Reading Assignment
Chapter 3 (except 3.4)

Motivation _

* Even though we seem to have an abundance of CPU cycles and
memory units at our finger tips, program speed and memory use
matters when processing large amounts of data

* The running time of a program depends on
&5 Algorithms and data structures
& Programming language
& Compiler/interpreter
& Operating system
& Processor and memory

CSc 115 Analysis of Algorithms 2

Motivation (2) R

* In algorithm analysis we are primarily interested figuring out how
well an algorithm performs with respect to time and space usage
regardless of all the other influences

* In other words, we fix the environment within which a program
runs and try to analyze the running time independently of the
environment

* The goal is to compare the time and space complexity of different
algorithms for a given input size

CSc 115 Analysis of Algorithms 3

Learning Objectives

e Estimate the running time (function) for a given algorithm
e Appreciate how the running time (function) varies with input size

* Find a measure to compare the quality of algorithms which perform
the same task

e Appreciate different complexity classes

e Comparing different growth functions

* Measure running time in terms of basic operations
* Plot and compare growth curves

e Understand ‘Big Oh’ notation

e Compute and compare ‘Big Oh’ running times

CSc 115 Analysis of Algorithms

* How shall we assess and quantify the running time of a program?
& 1/0, read/writes fetches/stores
& Comparisons (for sorting and searching)
& Assignments
& Loops
& Program size/amount of memory
& Number of calculations
& Static versus dynamic memory
& Add, sub, mul, div, sin, cos
e Search and sorting algorithms
& Comparisons

CSc 115 Analysis of Algorithms 5

Running time of an algorithm -
e Definition

& The running time of an algorithm is a function of the size of the
input data with units such as comparisons, assignments,
arithmetic operations, trigonometric operations. The running
time is denoted by T(n) where n is the size of the input to the

algorithm.
e Examples of running times
& T,(n) = cyn?
& T,(n) =cn3*c,n?2*cyn + ¢y
& T,(n) = cynign + ¢4
& T,(n) =cg2"

CSc 115 Analysis of Algorithms 6

a = 3*n;
cnt = 1;
while (a > 0)
a=a - 1;
cnt = cnt + 1;
}

* Basic units
& Assignments
& Comparisions
e Analysis
& T(n) =2 + while loop
=2 + X(unitsin loop) +1 (X = # of iterations)
=2+x(3)+1
=2+3(3n) +1
=3+09n

K& &K

CSc 115 Analysis of Algorithms 7

Linear search

Int linearSearch(int[] a, int x) {

Int k = 0O;

whil e (k<a.length) {
1 f (a[k] == x) return k;
k = k + 1;

e Linear search over unsorted array of integers
e Units: comparisons, assignments, no other operations
e Size of the problems
& N = a.length (size of array)
e \Worst-case running time
&5 X 1S not found or found at the last position

CSc 115 Analysis of Algorithms

Linear search (2) _

T(n) = initialize + while loop
=1 + while loop
=1+x(3)+1 (x=n)

int linearSearch(int[] a, int x) {
int k = 0;
whil e (k<a.length) {

_ =1+3n+1
If (a[k] == x) return Kk; i
_ _ =2+3n linear
k = k + 1; :
} function
) T(n) = C;n+ ¢, linear
algorithm

Worst case: T(n) ~ n
Best case: T(n) ~ 1
Expected case: T(n) = n/2

CSc 115 Analysis of Algorithms 9

Binary search

i nt binarySearch(int[] a, int x) {
Int | = 0;
int r = a.length -1;
while (I<=r) {
int m= (|+r)/2;

If (a[n] == x) return m
else if (x <a[m) r = m1;
el se | = mtl,;

}

return -1;

* Binary search over sorted array of integers (Phone book look up)
e Units: comparisons, assignments
e Size of the problems
& n = a.length (size of array)
 Worst case: not found

CSc 115 Analysis of Algorithms

Binary search (2)

I nt binarySearch(int[] a, int x) {
int | = 0O
int r = a.length -1;
while (I<=r) {
int m= (l+r)/2;
I f (a[m == Xx) return m
else if (x <a[m) r = m1l;
else | = m+l;
}
return -1;

T(n) = initialize + while loop
= 2 + while loop
=2+x(B)+1
=2+5logn+1
=3+ 5log n

T(n) =c/jogn+c,

(x =log n)

Logarithmic function

Worst case: T(n) ~ log n
Best case: T(n) ~ 1
Expected case: T(n) = log n

CSc 115 Analysis of Algorithms

11

Methodology Requirements -

* We want a methodology for analyzing the running times of
algorithms that

& Takes into account all possible inputs

& Allows us to evaluate the relative efficiency of any two
algorithms in a way this is independent from the hardware and
software environment

& Can be performed by studying a high-level description of the
algorithm without actually implementing it or running
experiments on it

CSc 115 Analysis of Algorithms 12

Another linear algorithm: finding ma-

High-level description of an algorithm
Pseudo code

Algorithm arrayMax(A,n):
Input: An array A storing n >= 1 integers
Output: The maximum element in A.

currentMax <-- A[O]
fori<--1ton-1do

If currentMax <A[i] then currentMax <-- A[i]
return currentMax

Worst case: T(n) ~ n
Best case: T(n) ~ 1
Expected case: T(n) = n/2

CSc 115 Analysis of Algorithms 13

Formal Definition of Big-O Notation

e Definition
& Let f(n) and g(n) be functions mapping nonnegative integers to
real numbers. We say that f(n) is O(g(n)) if there is a real
constant ¢ > O and an integer constant n, =1 such that f(n) =
cY(n) for every integer n =n,,.

e We say
& T(n) is order g(n)
& T(n) is Big-Oh of g(n)
e Visually, this says that the f(n) curve must eventually fit under the
cYy(n) curve.

CSc 115 Analysis of Algorithms 14

Measurement Example _

Running times of a program

3500 -
3000 - f,(n) = 0.0008n” + 0.0032n - 0.0627 3114.9
¢ 2500 -
Q
£ 2000 -
|_
S 1500 -
£
= 1000 - f,(n) = 0.0002n? + 0.0005n + 0.0784
690.5
500 - 195.8
12.5 49.3
2811 434 | | |
0 500 1000 1500 2000 2500

Problem Size (n)

CSc 115 Analysis of Algorithms 15

Asymptotic time complexity

* Fundamental measure for the performance of an algorithm
e Study asymptotic growth rates
e Asymptotic
& Not interested in constants
& Not interested in small inputs
& Pure growth rate of the function
& It essentially removes the “noise” from the running time
* Three sets of functions
* Big Omega ? (9)
&5 Functions that grow at least as fast as g
* Big Theta T(g)
& Functions that grow at the same rate as g
e Big Oh O(g)
& Functions that grow no faster than g

CSc 115 Analysis of Algorithms

16

Big-O Notation

* We simplify the function by:
& Ignoring all constant coefficients
£ ignoring all but the dominant term

e the dominant term is the one that grows fastest when n

grows
f(n) O(f(n))
0.3n2 + 20n + 512 O(n?)
0.0001n% + 10000n? O(n%)
3" + n? O(3")
10" -5n + 30 O(10M)
42log,n O(log,n)
/nlog,n+2n-12 O(n log,pn)
4n + 3log,n O(n)
42 O(1)

CSc 115 Analysis of Algorithms

17

Complexity Classes

expressions

X3]dwod 3sow 03 3Sea| Woi

* When determining the Big-Oh time of a problem, we try to:
& make the bound as tight as possible
& make the function as simple as possible
* In practice, this leads to only a handful of important Big-Oh

Complexity Class O-notation
Constant O(1)
log log n O(log log n)
Logarithmic O(log n)
Linear O(n)
nlogn O(nlogn)
Quadratic O(n?)
Cubic O(n3)
Exponential O(2M), O(3M, ...

CSc 115 Analysis of Algorithms

18

Famous algorithms and their complexi-

Algorithm Big O-notation
Hash search O(1)
Binary search, tree search O(log n)
Linear search, list and tree traversals O(n)
Sorting, Heapsort O(nlogn)
Bubble sort, insertion sort O(n?)
Matrix multiplication O(n3)
Optimal graph coloring O(2M), O3, ...

CSc 115 Analysis of Algorithms 19

Running Time Examples

* An algorithm takes f(n) microseconds (us) to run

n 2 16 256 1024 1048576
f(n) (2 (2%) (2°) (2'9) (229)
1 1us 1 us 1us 1us 1us
log,n 1us 4 us 8 us 10 ps 20 ps
n 2 Us 16 pus 256 s 1.02 ms 1.05s
n log,n 2 s 64 us 2.05 ms 10.2 ms 21s
n 2 4 us 256 |s 65.5 ms 1.05 s 1.8 wks
ns 8 s 4.1 ms 16.8 s 17.9 min 36559 yrs
2" 4 us | 65.5 msec | 3.7x1083 yrs | 5.7x102%4 yrs | 2.1x10315639 yrg
\/Estimated lifetime of
the sun: only 5x10° yrs!
1us=10"°s 1 s = one second 1 wk = 604800 s

1ms=103s

1min=60s

1yr=31557600 s

CSc 115 Analysis of Algorithms

20

Big-O Caveats

e Comparisons based on Big-O notation apply only to large problem
sizes

& “large” is an arbitrary term

& For “small” problem sizes, consider the specific circumstances
the algorithm will be running in

e those constant coefficients we so casually discarded start
to matter

£ run experiments on your platform, with your data, to determine
the best algorithm (measurement and tuning)

e Carefully check whether your data fits the average case
& otherwise, the worst case time could be important
& In real-time situations, the worst case time might be crucial

& sometimes you can easily mould the data to fit an algorithm’s
best case

CSc 115 Analysis of Algorithms 21

