
Analysis of Algorithms

Reading Assignment
Chapter 3 (except 3.4)

CSc 115 Analysis of Algorithms 2

Motivation

• Even though we seem to have an abundance of CPU cycles and
memory units at our finger tips, program speed and memory use
matters when processing large amounts of data

• The running time of a program depends on
? Algorithms and data structures
? Programming language
? Compiler/interpreter
? Operating system
? Processor and memory

CSc 115 Analysis of Algorithms 3

Motivation (2)

• In algorithm analysis we are primarily interested figuring out how
well an algorithm performs with respect to time and space usage
regardless of all the other influences

• In other words, we fix the environment within which a program
runs and try to analyze the running time independently of the
environment

• The goal is to compare the time and space complexity of different
algorithms for a given input size

CSc 115 Analysis of Algorithms 4

Learning Objectives

• Estimate the running time (function) for a given algorithm
• Appreciate how the running time (function) varies with input size
• Find a measure to compare the quality of algorithms which perform

the same task
• Appreciate different complexity classes
• Comparing different growth functions
• Measure running time in terms of basic operations
• Plot and compare growth curves
• Understand ‘Big Oh’ notation
• Compute and compare ‘Big Oh’ running times

CSc 115 Analysis of Algorithms 5

Basic units

• How shall we assess and quantify the running time of a program?
? I/O, read/writes fetches/stores
? Comparisons (for sorting and searching)
? Assignments
? Loops
? Program size/amount of memory
? Number of calculations
? Static versus dynamic memory
? Add, sub, mul, div, sin, cos

• Search and sorting algorithms
? Comparisons

CSc 115 Analysis of Algorithms 6

Running time of an algorithm

• Definition
? The running time of an algorithm is a function of the size of the

input data with units such as comparisons, assignments,
arithmetic operations, trigonometric operations. The running
time is denoted by T(n) where n is the size of the input to the
algorithm.

• Examples of running times
? T1(n) = c0n2

? T2(n) = c1n3 + c2n2 + c3n + c4

? T3(n) = c4nlgn + c4

? T4(n) = c52n

CSc 115 Analysis of Algorithms 7

An example

a = 3*n;
cnt = 1;
while (a > 0) {

a = a - 1;
cnt = cnt + 1;

}

• Basic units
? Assignments
? Comparisions

• Analysis
? T(n) = 2 + while loop
? = 2 + x(units in loop) + 1 (x = # of iterations)
? = 2 + x(3) + 1
? = 2 +3(3n) + 1
? = 3 + 9n

CSc 115 Analysis of Algorithms 8

Linear search

int linearSearch(int[] a, int x) {
int k = 0;
while (k<a.length) {
if (a[k] == x) return k;
k = k + 1;

}
}

• Linear search over unsorted array of integers
• Units: comparisons, assignments, no other operations
• Size of the problems
? n = a.length (size of array)

• Worst-case running time
? x is not found or found at the last position

CSc 115 Analysis of Algorithms 9

Linear search (2)

int linearSearch(int[] a, int x) {
int k = 0;
while (k<a.length) {

if (a[k] == x) return k;
k = k + 1;

}
}

T(n) = initialize + while loop
= 1 + while loop
= 1 + x(3) + 1 (x = n)
= 1 + 3n + 1
= 2 + 3n linear

function
T(n) = c1n + c2 linear

algorithm

Worst case: T(n) ~ n
Best case: T(n) ~ 1
Expected case: T(n) = n/2

CSc 115 Analysis of Algorithms 10

Binary search

int binarySearch(int[] a, int x) {
int l = 0;
int r = a.length -1;
while (l<=r) {
int m = (l+r)/2;
if (a[m] == x) return m;
else if (x < a[m]) r = m-1;
else l = m+1;

}
return -1;

}

• Binary search over sorted array of integers (Phone book look up)
• Units: comparisons, assignments
• Size of the problems
? n = a.length (size of array)

• Worst case: not found

CSc 115 Analysis of Algorithms 11

Binary search (2)

int binarySearch(int[] a, int x) {
int l = 0;
int r = a.length -1;
while (l<=r) {

int m = (l+r)/2;
if (a[m] == x) return m;
else if (x < a[m]) r = m-1;
else l = m+1;

}
return -1;

}

T(n) = initialize + while loop
= 2 + while loop
= 2 + x(5) + 1 (x = log n)
= 2 + 5log n + 1
= 3 + 5log n

T(n) = c1log n + c2

Logarithmic function

Worst case: T(n) ~ log n
Best case: T(n) ~ 1
Expected case: T(n) = log n

CSc 115 Analysis of Algorithms 12

Methodology Requirements

• We want a methodology for analyzing the running times of
algorithms that

? Takes into account all possible inputs

? Allows us to evaluate the relative efficiency of any two
algorithms in a way this is independent from the hardware and
software environment

? Can be performed by studying a high-level description of the
algorithm without actually implementing it or running
experiments on it

CSc 115 Analysis of Algorithms 13

Another linear algorithm: finding maximum

• High-level description of an algorithm
• Pseudo code

Algorithm arrayMax(A,n):
Input: An array A storing n >= 1 integers
Output: The maximum element in A.

currentMax <-- A[0]
for i <-- 1 to n - 1 do
if currentMax < A[i] then currentMax <-- A[i]

return currentMax

• Worst case: T(n) ~ n
• Best case: T(n) ~ 1
• Expected case: T(n) = n/2

CSc 115 Analysis of Algorithms 14

• Definition
? Let f(n) and g(n) be functions mapping nonnegative integers to

real numbers. We say that f(n) is O(g(n)) if there is a real
constant c > 0 and an integer constant n0 = 1 such that f(n) =
c?g(n) for every integer n = n0.

• We say
? f(n) is order g(n)
? f(n) is Big-Oh of g(n)

• Visually, this says that the f(n) curve must eventually fit under the
c?g(n) curve.

Formal Definition of Big-O Notation

CSc 115 Analysis of Algorithms 15

Measurement Example

Running times of a program

3114.9

690.5
195.8

12.5 49.3

780.3

43.4112.8

172.9

f1(n) = 0.0008n2 + 0.0032n - 0.0627

f2(n) = 0.0002n2 + 0.0005n + 0.0784

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

Problem Size (n)

R
u

n
n

in
g

 T
im

e
(m

s)

CSc 115 Analysis of Algorithms 16

Asymptotic time complexity

• Fundamental measure for the performance of an algorithm
• Study asymptotic growth rates
• Asymptotic
? Not interested in constants
? Not interested in small inputs
? Pure growth rate of the function
? It essentially removes the “noise” from the running time

• Three sets of functions
• Big Omega ? (g)
? Functions that grow at least as fast as g

• Big Theta T(g)
? Functions that grow at the same rate as g

• Big Oh O(g)
? Functions that grow no faster than g

CSc 115 Analysis of Algorithms 17

Big-O Notation
• We simplify the function by:
? ignoring all constant coefficients
? ignoring all but the dominant term

• the dominant term is the one that grows fastest when n
grows

O(n log10n)7n log10n + 2n – 12
O(n)4n + 3log2n
O(1)42

O(log2n)42log2n
O(10n)10n –5n + 3n

O(3n)3n + n2

O(n4)0.0001n4 + 10000n2

O(n2)0.3n2 + 20n + 512
O(f(n))f(n)

CSc 115 Analysis of Algorithms 18

Complexity Classes

• When determining the Big-Oh time of a problem, we try to:
? make the bound as tight as possible
? make the function as simple as possible

• In practice, this leads to only a handful of important Big-Oh
expressions

O(log log n)log log n

O(2n), O(3n), …Exponential
O(n3)Cubic
O(n2)Quadratic

O(n log n)n log n
O(n)Linear

O(log n)Logarithmic

O(1)Constant
O-notationComplexity ClassFrom

 least to m
ost com

plex

CSc 115 Analysis of Algorithms 19

Famous algorithms and their complexity

O(2n), O(3n), …Optimal graph coloring

O(n3)Matrix multiplication

O(n2)Bubble sort, insertion sort

O(n log n)Sorting, Heapsort

O(n)Linear search, list and tree traversals

O(log n)Binary search, tree search

O(1)Hash search

Big O-notationAlgorithm

CSc 115 Analysis of Algorithms 20

Running Time Examples

• An algorithm takes f(n) microseconds (µs) to run

2.1×10315639 yrs5.7×10294 yrs3.7×1063 yrs65.5 msec4 µs2n

36559 yrs17.9 min16.8 s4.1 ms8 µsn 3

1.8 wks1.05 s65.5 ms256 µs4 µsn 2
21 s10.2 ms2.05 ms64 µs2 µsn log2n

1.05 s1.02 ms256 µs16 µs2 µsn
20 µs10 µs8 µs4 µs1 µslog2n

1 µs1 µs1 µs1 µs1 µs1

1048576
(220)

1024
(210)

256
(28)

16
(24)

2
(21)

n
f(n)

1 yr = 31557600 s1 min = 60 s1 ms = 10-3 s
1 wk = 604800 s1 s = one second1 µs = 10-6 s

Estimated lifetime of
the sun: only 5×109 yrs!

CSc 115 Analysis of Algorithms 21

Big-O Caveats

• Comparisons based on Big-O notation apply only to large problem
sizes
? “large” is an arbitrary term
? for “small” problem sizes, consider the specific circumstances

the algorithm will be running in
• those constant coefficients we so casually discarded start

to matter
? run experiments on your platform, with your data, to determine

the best algorithm (measurement and tuning)

• Carefully check whether your data fits the average case
? otherwise, the worst case time could be important
? in real-time situations, the worst case time might be crucial
? sometimes you can easily mould the data to fit an algorithm’s

best case

