Analysis of Algorithms

Reading Assignment Chapter 3 (except 3.4)

Motivation

- Even though we seem to have an abundance of CPU cycles and memory units at our finger tips, program speed and memory use matters when processing large amounts of data
- The running time of a program depends on
 - \measuredangle Algorithms and data structures
 - Z Programming language
 - ∠ Compiler/interpreter
 - ∠ Operating system
 - ∠ Processor and memory

Motivation (2)

- In algorithm analysis we are primarily interested figuring out how well an algorithm performs with respect to time and space usage regardless of all the other influences
- In other words, we fix the environment within which a program runs and try to analyze the running time independently of the environment
- The goal is to compare the time and space complexity of different algorithms for a given input size

Learning Objectives

- Estimate the running time (function) for a given algorithm
- Appreciate how the running time (function) varies with input size
- Find a measure to compare the quality of algorithms which perform the same task
- Appreciate different complexity classes
- Comparing different growth functions
- Measure running time in terms of basic operations
- Plot and compare growth curves
- Understand 'Big Oh' notation
- Compute and compare 'Big Oh' running times

Basic units

- How shall we assess and quantify the running time of a program?
 - ∠ I/O, read/writes fetches/stores
 - ∠ Comparisons (for sorting and searching)
 - ∠ Assignments
 - 🗷 Loops
 - $\not {\it \measuredangle \ } {\it Program size/amount of memory}$
 - Mumber of calculations
 - $\not { \ensuremath{ \ensuremath{$
 - \varkappa Add, sub, mul, div, sin, cos
- Search and sorting algorithms
 - $\not { \mbox{Comparisons}}$

Running time of an algorithm

- Definition
 - ✓ The running time of an algorithm is a function of the size of the input data with units such as comparisons, assignments, arithmetic operations, trigonometric operations. The running time is denoted by T(n) where n is the size of the input to the algorithm.
- Examples of running times

An example

```
a = 3*n;
cnt = 1;
while (a > 0) {
    a = a - 1;
    cnt = cnt + 1;
}
```

- Basic units
 - ∠ Assignments
- Analysis

 \ll T(n) = 2 + while loop

 \approx = 2 + x(units in loop) + 1 (x = # of iterations)

 \approx = 2 + x(3) + 1

⊭ = 3 + 9n

Linear search

```
int linearSearch(int[] a, int x) {
    int k = 0;
    while (k<a.length) {
        if (a[k] == x) return k;
            k = k + 1;
        }
}</pre>
```

- Linear search over **unsorted** array of integers
- Units: comparisons, assignments, no other operations
- Size of the problems

 « n = a.length (size of array)
- Worst-case running time

 x is not found or found at the last position

Linear search (2)

```
int linearSearch(int[] a, int x) {
    int k = 0;
    while (k<a.length) {
        if (a[k] == x) return k;
            k = k + 1;
        }
}</pre>
```

```
T(n) = initialize + while loop
= 1 + while loop
= 1 + x(3) + 1 (x = n)
= 1 + 3n + 1
= 2 + 3n linear
function
T(n) = c_1n + c_2 \text{ linear}
algorithm
```

Worst case: T(n) ~ n Best case: T(n) ~ 1 Expected case: T(n) = n/2

Binary search

```
int binarySearch(int[] a, int x) {
    int l = 0;
    int r = a.length -1;
    while (l<=r) {
        int m = (l+r)/2;
        if (a[m] == x) return m;
        else if (x < a[m]) r = m-1;
        else l = m+1;
    }
    return -1;
}</pre>
```

- Binary search over **sorted** array of integers (Phone book look up)
- Units: comparisons, assignments
- Size of the problems

 n = a.length (size of array)
- Worst case: not found

Binary search (2)

```
int binarySearch(int[] a, int x) {
    int l = 0;
    int r = a.length -1;
    while (l<=r) {
        int m = (l+r)/2;
        if (a[m] == x) return m;
        else if (x < a[m]) r = m-1;
        else l = m+1;
    }
    return -1;
}</pre>
```

```
T(n) = initialize + while loop
= 2 + while loop
= 2 + x(5) + 1 (x = log n)
= 2 + 5log n + 1
= 3 + 5log n
T(n) = c_1 log n + c_2
```

Logarithmic function

Worst case: T(n) ~ log n Best case: T(n) ~ 1 Expected case: T(n) = log n

Methodology Requirements

- We want a methodology for analyzing the running times of algorithms that
 - ✓ Takes into account all possible inputs
 - Allows us to evaluate the relative efficiency of any two algorithms in a way this is independent from the hardware and software environment
 - Can be performed by studying a high-level description of the algorithm without actually implementing it or running experiments on it

Another linear algorithm: finding maximum

- High-level description of an algorithm
- Pseudo code

Algorithm arrayMax(A,*n*):

Input: An array A storing n >= 1 integers *Output:* The maximum element in A.

```
currentMax <-- A[0]
for i <-- 1 to n - 1 do
    if currentMax < A[ i ] then currentMax <-- A[ i ]
return currentMax</pre>
```

- Worst case: T(n) ~ n
- Best case: T(n) ~ 1
- Expected case: T(n) = n/2

Formal Definition of Big-O Notation

• Definition

- \swarrow Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant n₀ = 1 such that f(n) = c?g(n) for every integer n = n₀.
- We say
 - \swarrow f(n) is order g(n)
 - \ll f(n) is *Big-Oh* of g(n)
- Visually, this says that the f(n) curve must eventually fit under the c?g(n) curve.

Measurement Example

Asymptotic time complexity

- Fundamental measure for the performance of an algorithm
- Study asymptotic growth rates
- Asymptotic
 - \measuredangle Not interested in constants
 - $\not \ll$ Not interested in small inputs

 - $\not \! \varkappa$ It essentially removes the "noise" from the running time
- Three sets of functions
- Big Omega ? (g)
- Big Theta T (g)
- Big Oh O(g)

Big-O Notation

- We simplify the function by:
 - $\not \! \varkappa$ ignoring all constant coefficients
 - \measuredangle ignoring all but the dominant term
 - the dominant term is the one that grows fastest when *n* grows

f(<i>n</i>)	O(f(n))	
0.3 <i>n</i> ² + 20 <i>n</i> + 512	O(<i>n</i> ²)	
0.0001 <i>n</i> ⁴ + 10000 <i>n</i> ²	O(<i>n</i> ⁴)	
$3^{n} + n^{2}$	O(3 ⁿ)	
$10^{n} - 5^{n} + 3^{n}$	O(10 ⁿ)	
42log ₂ n	O(log ₂ n)	
7 <i>n</i> log ₁₀ <i>n</i> + 2 <i>n</i> – 12	O(<i>n</i> log ₁₀ <i>n</i>)	
4n + 3log ₂ n	O(n)	
42	O(1)	

Complexity Classes

- When determining the Big-Oh time of a problem, we try to:

 make the bound as tight as possible

 make the function as simple as possible
- In practice, this leads to only a handful of important Big-Oh expressions

-	Complexity Class	O-notation	
-ror	Constant	O(1)	
n le	log log <i>n</i>	O(log log n)	
ast	Logarithmic	O(log <i>n</i>)	
to	Linear	O(<i>n</i>)	
sou	n log n	O(<i>n</i> log <i>n</i>)	
t co	Quadratic	O(n ²)	
dwc	Cubic	O(n ³)	
lex	Exponential	O(2 ⁿ), O(3 ⁿ),	

Famous algorithms and their complexity

Algorithm	Big O-notation		
Hash search	O(1)		
Binary search, tree search	O(log <i>n</i>)		
Linear search, list and tree traversals	O(<i>n</i>)		
Sorting, Heapsort	O(<i>n</i> log <i>n</i>)		
Bubble sort, insertion sort	O(n ²)		
Matrix multiplication	O(n ³)		
Optimal graph coloring	O(2 ⁿ), O(3 ⁿ),		

Running Time Examples

• An algorithm takes f(n) microseconds (µs) to run

n f(n)	2 (2 ¹)	16 (2 ⁴)	256 (2 ⁸)	1024 (2 ¹⁰)	1048576 (2 ²⁰)
1	1 µs	1 µs	1 µs	1 µs	1 µs
log ₂ n	1 µs	4 µs	8 µs	10 µs	20 µs
n	2 µs	16 µs	256 µs	1.02 ms	1.05 s
n log ₂ n	2 µs	64 µs	2.05 ms	10.2 ms	21 s
n ²	4 µs	256 µs	65.5 ms	1.05 s	1.8 wks
n ³	8 µs	4.1 ms	16.8 s	17.9 min	36559 yrs
2 ⁿ	4 µs	65.5 msec	3.7×10 ⁶³ yrs	5.7×10 ²⁹⁴ yrs	2.1×10 ³¹⁵⁶³⁹ yrs

Estimated lifetime of the sun: only 5×10⁹ yrs!

1 µs = 10 ⁻⁶ s	1 s = one second	1 wk = 604800 s
1 ms = 10 ⁻³ s	1 min = 60 s	1 yr = 31557600 s

Big-O Caveats

- Comparisons based on Big-O notation apply only to large problem sizes

 - ✓ for "small" problem sizes, consider the specific circumstances the algorithm will be running in
 - those constant coefficients we so casually discarded start to matter
 - run experiments on your platform, with your data, to determine
 the best algorithm (measurement and tuning)
- Carefully check whether your data fits the average case
 - $\boldsymbol{\varkappa}$ otherwise, the worst case time could be important

 - sometimes you can easily mould the data to fit an algorithm's best case