
Analysis of Algorithms
Case Studies

Reading Assignment
Chapter 3 (except 3.4) and

Chapter 4.5

CSc 115 Analysis of Algorithms 2

Review of some discrete math

• 1 + 2 + 3 + …. + n = n (n + 1) /2

• Why?????

• See P. 106 in the textbook

CSc 115 Analysis of Algorithms 3

Case Study

• Problem: Prefix averages of a sequence of numbers
• Given an array X of n numbers, compute an Array A such that A[i]

is the average of elements X[0], X[1], …, X[i] for i = 0, 1, …, n-1
• What is the pseudocode for this problem?
• What is the running time for our solution?
• Can we do better?

CSc 115 Analysis of Algorithms 4

Another Case Study Application

(Chapter 4.5 in the textbook)
• Given a series of n daily price quotes for a stock, we call the span

of the stock’s price on a certain day the maximum number of
consecutive days up to the current day that the price of the stock
has been less than or equal to its price on that day.

• More formally:
? assume that price quotes begin with day 0 and that day pi

denotes the price on day i.
? The span si on day i is equal to the maximum integer k such that

k <= i + 1 and pj <= pi for j = i – k + 1, …, i.
? Given the prices p0, p1, …, pn-1, consider the problem of

computing the spans s0, s1, …, sn-1.

CSc 115 Analysis of Algorithms 5

One possible solution

Here is one possible solution in pseudocode:

Algorithm computeSpans1(P):
Input: An n-element array P of numbers
Output: An n-element array S of numbers such that S [i] is the largest
integer k such that k <= i + 1 and P [j] <= P [i] for j = i-k+1, …, i
for i = 0 to n – 1 do

k ? 0
done ? false
repeat

if P[i-k] <= P[i] then
k ? k + 1

else
done ? true

until (k > i) or done
S[i] ? k

return array S

CSc 115 Analysis of Algorithms 6

Analyzing the running time of this solution….

Algorithm computeSpans1(P):
(input P, output S)
for i = 0 to n – 1 do

k ? 0 // O(n)
done ? false
repeat

if P[i-k] <= P[i] then
k ? k + 1

else
done ? true

until (k > i) or done
S[i] ? k

return array S

CSc 115 Analysis of Algorithms 7

Analyzing the running time of this solution….

Algorithm computeSpans1(P):
(input P, output S)
for i = 0 to n – 1 do

k ? 0 // O(n)
done ? false
repeat

if P[i-k] <= P[i] then // 1 + 2 + 3 … + n =
k ? k + 1 // n(n+1)/2 = O(n2)

else
done ? true

until (k > i) or done
S[i] ? k

return array S

CSc 115 Analysis of Algorithms 8

Another solution

• Can we do better?
• Observation: the span si on a certain day i can be easily computed

if we know the closest day preceding i, such that the price on that
day is higher than the price on day i.

• If such a preceding day exists for a day i, let us denote it with
h(i), and otherwise define h(i) = -1.

• The span on day i is given by si = i - h(i)
• We can use a stack to store days i, h(i), h(h(i)), etc.
• When going from day i -1 to day i, we repeatedly pop days with

prices less than or equal to pi, and then push day i
• Pseudocode is on Page 175 in your textbook
• Homework exercise: Review the analysis and make sure you

understand it.

CSc 115 Analysis of Algorithms 9

A better solution

Algorithm computeSpans2(P):
Input: An n-element array P of numbers
Output: An n-element array S of numbers such that S [i] is the largest
integer k such that k <= i + 1 and P [j] <= P [i] for j = i-k+1, …, i
for i = 0 to n – 1 do

done ? false
while not (D.isEmpty() or done) do

if P[i] >= P[D.top()] then
D.pop()

else
done ? true

if D.isEmpty() then
h ? -1

else
h ? D.top()

S[i] ? i-h
D.push(I)

return array S

