

A Structured Demonstration of
Program Comprehension Tools

Susan Elliott Sim
Dept. of Computer Science

University of Toronto
10 Kings College Rd, Toronto

ON, Canada M5S 3G4
+1 (416) 978 4158

simsuz@cs.utoronto.ca

Margaret-Anne D. Storey
Dept. of Computer Science

University of Victoria
PO Box 3055 STN CSC

Victoria, BC Canada V8W 3P6
+1 (250) 721 8796
mstorey@uvic.ca

Abstract
This paper describes a structured tool demonstration, a
hybrid evaluation technique that combines elements from
experiments, case studies, and technology
demonstrations. Developers of program understanding
tools were invited to bring their tools to a common
location to participate in a scenario with a common
subject system. Working simultaneously, the tool teams
were given reverse engineering tasks and maintenance
tasks to complete on an unfamiliar subject system.
Observers were assigned to each team to find out how
useful the observed program comprehension tool would
be in an industrial setting. The demonstration was
followed by a workshop panel where the development
teams and the observers presented their results and
findings from this experience.

Keywords
Empirical study, program comprehension, tool evaluation.

1. Introduction
During the past decade, many tools have been developed
both in industry and research to support reverse
engineering and program understanding. There is no
doubt that better tools would have a huge impact
economically, as the pressure to rapidly evolve and
develop software systems increases. Unfortunately, few
tools have achieved widespread acceptance in industry.
One way to remedy this slow technology transfer is to
undertake tool evaluations. These evaluations are done
not only to assess the applicability of tools, but also to
help improve them and to identify further requirements.

Unfortunately, the evaluations in the literature tend to be
ad hoc at best.[15] Software tools are rarely evaluated in
a formal way by users, and when they are evaluated, it is
for a short time by people who do not have training or
experience with the tool.[11, 13, 21, 22] Too often
potential users base their opinions of the tool on
superficial factors such as appearance, ease of learning,

and number of features, rather than factors that are more
important in the long run such as ease of use, flexibility,
and scalability. Evaluations based on case studies, such
as applying a particular tool to a subject system are
informative but the results are difficult to generalize.[9,
12, 14]

Although program comprehension tools share the
common goal of simplifying the task of understanding
large bodies of source code, these tools differ at many
levels: from their appearance to technical details to their
philosophical approach. These differences and their
relative strengths and weaknesses do not become apparent
until the tools are seen side-by-side. Opportunities to see
different tools perform the same tasks are highly
illuminating. Some authors have compared tools
independently or with colleagues.[8, 10, 17, 24]
Chikofsky organized a Reverse Engineering
Demonstration Project where researchers were invited to
use their tools to analyze the WELTAB III Election
System.[4]

With this in mind, the authors of this paper designed a
structured tool demonstration where tool builders were
invited to demonstrate their tools in a live setting. The
idea was for the tool developers to apply their own tool to
a common software system. Software tools that provide
visualization and exploration facilities for program
understanding were selected to participate in the
demonstration. Working simultaneously, the tool teams
were given reverse engineering tasks and maintenance
tasks to complete on the subject system. Industrial
observers were assigned to each team to learn how to use
the program comprehension tool. They were asked to
assess if the tool would be useful for their own
development team in industry.

The research contributions of this work are threefold.
First, they establish a benchmark that can be used to
evaluate reverse engineering tools. Tool developers who
use the xfig 3.2.1 structured demonstration can compare
their results with those from previous participants.

S
te
th
fo
n
C
k
re

T
C
c
g
fi
w
p
o
h

T
S
o
p
in
a
S
S
in
o
w

Tool

Description Languages Operating

Systems
Lemma,

IBM RTP

• displays software structure and code statements are
various levels of abstraction

• source code searching, navigation, code viewing, calling
diagrams and control flow graphs

C/C++, Java,
Fortran, Cobol,

PL/I, Pascal,
Rexx

Windows NT
Linux
OS/2

PBS,
U. of

Waterloo

• tool set for extracting, analyzing and visualizing software
architecture

C, C++, PL/IX Solaris
Linux

Windows
Rigi,

U. of Victoria
• graph visualization and exploration tool, with scripting

and some metrics facilities
C, C++, Cobol,

PL/IX
UNIX
Linux

Windows
TkSee,

U. of Ottawa
• source code searching tool with a GUI for very large

software systems
• history and task management capabilities

C, Pascal,
Assembler

Linux

UNIX Tools
(Red Hack)

• vi/emacs
• compiler, debugger, profiler
• grep

C,
Fortran,
others

UNIX

Visual Age
C++,
IBM

• a repository-based IDE with incremental compiler
• includes editor, compiler, search capabilities, class

browser

C++ Windows NT
AIX

Table 1: Summary of Tool Characteristics

econd, they present a technique for combining usability
sting with benchmarking to provide further evidence on
e applicability of tools. Third, the materials developed
r a structured demonstration encapsulate the knowledge

ecessary to perform an empirical tool evaluation.
onsequently, it will be easier for someone with little
nowledge of experimental design to conduct a
asonable study.

he demonstration was held as part of a workshop at
ASCON99, an annual Canadian software technology
onference that brings together researchers, industry and
overnment.[1] The goal of the demonstration was not to
nd a winner, but to help researchers in this field learn
hich aspects of the studied tools would be useful for
articular tasks. Given the differences in how the tools
perate, comparing tools along a single dimension would
ave been difficult, if not impossible.

he remainder of the paper is organized as follows:
ection 2 outlines our objectives and reasons for
rganizing this demonstration. Section 3 describes the
articipating tools, the format of the demonstration, the
dustrial observers assigned to the teams, and the

ssigned reverse engineering and maintenance tasks.
ection 4 describes the results of the assigned tasks.
ection 5 reviews some of the observations made by the
dustrial observers and the workshop chairs (the authors

f this paper). Section 6 discusses the outcomes of the
orkshop and outlines future work.

2. Objectives
The overall idea behind this workshop was to provide a
common playing field for tool builders to demonstrate
their tools by having experienced users apply them in a
live setting to an example software system. We wanted to
capture the entire experience, i.e. observe each team
receiving the subject system’s source code and
documentation right through to when the team used their
tool to complete the assigned tasks.

By demonstrating the tools in a structured fashion, we
could observe expert programmers and expert users using
the tools. A drawback with other user studies is that it
can be difficult to find expert users and it is impractical to
expect users to spend a lot of time learning a tool for the
sake of participating in a study. Furthermore, by
assigning realistic tasks on an actual software system, this
helped us consider ease of use, flexibility and capability
rather than focusing solely on usability. It also allowed us
to consider tool usefulness from the particular task
perspectives of program comprehension and software
maintenance.

For the tool developer participants, we expected that this
demonstration would provide them with insights into their
own tools, as well as enable firsthand viewing of other
approaches being developed to provide support for the
same tasks. We strove to give the tools an opportunity to
excel within the structure of the demonstration, by
assigning a variety of tasks. The subject system assigned
was a novel experience for the development teams.

The demonstration was public; conference participants
were invited to observe how the tools were being
deployed for the assigned tasks. Teams were requested to
have at least one representative available to explain their
tools and methodology.

3. The Structured Demonstration
This section of the paper describes the participating tools,
the format of the demonstration, the observers assigned to
the teams, and the assigned tasks.

3.1 Participating tools
Five software development teams were invited to
participate in the demonstration:

• Lemma, IBM RTP [23]
• PBS, University of Waterloo [3, 16]
• Rigi, University of Victoria [5, 16]
• TkSee, University of Ottowa [19]
• Visual Age C++, IBM Toronto Lab [6]

A sixth team of software developers (Red Hack) used a
set of UNIX tools to solve the same set of tasks. A short
description of the tools and other relevant characteristics
can be found in Table 1. The team members are listed in
Table 2. With the exception of TkSee, all the teams
consisted of individuals who had experience with
software development in C and their respective tools.
TkSee had one team member who was not an experienced
tool user.

3.2 Format
The workshop consisted of two phases. In the first phase
the tool development teams demonstrated their tools in a
live setting by applying their tools to a subject software
system. We tried to find a subject system that was written
in a programming language that was common to all the
teams on an operating system that everyone could use.
We selected the open source xfig drawing package, which
runs on a variety of UNIX operating systems and is
written in ANSI C consisting of approx 50,000 LOC.[7]

We recommended that teams consist of three members
and collaborate using only one computer. However, the
Lemma team had only one individual and the Rigi team
made use of additional computers to fix a bug in their
parsing tool. The teams were given the source code and
handbooks shortly after 9am and were asked to complete
their work by 5pm.

The six teams were presented with the following scenario:

xfig is a drawing application that runs on a variety
of UNIX platforms. The current version is 3.2.1
and consists of about 50 000 lines of ANSI C. The
old xfig team and manager quit the xfig project to
join a start-up company.

You have been assigned, along with some of your
colleagues, to rescue the future development of
the xfig application. You are placed under a new
manager, a recent MBA graduate, who is
impressed that you are going to use some fancy
tools to get the new team up to speed.

Tool

Team Observer

Lemma,
IBM RTP

Robert Mays—senior software developer Jeremy Broughton—IBM, DB2
Development Environment and Build
Support

PBS,
U of Waterloo

John Tran—UofW graduate student
Thomas Parry—UofW graduate student
Eric Lee—UofW graduate student

Ryan Chase—IBM, DB2 UDB
Administration Tools

Rigi,
U. of Victoria

Johannes Martin—UofV graduate student
Bruce Winter—UofV graduate student
Kenny Work—U of Alberta faculty

Not available due to illness

TkSee,
U. of Ottawa

Tim Lethbridge- UofO faculty
Paul Holden—UofO undergraduate
Sonia Vohra—UofO undergraduate

Jeff Michaud—UofV graduate student with
previous industry experience

UNIX Tools

Piotr Kaminski—UofV graduate student
Arthur Tateishi—Shelty Systems, consultant
Andrew Walenstein—SFU graduate student

Not applicable

Visual Age C++,
IBM

David McKnight—software developers
Cindy Nie—software developers
Jeff Turnham—software developers

Not applicable

Table 2: Characteristics of Participants

The first thing the new manager would like you to
do is to use your tool(s) to create some
documentation that would summarize the main
structures and architecture of the xfig application.
The manager would also like you to explore how
you would go about implementing some of the
changes that were identified in the inherited
"TODO" list.

The scenario also contained a set of assigned tasks.
These tasks were described in a handbook that also
reviewed procedures to be followed throughout the day
(see Section 3.4).

3.3 Observers
Impartial observers (all of whom had experience as
software developers) were assigned to the teams to
observe how each of the tools were used to solve the
tasks. We did not recruit an observer for the UNIX Tools
team as these tools are already widely used in industry.
Unfortunately, two of the recruited observers were unable
to attend due to work issues or illness. We were able to
assign a graduate student to one team but we were not
able to find an observer for the Rigi team. The observers
and their backgrounds are listed in Table 2.

The observers were to act as "apprentices" with the goal
of trying to develop a mastery of the tools over the course
of the day. This experience allowed them to determine
how a particular tool set could be used in their work as
software developers. We asked the observers to take notes
so that they could report on their experiences during the
workshop panel. We briefed each of the observers before
the demonstration and gave them an observer's handbook
to guide them in their task1. During this phase workshop
attendees were also invited to drop by and observe the
tool developers as they progressed.

3.4 The assigned tasks
We used two principles in selecting the tasks for the
structured demonstration. We wanted the tasks to be
representative of those a software developer would face in
his or her daily work. These were presented as problems,
not as prescriptions for how the tools ought to be used.
For example, most managers are more likely to ask people
to repair a defect or add a feature, rather than perform
data flow analysis or slicing. We also wanted the tasks to
provide opportunities for the researchers to demonstrate
the strengths of their tools. Consequently, we included
tasks that required the teams to look at the subject system
in different ways.

1 A copy of the handbooks and other materials used in the
demonstration are available at the workshop web site. [2]

We assigned two reverse engineering tasks and three
maintenance tasks. The teams were required to complete
all the reverse engineering tasks and at least one of the
maintenance tasks. Each task had a deliverable that the
teams were required to hand in. The following task
descriptions are taken from the handbook given to the
developer teams.

3.4.1 Reverse engineering Tasks
Q1.1 Documentation
Provide a textual and/or graphical summary of how the
xfig source code is organized. This documentation should
provide the manager with an overview of the system, and
may include a call graph, subsystem decomposition,
description of the main data and file structures or any
other appropriate information. Use whatever format you
think is appropriate, such as text files, HTML, Word
documents, graphics, etc.

Q1.2 Evaluate the structure of the application.
Your manager would like you to form an opinion on the
structure of the xfig program. In particular, you should
answer the following questions:

• Was it well-designed initially?
• Do you think the original design is still intact?
• How difficult will it be to maintain and modify?
• Are there some modules that are unnecessarily

complex?
Are there any GOTO's? If so, how many, what

changes would need to be made to remove them?

3.4.2 Maintenance Tasks
These tasks were extracted from the xfig’s TODO file.
The teams were instructed to outline changes required to
complete the task, but they were not asked to change the
code.

Q2.1 Modify the existing command panel.
The buttons in the command panel (i.e. the tool bar) at the
top of the window are somewhat unconventional. For
example, the tool bar should be more consistent with
those in other graphical user interfaces. The headings
"File", "Edit", and "View" should be left justified and the
"Help" menu item should be right justified. Also, the
buttons in the command panel should be re-arranged as
follows:

File Edit View Help
New
Load/Merge
Save
Save As
Export
Print
Exit

Undo
Paste
Find
Replace
Spell Check

Landscape
Portrait
Redraw

Xfig HTML
Reference
Xfig tutorial in pdf
Xfig man pages in
pdf
About Xfig

Q2.2 Add a new method for specifying arcs.
Currently, arcs are created by specifying three points (you
may want to run the program to try this out), which are
then used to create a spline curve. Add a feature that
allows a user to draw an arc by clicking on the centre of a
circle and then selecting two points on the circumference,
i.e. by specifying a radius and angle. Explain the approach
you would take to implement this new feature.

Q2.3 Bug fix: Loading library objects.
Loading objects from a library causes the program to
crash. This error occurs when the user attempts to load a
library object using the bookshelf icon on the left-hand
side of the screen. When you click on this icon, a dialog
box opens that allows you to select a Library and an
object to load. This sequence of steps will result in a
"Segmentation Fault" error.

In addition, we asked the teams to consider the following
questions which they would need to address in their
presentations:

• How long did it take you to read the source code
into your tool?

• What difficulties did you encounter with your
tool? Did it crash? Any other surprises?

• How long did you spend on the required tasks?
• What kind of documentation did you create?
• Which maintenance tasks did you do?
• How long did each of them take?

The next section in this paper provides highlights of the
results provided by the teams in the deliverables.

4. Results
For each of the assigned tasks the teams had to hand in a
deliverable that included a description of their solutions.
This section describes the documentation and answers to
the tasks that the teams provided. A table in the
Appendix provides a more detailed summary. The
complete results as submitted by the teams, as well as the
source code for xfig, can be found at the website for the
workshop. [2]

The Visual Age team was unable to complete the tasks
because xfig is written in ANSI C and their IDE works
with only ANSI C++. During the structured
demonstration, they and the organizers learned that ANSI
C++ is not a superset of ANSI C. This was unfortunate
because this hampered their ability to participate.
However, during the second phase of the workshop, the
VisualAge team demonstrated how they would have
solved the tasks. This presentation is also available at the
workshop website.

4.1 Reverse engineering Tasks
Q1.1 Documentation
In general, the teams produced rather terse
documentation. Red Hack and TkSee provided 3
paragraphs. Rigi provided one diagram. The PBS team
provided about 4 pages, mostly consisting of diagrams.
The Lemma team provided 8 pages of documentation,
which included call graphs and code excerpts. The Red
Hack team explained the brevity of their documentation
for the task by arguing that since they didn’t need it to
complete the maintenance tasks then future maintainers
would probably not require it either.

Q1.2 Evaluate the structure of the application.
The teams had varying differences of opinion on the
architecture of the system, the quality of the code, and
even the number of GOTO’s in the program. All the
teams used file name prefixes as the basis for clustering
the files into five subsystems, corresponding to the letters,
d, e, f, u, and w. However, they had different
interpretations of what the prefixes meant. Lemma
produced a second clustering based on the functional units
in the user interface. Although the Red Hack team did not
explicitly specify this clustering, they did criticize it in
their design assessment. The PBS group pointed out that
the subsystems formed using file prefixes contained more
function calls and variable references to files outside the
subsystem than to files within it.

In terms of quality, PBS said the subsystems exhibited
low cohesion and high coupling, while Lemma said they
exhibited low coupling and high cohesion. The PBS team
thought that the original design had eroded since its
inception, but the Rigi team thought that the design had
improved over subsequent releases. Rigi also noted that
some modules were unnecessarily complex. All the
teams had complaints about the code, such as the lack of
comments, function pointer usage, cloning, and
duplicated names, but they did not find the code difficult
to modify.

Rigi, Lemma, and Red Hack found 5 GOTO’s, PBS found
4 and TkSee found 3. Three of the teams gave
suggestions for how to remove all of them. The Red
Hack team recommended removing only one, and the
Rigi team suggested leaving them in the code.

4.2 Maintenance Tasks
The solutions given to the maintenance tasks were fairly
consistent across the groups. While the groups were
required to do at least one task, most did all or almost all
of the maintenance tasks.

Q2.1 Modify the existing command panel.
The groups gave the same basic answer for this task:
change an array containing function pointers in
w_cmdpanel.c. Although they were asked to simply list
the files or functions that were involved in the change, the
teams provided answers with varying levels of detail and
thoroughness. Some listed only the file names, while
others explained in detail how to make the change.

Q2.2 Add a new method for specifying arcs.
There were two approaches to solving this task. The first
approach involved modifying the mode panel and adding
code in some new files. The second approach involved
modifying existing functions to implement the new
behaviour. Red Hack, PBS, and Lemma used the first
approach, while the other teams used the second
approach.

Q2.3 Bug fix: Loading library objects.
This task was not completed by all of the teams and there
was more variability in the solutions given. TkSee listed
the files to change, but did not explain how or why to
change these files. Lemma used static analysis to find a
number of possible causes. Red Hack found a couple of
ways to stop the program crashes, but they were
unsatisfied with those solutions because they could not
understand why those changes worked. They reverse
engineered xfig 3.2.2 to find the official solution and the
root cause of the problem. Subsequently, they repaired
the defect by setting a variable to 17 instead of 55.

5. Observations
This section of the paper details some of the observations
made by the observers and by the workshop chairs during
the structured demonstration. First, some general
observations are offered, followed by some comments
about each of the specific tools.

As is often the case with demonstrations, some things did
not go according to plan. The day started late due to
missing observers and minor troubles with library
compatibility within the operating system. The teams, for
the most part, completed the tasks within the allotted time
(9am to 5pm), but some teams took longer than this to
finish writing up their results. As organizers, we had our
share of glitches. We had observers who arrived late or
not at all and Visual Age did not have an operating
system installed on the computer assigned to them.

The biggest difficulty for some teams was parsing the
source code (a requirement for all tools except the UNIX
tools). Although Lemma only spent 20 minutes parsing
and loading the subject system, a bug in their tool slowed
their progress initially. The others had to spend several

hours modifying their parsers or customizing scripts to
load the software.

The observers had many comments about their respective
tools, which they presented during the workshop. While
these comments were generally positive, there were some
criticisms as well. The observer for the PBS team
commented that the tool was useful for learning about the
general architecture of the subject system as they were
able to create diagrams that fit well with his mental image
of the system. However, he found that the tool was not
useful for the maintenance tasks. For these, the PBS team
used basic UNIX tools, such as vim and grep. The
observer concluded that although PBS does have some
strengths, it is not a tool that could be easily integrated
into his daily (maintenance) work. These observations
are also borne out by the team’s results. The software
landscape diagrams allowed them to ask questions about
the clustering that the other teams did not. On the other
hand, they had to use alternative tools to complete the
maintenance tasks.

The Rigi team, unfortunately, did not have an industrial
observer, but we noted that they too had to use other tools
to complete the maintenance tasks. Like PBS, they spent
a long time parsing the subject system in order to display
a visualization of xfig. But once they loaded the system,
they had diagrams that could easily be used as
documentation.

The TkSee observer expressed some frustration with
difficulties parsing the system, but once the code was
loaded into TkSee, he was very impressed with the tool.
In particular, he liked the advanced searching
functionality, search history and the to-do list
management feature. However, he noted the lack of
high-level visualization capabilities. The TkSee team
attempted all the maintenance tasks. The observer felt
this tool would be useful for his daily work but he
expressed some doubts as to whether it would scale as it
seemed a little slow at times.

The Lemma observer was very impressed by the
comprehensiveness of the searching options in Lemma.
While Lemma did provide some diagrams of call graphs
and control flow, he was disappointed by the lack of high-
level visualization. The Lemma team completed all the
maintenance tasks. The Lemma observer wanted to
participate in the structured demonstration so that he
could determine whether his development team should
adopt this tool. He reported that he would be
recommending acceptance.

Using the basic UNIX tools, the Red Hack team was able
to very quickly complete the assigned maintenance tasks.
Although it was not required, they modified the source

code and compiled a new executable. However, they
produced very little documentation describing the system.

6. Discussion
In this section we present our own inferences based on the
results and observations of the structured demonstration.
These points are general in nature spanning several tools
and the evaluation experience as a whole. This structured
demonstration provides lessons for tool designers,
potential tool users, and researchers who plan to design
similar tool evaluations.

6.1 Lessons for Tool Designers
Everyone used grep, either at the command-line or built
into their tool, which has interesting implications for us as
researchers. As the Red Hack team noted in their
presentation, UNIX tools already provide a great deal of
support to programmers for a variety of programming
languages in the form of editors, compilers, debuggers,
profilers, and cross referencers. There are two issues
here. One, these widely-available, popular tools represent
a minimum standard which we must improve on to
convince software developers and maintainers to use new
tools. Two, industry is already able to accomplish a great
deal using the tools they already have. Companies
regularly release new programs that consist of hundreds
of thousands of lines of source code with sophisticated
functionality and we should not underestimate what they
can tell us about designing successful software tools.

In the structured demonstration, the tools fell into three
categories: visualization, advanced search, and code
creation. Although this categorization is based on
features and functionality, tools from a given category
produced similar results. PBS and Rigi were designed for
creating graph-based visual representations of software
systems based on file clustering. Both teams focused on
the same tasks and used diagrams in their documentation
of the subject system. TkSee and Lemma had advanced
features for searching and tracing through the source
code. They both had grep-like functionality included in
their tools. The observers for both teams were impressed
with the functionality and were willing to use them in
their daily work, but were concerned about the lack of
high-level views. Finally, Visual Age and UNIX tools are
development environments, intended to be used in the
creation of new code. The assigned tasks were selected to
provide each tool an opportunity to display its key
features. We had expected the visualization tools to do
better on the reverse engineering tasks and the search
tools to do better on the maintenance tasks. These
expectations were confirmed, both by the performance of
the tools and by observer comments.

While code creation tools are fundamental components of
programming environments, this is not yet the case for
visualization and advanced searching tools. Visualization
and searching tools complement each other; the
shortcomings of the visualization tools are matched by the
strengths of the search tools, and vice versa.[18]
Furthermore, these tools represent different approaches to
dealing with large software systems. One approach is to
make the code more manageable by supporting searching.
The other approach is to abstract away details to make the
system more manageable. Within research, it is important
to explore different approaches to solving a difficult
problem. Moreover, it is worthwhile to test a particular
approach with multiple tools. During the panel discussion
both the TkSee and Lemma teams identified elements of
the other tools that they could use.

As a discipline matures there comes a point when the
proliferation of tools is no longer productive. At this
point it becomes more important to synthesize the lessons
learned from separate explorations. Tool interoperability
can be achieved either through a standard interchange
format or APIs (application program interfaces) that allow
programs to call each other directly. Such mechanisms
would allow, for example, an advanced searching tool to
leverage the capabilities of a visualization tool. Parsing
was another problem that was common across the tools.
A standard interchange format or API would allow tool
designers to use a best of breed approach in selecting a
parser rather than building a parser from scratch.

6.2 Lessons for Tool Users
When selecting a tool for program comprehension it is
important to know what the tool will be used for. If the
tool is to be used as part of a reverse engineering effort,
where large-scale understanding is required, a
visualization tool that provides architectural diagrams
may be more appropriate. If the tool is to be used in day-
to-day software maintenance with extensive effort
focused on specific areas, then a searching tool may be
more suitable. However, there are many subtle differences
to be considered. For example, although TkSee and
Lemma are both searching tools, TkSee has features to
support exploration of unfamiliar code, whereas Lemma
supports control flow diagramming features.

Software developers have a sophisticated set of skills that
have been acquired over many years. These skills include
knowledge of the problem domain, expertise in
programming and experience within a working
environment. It is not surprising that this background will
influence their acceptance of a new tool. A new tool has
a much better chance of being adopted permanently if it
works with and complements existing tools. For example,
a UNIX programmer who has been working with
command-line tools for many years is likely to be biased

against an integrated development environment with a
feature-rich graphical user interface. However, matching
interface styles by itself may not be sufficient. For
example, the Red Hack team consisted of three people
who had UNIX experience; one of them used vi and the
other two used emacs, but preferred working with
different highlighting modes.

There is a cost to installing and learning a new tool.
Consequently, a task needs to be sufficiently large,
difficult, or long-lived that the user can amortize the time
investment and realize the benefits. There are other costs
that are not immediately obvious. Learning to use the
tool involves more than just learning the interface, the
user also needs to understand the fundamental concepts
underlying the tool. For example, PBS and Rigi can be
used to depict any type of graph with attributes. The
designers of these tools use them to construct particular
views of a software system but the reverse engineering
processes they follow are not necessarily described in the
documentation. Another cost often not considered is that
the tool may need to be tailored to work with the local
environment and subject system. The modifications may
involve changing the parser, writing scripts to automate
tasks, or writing utilities to add information to a
repository.

6.3 Lessons for Organizers of Evaluations
The structured demonstration provided a public
opportunity for researchers and developers to demonstrate
their tools on a common subject system using prescribed
tasks. We developed the structured tool demonstration to
overcome some of the flaws in other tool evaluation
methods such as case studies, technology demonstrations,
and experiments. It allowed us to see expert users and
expert programmers using the tools on a medium-sized
software system on realistic tasks.

The final design that we used in the tool demonstration
was quite complex. It had many elements: required tasks,
optional tasks, deliverables, observers, presentations and a
panel. There are some things we could have done
differently. Pilot testing is a very important stage in any
experimental design, and we unfortunately overlooked it.
A pilot test would have indicated that we should have
included another task that was more difficult to complete
in order to have a set of questions that was maximally
discriminating. More inter-tool observations, that is,
observations that compared the tools, in addition to
having assigned observers to individual teams would have
been helpful. We did some time-stamped observations,
which were invaluable, but they were a last-minute idea.

There was a general tendency to create very terse
documentation, both for task 1.1 and for the exercise as a
whole. Most groups handed in a total of 3 pages. Lemma

was a notable outlier, producing 24 pages, including
diagrams and code excerpts. It is unclear why this
occurred. There may have been a general reluctance to
write documentation, or the participants may have felt
constrained by the time limits or were unaccustomed to
the artificial nature of the deliverables. In hindsight, we
probably should have given more explicit instructions for
documentation or asked for more detailed deliverables.

Another possibility is that the groups may have found the
maintenance tasks to be more appealing. After providing
a 3-paragraph description of the subject system, the Red
Hack team wrote “We headed straight for the interesting
tasks.” Despite the fact that the teams were required to do
only one of the maintenance tasks, they opted to do all or
almost all of them. In general, the teams began with the
maintenance tasks and left the documentation tasks till the
end. One possible explanation for this is that there is a
general tendency by programmers to avoid writing
documentation. Moreover, by performing the
maintenance tasks first, this allowed them to glean
information about the system that they later used to
complete the reverse engineering tasks. This approach is
consistent with Singer and Lethbridge’s model of just-in-
time program comprehension. [19, 20]

During the panel portion of the workshop, a participant
recommended that a single day wasn’t really enough time
for the additional capabilities of the research tools to
prove themselves and to justify the initial costs of loading
the subject system. We would agree with this point and
say that the design of the workshop is not perfect.

Despite some criticisms and imperfections, there were a
lot of successes. One benefit that was not anticipated was
the community building that occurred over the three days.
We deliberately did not give any instructions on
collaboration, neither condoning nor forbidding it. At
first, the teams were quite competitive, but when they
realized that they were having similar problems they
began to work together. However, this sharing did not
extend to comparing results as is evident in section 4 and
in the Appendix. During the workshop presentations
there was a great deal of laughter as the participants
looked back at their struggles. The structured
demonstration allowed them to see the flaws in each
other’s tools fostering a feeling of familiarity that paper
presentations and normal technology demonstrations
normally do not.

Based on the success of this event we are planning
another structured demonstration. This one will focus on
parsing tools, because parsing was so problematic for
many of the teams in this demonstration. We feel that
such a demonstration would have benefits not only for the
direct participants, but also to the wider community.

Acknowledgements
We thank the tool development teams and observers for
participating in the structured demonstration. We also
thank the CASCON organizers from IBM, in particular
Homy Dayani-Fard, for their efforts to accommodate our
many requests. This work is being supported by IBM
Canada Ltd., sponsored by CSER, and funded by NSERC.
Our thanks also to Mechthild Maczewski, Bruce Phillips
and the anonymous reviewers for their comments.

References
[1] “CASCON Home page" <Available at

http://www.cas.ibm.com/cascon>.
[2] “A Collective Demonstration of Program

Comprehension Tools." Available at
<http://www.csr.uvic.ca/cascon99>.

[3] “The PBS Home Page." <Available at
http://www.turing.toronto.edu/pbs>.

[4] “Reverse Engineering Demonstration Project
Home Page". <Available at
http://pathbridge.net/reproject/cfp2.htm>.

[5] “Rigi Group Home Page." Available at
<http://www.rigi.csc.uvic.ca>.

[6] “Visual Age C++ Home Page." Available at
<http://www.software.ibm.com/ad/visualage_c+
+/>.

[7] “Xfig Home page." Available at
<http://www.xfig.org>.

[8] M. N. Armstrong and C. Trudeau, “Evaluating
Architectural Extractors,” presented at Working
Conference on Reverse Engineering, Honolulu,
HI, 1998.

[9] M. Balazinska, E. Merlo, M. Dagenais, B.
Lagüe, and K. Kontogiannis, “Partial Redesign
of Java Software Systems Based on Clone
Analysis,” presented at Sixth Working
Conference on Reverse Engineering, Atlanta,
GA, 1999.

[10] B. Bellay and H. Gall, “A Comparison of Four
Reverse Engineering Tools,” presented at 4th
Working Conferences on Reverse Engineering
(WCRE '97), Amsterdam, The Netherlands,
1997.

[11] R. W. Bowdidge and W. G. Griswold, “How
Software Tools Organize Programmer Behavior
During the Task of Data Encapsulation,”
Empirical Software Engineering, vol. 2, pp. 221-
267, 1997.

[12] I. T. Bowman, R. C. Holt, and N. V. Brewster.,
“Linux as a Case Study: Its Extracted Software
Architecture,” presented at International
Conference on Software Engineering, Los
Angeles, CA, 1999.

[13] K. Brade, M. Guzdial, M. Steckel, and E.
Soloway, “Whorf: A Visualization Tool for

Software Maintenance,” presented at 1992 IEEE
Workshop on Visual Languages, Seattle, WA,
1992.

[14] T. Bruckhaus, N. H. Madhavji, I. Janssen, and J.
Henshaw, “The Impact of Tools on Software
Productivity,” IEEE Software, pp. 29-38, 1996.

[15] B. Curtis, “By the Way, Did Anyone Study Any
Real Programmers?,” presented at First
Workshop on Empirical Studies of Programmers,
Washington, D.C., 1986.

[16] P. J. Finnigan, R. C. Holt, S. Kerr, K.
Kontogiannis, H. A. Müller, J. Mylopoulos, S.
G. Perelgut, M. Stanley, and K. Wong, “The
software bookshelf,” IBM Systems Journal, vol.
36, pp. 564-593, 1997.

[17] G. C. Murphy, D. Notkin, W. G. Griswold, and
E. S. Lan, “An Empirical Study of Static Call
Graph Extractors,” ACM Transactions on
Software Engineering and Methodology, vol. 7,
pp. 158-191, 1998.

[18] S. E. Sim, C. L. A. Clarke, R. C. Holt, and A. M.
Cox, “Browsing and Searching Software
Architectures,” presented at International
Conference on Software Maintenance, Oxford,
England, 1999.

[19] J. Singer, T. Lethbridge, and N. Vinson, “An
Examination of Software Engineering Work
Practices,” presented at CASCON '97, Toronto,
Canada, 1997.

[20] J. Singer and T. C. Lethbridge, “Just-In-Time
Comprehension vs. the Full-Coverage Strategy,”
presented at Workshop on Empirical Studies of
Software Maintenance, Bethesda, MD, 1998.

[21] M.-A. Storey, K. Wong, P. Fong, D. Hooper, K.
Hopkins, and H. A. Muller, “On Designing an
Experiment to Evaluate a Reverse Engineering
Tool,” presented at Working Conference on
Reverse Engineering, Monterey, CA, 1996.

[22] M.-A. Storey, K. Wong, and H. A. Muller, “How
do Program Understanding Tools Affect How
Programmers Understand Programs?,” presented
at WCRE '97, Amsterdam, Holland, 1997.

[23] A. von Mayrhauser and S. Lang, “On the Role of
Static Analysis during Software Maintenance,”
presented at International Conference on
Program Comprehension, Pittsburgh, PA, 1999.

[24] N. Wilde, S. W. Dietrich, and F. W. Calliss,
“Designing Knowledge-Based Tools for
Program Comprehension: A Comparison of
EDATS and IMCA,” University of Florida,
Technical Report SERC-TR-79-F, December
1995.

Appendix: Summary of Results
 PBS Rigi Lemma TkSee Red Hack
Total Deliverables approx. 6 pages,

incl. 6 diagrams
3 pages, incl. 1
diagram

24 pages 3 pages 3 pages

Q1.1
Documentation

approx. 4 pages
including 5
diagrams

1 diagram 8 pages, including
call graphs and code
excerpts

3 text paragraphs 3 text paragraphs

Clustering? -file name prefix:
draw, edit, file,
GUI, util

-file names and
containment
-clusters not specified

1. Functional:
cmd_panel,
mode_panel,
ind_panel
2. Components:
draw, edit, file,
update, window

-file name prefix:
drawing, events,
file, utilities,
window

-file name prefix:
drawing, edit, file,
user interface,
windows

Q1.2 Design
assessment

-low cohesion and
high coupling
-a single menu
item distributed
over several files
and subsystems

-understandable
overall, but
interdependent

-high cohesion and
low coupling
-use of global vars
not excessive

-code
uncommented, lots
of external
variables, lots of
function pointers

-duplicated function
names, cloned code,
poor naming
conventions, poor
modularization,
global state vars

Well designed
initially?

-believe it was
good

-can’t tell -can’t tell
-need to see
previous versions

-well designed and
divided according to
clustering scheme

-can’t tell

Initial design still
intact?

yes, but eroding

-original design
complex but later
changes improved
organization

-can’t tell yes yes

Difficult to
maintain and
modify?

-not bad now, but
will worsen over
time

no -reasonably easy -a little difficult no

Some modules
unnecessarily
complex?

no yes
(did not name)

no no no

GOTOs—how
many and removal

4
2 in main.c
2 in f_wrgif.c
-suggested using
flags to remove

5
-do not degrade
quality, so don’t
remove

5
2 in main.c
2 in f_wrgif.c
1 in f_readgif.c
-suggestions plus
time estimates

3
2 in f_wrgif.c
1 in f_readgif.c
-a suggestion for
each

5
-remove 1 in
main.c, leave the
rest

Q2.1 Change
command panel

-modify array in
w_cmdpanel.c
-plus other files

-modify array in
w_cmdpanel.c
-added 3 structs

-modify array in
w_cmdpanel.c
-verify calling
context

-modify array in
w_cmdpanel.c

-modify array in
w_cmdpanel.c
-plus other files

Q2.2 New method
for specifying arcs

-change
w_modepanel.c
and add new files
with functionality
according to
naming
convention

-changed existing arc
specification method

-change
w_modepanel.c
and add new files
with functionality
according to naming
convention

-changed existing
arc specification
method

-change
w_modepanel.c
and add new files
with functionality
according to naming
convention

Q2.3 Bug fix -did not complete
task—could not
crash program

-did not complete
task

-identified possible
causes

-gave long list of
files to change but
no description

-magic constant not
set correctly

	Abstract
	Keywords
	Introduction
	Objectives
	The Structured Demonstration
	Participating tools
	Format
	Observers
	The assigned tasks
	Reverse engineering Tasks
	Maintenance Tasks

	Results
	Reverse engineering Tasks
	Maintenance Tasks

	Observations
	Discussion
	Lessons for Tool Designers
	Lessons for Tool Users
	Lessons for Organizers of Evaluations

	Acknowledgements
	References

