
Assertions, Testing and Debugging

Csc 115 Fall 2002

Assertions

CSc 115 -- Assertions, Testing and Debugging 3

Review -- Assertions

• An assertion is the statement of a fact that should be true at a
given point in the execution of a program
? assertions can be written as comments, to document the code:

count--;
// assert: count >= 0

? they can be written as code, to verify assumptions at runtime:
count--;
if (!(count >= 0)) throw new AssertionFailure();

• An assertion at the beginning of a method is called a precondition
? it will often validate the method’s arguments

• An assertion at the end of a method is called a postcondition
? it will often validate the method’s work and/or result

• When assertions are stated using a formal logical language, it’s
sometimes possible to prove a program’s correctness; this is called
verification

CSc 115 -- Assertions, Testing and Debugging 4

Assertions -- 2

• We can have executable and non-executable assertions:
• Non-executable assertions (quantifiers):

? For all i in 0..len-1, A[I] > 0
? There exists some element in A that is equal to x
? Note: Quantifiers can’t be directly specified in Java

CSc 115 -- Assertions, Testing and Debugging 5

Non-executable assertions as Specifications

• Specifications state what a program should do (not how it should do
it)

• Especially needed when splitting up work between multiple
programmers

• A specification can say at a high level what a program, down to the
low level details in the program

• Can be formal or informal…. Informal ok for some applications, but
formal specifications are required for safety critical applications

• Assertions can be used for writing specifications
• Assertions inside the code can also be used for verification

CSc 115 -- Assertions, Testing and Debugging 6

Executable assertions in Java

• Each assertion contains a boolean expression that you believe will
be true when the assertion executes

• If it is not true, the system will throw an error
• By verifying that the boolean expression is indeed true, the

assertion confirms your assumptions about the behaviour of your
program, increasing your confidence that the program is free of
errors

• “assert” some boolean expression
e.g. assert n > 0;
e.g. assert n > 0 : n; // prints “n”

same as: if (n<=0) throw new AssertionError(n);
• If the expression is false, an “AssertionError” will be thrown

CSc 115 -- Assertions, Testing and Debugging 7

Assertions in Java -- 2

• Use “assert” for:
? Internal variants (example within an else statement, switch

statements etc)
? Control-flow invariants (when you think control shouldn’t reach

a certain point in the program – but note you will get a compile
time error if you do an assert at a spot that cannot be reached)

? Preconditions – use for private methods to test arguments only
but not for public methods!

? Postconditions – use for both public and private methods after
a computation for example

CSc 115 -- Assertions, Testing and Debugging 8

When should you not use Assertions in Java

• For argument checking of published specifications (public methods)
– these specifications must be obeyed whether assertion checking
is enabled or not (exceptions should be defined in this case)

• Do not use assertions to do any work that your application requires
for correct operation, e.g.:

// Broken! - action is contained in assertion
assert names.remove(null);

CSc 115 -- Assertions, Testing and Debugging 9

Enabling and Disabling Assertion Checking in Java

• By default, assertions are disabled at runtime. Two command-line
switches allow you to selectively enable or disable assertions.

• To enable assertions at various granularities, use the -
enableassertions, or -ea, switch. To disable assertions at various
granularities, use the -disableassertions, or -da, switch. You can
specify the granularity with the arguments that you provide to the
switch.

• You should turn them off when you are done debugging for
efficiency reasons.

• Notes:
? Assert is only available in Java 1.4 as part of the language

specification
? See this link for more information:

http://java.sun.com/j2se/1.4/docs/guide/lang/assert.html

Debugging and Testing

CSc 115 -- Assertions, Testing and Debugging 11

Testing & Debugging (review….)

• Testing: Process of verifying the correctness of a program and for
identifying bugs

• Debugging: Tracking the execution of the program and discovering
errors in it (can use a debugger or print statements)

• Note: it is impossible to test all possible inputs! But we can test a
representative subset of inputs, and can make sure we test each
method (or statement) at least once

CSc 115 -- Assertions, Testing and Debugging 12

Strategies for Unit Testing

• Unit testing
? The practice of testing a single method or class, separately

from the overall program in which it is used
• Important things to test for

? API of a class (methods, parameters)
? Proper initialization of fields
? Boundary conditions (e.g., array bounds, off by one)
? Error conditions
? Execution paths (statement coverage)

• Using println() and toString() for debugging purposes
? Design this ability in from the start like other requirements
? Write/override the toString() method for each class
? You can then print before-after pictures in your test code

• Code inspection and code walk-throughs

CSc 115 -- Assertions, Testing and Debugging 13

Bottom-Up Testing

• Why is bottom-up testing a useful approach?
? the smaller the piece of code being tested, the easier it is to

locate and fix bugs
? if the code being tested has dependencies, those dependencies

are also tested
? so start at the bottom, with the smallest possible modules and

fewest dependencies
• Classes are tested from the bottom to the top of the class

hierarchy
• If a group of modules forms a dependency cycle, you can only test

the cluster as a whole—so avoid creating dependency cycles!

Bottom-Up Testing Order Principle:
Whenever possible, before testing a given method X, test
all methods that X calls or that prepare data that X uses.

CSc 115 -- Assertions, Testing and Debugging 14

Top-Down Testing

• Why would you want to do this?
? when working in a team, layers are often implemented in parallel
? A component may depend on others that aren’t available yet
? Don’t wait for others before starting testing; use stubs

• How to do it?
? stub out any dependencies of your component: fake realistic

results with a minimum of effort
? the stub might:

• return a very small number of hard-coded items
• only be able to deal with your specific test data

• Stubbing out components can also be useful in breaking dependency
cycles, allowing the co-dependent components to be tested
individually

CSc 115 -- Assertions, Testing and Debugging 15

Integration, Acceptance and Regression Testing

• When unit testing is complete, you must test the interactions of
the classes with integration testing

• When the project is complete, you often have to run a final
acceptance test before the customer officially accepts your work

• Once a system is released into service, it enters the maintenance
phase of its lifecycle
? in this phase, more bugs are discovered and fixed, and new

features added
? as things change, you want to do regression testing to make

sure that the changes don’t break previously working code
? it’s useful to have a suite of test drivers that can automatically

run all unit and integration tests, and report on the results
? note: it’s very common for fixes or upgrades to interfere with

seemingly unrelated code

CSc 115 -- Assertions, Testing and Debugging 16

White box and Black box Testing

• Black box testing:
? Think of method or program as a "black box" that does a job.
? You don't know how it works, just have the specification which

specifies the inputs and expected outputs (says nothing about
how it does what it does)

? Pick test cases to see if performance matches specification –
pick boundary cases and wide range of inputs

• White box testing:
? In this approach, look at the actual code and consider how it

works
? Make sure each part of the code is exercised by your test

cases.
? Care about test case “coverage”

CSc 115 -- Assertions, Testing and Debugging 17

Debugging

• 3 main types of errors:
? Compile time errors (program won’t run)
? Run time errors (program partially runs, but crashes)
? Logical errors (program runs, but the result is incorrect)

CSc 115 -- Assertions, Testing and Debugging 18

Compile time errors

• Sometimes the problem is on the current line that the compiler
indicates, but often it is on a previous line….

• Two possible kinds of compile time errors are:
? Syntax errors (error in format, such as unbalanced parenthesis,

missing semicolon)
? Semantic errors (undeclared variable, wrong parameter type

for method)

• Advice:
? Just fix first syntax error caught and recompile
? For semantic errors, carefully read message; use better tools
? Carefully write code, understand what you are doing

CompileErrors.java

CSc 115 -- Assertions, Testing and Debugging 19

Run time errors

• It can be hard to determine where a run time error occurs….
• Can be found by using printlns or a debugger to see when the crash

happens
• Often have a hypothesis about what caused the error, start there
• Presentation of output is very important if you are to make sense

of it
• Makes sense to have such output be reusable for when you need to

make further modifications

• Common causes of run time errors:
? Null pointer
? Index array out of bounds
? Divide by zero

Permute.java

RuntimeErrors.java

CSc 115 -- Assertions, Testing and Debugging 20

Logical errors

• Finding logical errors is a similar process to finding runtime error…
• Narrow down search, do lots of inspection, try different input

values to see which ones pass/fail
• More strategic inspection of intermediate values
• Some things to watch out for:

? Copying references instead of objects
? Creating references but not objects
? ‘==‘ on object references
? putting a return type on a constructor (compile time error)

CSc 115 -- Assertions, Testing and Debugging 21

General Debugging Advice

• Test as you write your program
• Revisit previous assumptions and assume nothing….
• Walk through some examples – the devil is often in the details
• Explain the program to a friend (or your teddybear!)
• Use good style and comments
• Try adding debug output (println, toString calls)

? Try narrowing down your search
? Print intermediate results, more and more detail as you go

• Consider creating logfiles to help record errors during active use

CSc 115 -- Assertions, Testing and Debugging 22

How to avoid or reduce errors

• Simple interfaces – allows for easier isolation of errors
• Unit test, bottom up testing
• Make it easier to test when the program is changed
• Make use of exceptions and provide appropriate error messages
• Make use of assertions which will help detect errors before the

program crashes or the results are not what are expected
• When you do discover a bug, look for similar bugs elsewhere in the

program
• Always keep a “clean copy” of your program (use version control)

CSc 115 -- Assertions, Testing and Debugging 23

Debugging tools

• Help you quickly locate crashes
• Procedure tracing facilities
• Step through complicated logic
• No need to change source code
But:
• Tracing can be slow and tedious
• Data structures are typically hard to display with debuggers
• Debugger may alter program execution (bugs sometimes hard to

reproduce when you use a debugger, subtle!)
• Not available in all environments….
• Let’s look at the debugger in Eclipse….

