4 will further clarify how navigation
across views is achieved in SHriMP.

3.4.3 Control Integration

Control integration implies the ability for one tool
to control another tool, either by directly activating
functionality or by event notification [1].

The Java Bean design allows for easy integration of
additional views within the SHriMP nodes. The
views described so far are either non-editable views or
embedded views that are part of the SHriMP tool itself.
However, since a node can contain any Swing widget,
it is possible to embed and subsequently control other
tools within the nodes. Using this mechanism, we
could potentially embed debuggers, metric analysis
tools, version control systems, clustering tools and
editors among others.

So far we have not had much experience
embedding editable views within SHriMP. However,
we have demonstrated how SHriMP supports control
integration by embedding editable views from a
knowledge management tool called Protégé [18,19]
within SHriMP. Although this integration is not in the
domain of software visualization, it has demonstrated
to us that our java bean design is an effective control
integration mechanism as we were able to integrate
SHriMP and Protégé in just a few days.

4 A Scenario

To illustrate our approach, we provide a description
of a working example of using the SHriMP tool. A
small Java program (about 30 classes split amongst 3
packages) was parsed using the process summarized in
Fig. 3. The program being visualized in this scenario is
actually our own XMI to RSF tool that is written in
Java. The broad goal of this scenario is to demonstrate
how SHriMP facilitates an easier and more convenient

environment for exploring software.
First the source code architecture of the XMI2RSF

tool was captured using the JavaRE tool. Next the
enhanced HTML version of the source code and the
Javadoc were generated. Finally, the XMI2RSF tool
was used to extract the architecture elements from the
XMI and to generate the necessary additional RSF to
cross-reference the enhanced HTML source code and
the Javadoc. The script to run these different steps for
this example ran in less than 30 seconds on a Pentium
III class machine running Windows NT.

After the script is finished, the RSF file can be
opened in SHriMP, and the exploration of the system
can begin. The first view that a user sees is one similar
to Fig. 6 except that the system package nodes have
been filtered (however, one could imagine other
scenarios where keeping them around could be useful).

Figure 6: SHriMP view displaying the three packages
and one class (which contains the main method) in the
XMI2RSF tool. System nodes (packages, classes and
interfaces such as those belonging to java.io or java.lang)
have been filtered to simplify the view.

 A few simple steps lead us to the view in Fig. 7.

First, the user zooms in on the uml package node (top
right node in Fig. 6). This package details the class
structure of the in-memory model used to hold the
source code architecture (modeled after UML). Next,
some filtering is performed on the arcs to only retain
those arcs related to inheritance (extends and
implements). Next a Sugiyama layout is issued which
arranges the nodes in a hierarchical form and attempts
to minimize arc crossings. Lastly, the fisheye zoom is
applied to the UmlItem node which increases its size
while preserving the general layout to maintain context
for the user.

The UmlItem node represents a class within the
UML package and is the focus of the rest of this
scenario. In the snapshot shown in Fig. 7, the user is
shown an abstract graphical representation of the class.
This graphical view allows the user to quickly estimate

the number of methods and member variables
(attributes) in the UmlItem class.

Figure 7: SHriMP view displaying the uml package focusing
on the parent class UmlItem. Displayed within UmlItem are
its children nodes (methods and attributes).

With one mouse press the user can change the

contents of the UmlItem node to display the enhanced
HTML source code (cf. Fig. 8). Now the user can
navigate the system using hyperlinks. When the user
clicks on a link, SHriMP animates and navigates from
the source node to the destination node and will display
the HTML code in the destination node if it was not
already visible.

Figure 8: With one click the user has instant access to the
enhanced HTML source code for the UmlItem class.

As mentioned in Section 3.2, clicking on the
definition of a class, method or attribute will bring the

user to a page that lists all references to the class,
method or attribute. If the user selects the
setOwner(Object owner) shown in Fig. 8,
SHriMP will animate the view and display the
reference page for the UmlItem class appropriately
scrolled to the references for the setOwner method
(cf. Fig. 9).

Figure 9: The reference page contains a complete list of
references for each method and attribute in the UmlItem
class.

From here, the user can view all references to the
setOwner(Object)method described by the
package, class, method and line number where the
reference occurs. If the user selects any of the links in
the reference list, SHriMP animates the view so that
the user is brought to that instance where the
setOwner(Object) method is called.

Alternatively, a user may not wish to be
overwhelmed by the amount of detail shown in the
source code directly and may instead wish to view the
Javadoc. From either of the views shown in Figures 7
or 8, the user can switch the view so that the UmlItem
node displays the Javadoc (cf. Fig. 10).

Through this brief tour of the XMI2RSF tool, we
have shown that the user has complete freedom to view
the software system as she/he wishes. Having instant
access to various views (enhanced source code,
Javadoc, nodes and arcs, and others) allows the user to
explore the system without having to worry about
switching applications for viewing the various
representations available for the Java system.

Although we have not evaluated this paradigm for
exploring software information, we have observed
members of our team using SHriMP for exploring Java
programs. Early input seems to indicate that it may be

more useful for programmers browsing unfamiliar
code. However, as other views (in particular editable
views) are integrated within our environment, we
expect its appeal will broaden.

Figure 10: Viewing the Javadoc for the UmlItem provides
access to inheritance information, the API, and the
programmer’s comments.

5 Future Work

The integration of information from the JavaRE,
Javasrc, and Javadoc tools to provide cross-referenced
information for visualizing Java programs has been
very encouraging. Our next step is to see if additional
functionality can be integrated with these existing
views. In particular we are interested in exploring
metric tools, abstract syntax tree parsers, source code
repositories (to provide history information), source
code editors, clustering tools, graph layout tools and
other visualization approaches.

Determining which combinations of tools could be
useful in an integrated environment will require
extensive user studies. However, by making use of
existing tools, we have removed some of the risk of
having to implement components that may not be
necessary or required by maintainers. User studies
(similar to those described in [20]) are scheduled for
Spring 2001 to start investigating these questions.

Recently, there has been a move in the reverse
engineering and reengineering community towards a
standard exchange format (GXL, [21]). GXL takes
advantage of all the benefits of XML. As explained,
SHriMP employs a format called RSF that is one of
several flat text formats for encoding and exchanging

architecture information. One next step for our work is
to implement a GXL data bean to allow our tool to
interoperate with many more tools through data
integration.

Both the Javasrc and JavaRE tools were created
using a tool called ANTLR [22]. ANTLR is a tool that
provides generic parsing abilities. Since it is a generic
parsing tool, it is designed to handle all grammar
parsing needs which include parsing Java and C++.
The XMI format is a general purpose modeling format
and can be used to model other object based languages
such as C++ and Visual Basic. For these reasons, it
may be possible to find tools to generate the XMI and
HTML representations needed for creating a browsing
environment for other languages.

6 Conclusions

By taking advantage of existing tools and the
conventions that they use to store their data, a powerful
environment for visualizing and exploring Java
programs was created. The only code written was a
program to serialize XMI into RSF and was written
within 2 weeks by one developer (the first author of
this paper). Software visualization tools depend on the
data extracted from parsers and tools such as these. A
parser that is simple to understand, simple to expand
and simple to extend is as crucial as the software
visualization tools. We hope that the description of our
experiences using public domain tools as part of a
research prototype will be of benefit to other
researchers interested in pursuing a similar approach.

There are many reverse engineering and
reengineering tools in development. Closer
collaborations between research groups will lead to
better tools in shorter periods of time. To this end, we
have reimplemented SHriMP using a component-based
technology, thereby allowing other researchers to use
one or more of the SHriMP components in their own
tools. In addition, we can import other views and
editors into SHriMP as shown in Fig. 5. Using Java
beans has proved to be an effective facility to allow us
to interoperate with other tools using data, control and
presentation integration techniques. This ability to
integrate gives us the capability to innovate and create
new tools from existing tools [23].

As a concluding statement we would like to stress
that although we have focused our discussion in this
paper on how to integrate tools, the question of which
tools we should be integrating remains unanswered.

Acknowledgements

This research was supported in part by CSER,
NSERC, IBM, Stanford University, the University of
Victoria, the University of Texas at Austin and the

Space and Naval Warfare Systems Center San Diego.
The content of the information does not necessarily
reflect the position or the policy of any of the
universities nor the US or Canadian government and no
official endorsement should be inferred.

References

1. A. Wasserman. Tool Integration in Software
Engineering Environments. In F. Long (ed.)
Software Engineering Environments, International
Workshop on Environments Proceedings, Lecture
Notes in Computer Science, No. 467, pp. 137-149,
Springer-Verlag, Sep. 1989.

2. M.-A. Storey, K. Wong, F. Fracchia and H.
Müller. On Integrating Visualization Techniques
for Effective Software Exploration. In Proc. of the
InfoVis’1997, pages 38-45, Phoenix, USA, 1997.

3. M.-A.Storey and H.A. Müller. Manipulating and
Documenting Software Structures using SHriMP
Views. In Proceedings of the 1995 International
Conference on Software Maintenance (ICSM ’95),
Opio (Nice), France, pp. 275-284, October 1995.

4. J. Wu and M.-A. Storey. A Multi-Perspective
Software Visualization Environment. In Proc. of
CASCON'2000, November 2000.

5. P. Finnigan, et al. The Software Bookshelf. IBM
Systems Journal, Vol. 36, No. 4, pp. 564-593,
Nov. 1997.

6. H.A. Müller and K. Klashinski. Rigi-A System for
Programming-in-the-large, IEEE International
Conference on Software Engineering (ICSE),
Raffles City, Singapore, pp. 80-86, April 1988.

7. T. Systa. Static and Dynamic Reverse Engineering
Techniques for Java Software Systems, Ph.D.
Thesis, Tampere University, Finland, May 2000.

8. R. Kazman and J. Carriere. Playing Detective:
Reconstructing Software Architecture from
Available Evidence. Journal of Automated
Software Engineering, Vol. 6, No. 2, pp. 107-138,
April 1999.

9. R. Koschke, Atomic Architectural Component
Recovery for Program Understanding and
Evolution, Ph.D. Thesis, Institute for Computer
Science, University of Stuttgart, 2000.

10. Sun Microsystems. JavaBeans API specification,
Version 1.01, http://java.sun.com/beans, 1997.

11. Andersson, Marcus. JavaRE - Java Roundtrip
Engineering,
http://javare.sourceforge.net/index.php

12. S. Brodsky and T. Grose. Mastering XMI; Java
Programming with the XMI Toolkit, XML and
UML, John Wiley, 2001.

13. T. Quatrani. Visual Modeling with Rational Rose

and UML, Addison-Wesley, 1998.
14. K. Wong. Rigi User’s Manual. Department of

Computer Science, University of Victoria, June
1998.

15. Javasrc: An HTML Java Cross Reference Tool,
http://home.austin.rr.com/kjohnston/javasrc.htm

16. Sun Microsystems. Javadoc Tool Home Page,
http://java.sun.com/j2se/javadoc/index.html

17. K. Walrath and M. Campione. The JFC Swing
Tutorial: A Guide for Constructing GUIs,
Addison-Wesley, 1999.

18. W. Grosso, H. Eriksson, R. Fergerson, J. Gennari,
S. Tu and M. Musen. Knowledge Modeling at the
Millenium (The Design and Evolution of Protégé-
2000), Stanford University.

19. N. F. Noy, R. W. Fergerson, and M. A. Musen.
The Knowledge Model of Protégé-2000:
Combining Interoperability and Flexibility.
International Conference on Knowledge
Engineering and Knowledge Management (EKAW
'2000), Juan-les-Pins, France, 2000.

20. M.-A. Storey, et al. On Designing an Experiment
to Evaluate a Reverse Engineering Tool. In Proc.
of WCRE’96, pages 31-40, Monterey, USA, Nov
1996.

21. Holt, A. Winter, A. Schürr, S. Sim. GXL:
Towards a Standard Exchange Format in
Proceedings of WCRE 2000 - 7th Working
Conference on Reverse Engineering, November,
23 - 25, 2000, Brisbane, Queensland, Australia,
2000.

22. ANTLR Complete Language Solutions,
http://www.antlr.org/.

23. J. Wu. Integrating Techniques for Software
Visualization, M.Sc. Thesis, Department of
Computer Science, University of Victoria, August
2000.

