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Dictionaries….

• Many, many examples in our everyday life of dictionaries….
• The primary purpose is to look things up using some key…. The 

motivation being is that there is some additional information to the 
key that we would find useful

• E.g. account number in our bank, or a dictionary might hold a set of 
windows open in a graphical interface

• Like a priority queue, a dictionary if a container of key-element 
pairs – but a total order relation on the keys is always required for 
the priority queue, but not for the dictionary

• The simplest form of a dictionary only assumes that we can 
compare two elements to see if they are equal

• For an ordered dictionary, we will have additional methods defined
• Computer dictionaries are more powerful than paper dictionaries,

why?
• So we need at least methods for inserting, removing and searching 

for elements using their keys
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Dictionary

• A dictionary is an unordered container that contains key-element pairs
• The keys are unique, but the elements can be anything (e.g., don’t have 

to be unique)
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Dictionary ADT
• size(): returns the number of items in D.  Output:  Integer
• isEmpty(): Test whether D is empty.  Output:  Boolean
• elements(): Return the elements stored in D. Output:  iterator of 

elements (objects)
• keys(): Return the keys stored in D. Output:  iterator of keys 

(objects)
• findElement(k): if D contains an item with key == k, then return

the element of that item, else return 
NO_SUCH_KEY.  Output:  Object

• findAllElements(k): Output: Iterator of elements with key k
• insertItem(k,e): Insert an Item with element e and key k into D.
• removeElement(k): Remove an item with key == k and return it.

If no such element, return NO_SUCH_KEY
Output:  Object (element)

• removeAllElements(k): Remove from D the items with key == k.
Output:  iterator of elements.
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Dictionary Interface

public interface Dictionary {
public void insert(Object key, Object element);
public Object member(Object key);
public Object delete(Object key);
public Enumeration keys();
public Enumeration elements();
boolean isEmpty();
int size();

}

• To implement a generic interface, we also need to compare the search key 
against the keys in the dictionary

• Provide an equals() routine and a Comparable interface

int equals(Object x)
interface Comparable {…} --- optional, only if the dictionary 

is ordered.

See:  http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Comparable.html
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Abstract Class java.util.Dictionary

• The Dictionary class is the abstract parent of any class, such as Hashtable, 
which maps keys to elements

• Any non-null object can be used as a key and as an element
• As a rule, the equals method should be used by implementations of this class to 

decide if two keys are the same.

public abstract class java.util.Dictionary {
abstract void put(Object k, Object v); // inserts key & value
abstract Object get(Object k); // returns value for this key
abstract Object remove(Object k); // removes key & its element
abstract Enumeration elements(); // returns all elements
abstract Enumeration keys(); // returns enumeration of all keys
boolean isEmpty(); // returns true if dictionary is empty
abstract int size(); // returns number of keys in dictionary

}

This abstract class is now obsolete….
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Interface -- java.util.Map
• Keys must be unique in the implementing classes of Map
• The method equals will be used to determine if two keys are 

equal – therefore we must hard-code the equals method 
within the key class

Method Summary
boolean containsKey(Object key) -- Returns true if this map contains a 

mapping for the specified key.
boolean containsValue(Object value) -- Returns true if this map maps 

one or more keys to the specified value.
Object get(Object key) -- Returns the value to which this map maps 

the specified key.
boolean isEmpty()  -- Returns true if this map contains no key-value 

mappings.
SetkeySet() -- Returns a set view of the keys contained in this 

map.
Object remove(Object key) -- Removes the mapping for this key from 

this map if it is present (optional operation).
int size() Returns the number of key-value mappings in this map.
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Interface -- java.util.Map (2)

• Sentinel value?  How is this done for get(k)?

• Returns null if the map contains no mapping for this key. 
• But a return value of null does not necessarily indicate that the 

map contains no mapping for the key; it's also possible that the map 
explicitly maps the key to null. 

• The Boolean containsKey(Object key) operation may be used 
to distinguish these two cases…
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Implementing Dictionaries…..

• We will look at:
? Log Files (see Section 8.2 in the book) and
? Hash Tables (see Section 8.3 in the book)
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Log Files

• We could implement a dictionary using an unordered vector, list or 
general sequence to store key-element pairs

• Often referred to as a log file or audit file
• If the log file is 
• Each new pair is added to the end of the log file (O(1) cost to add a 

new pair)
• A find could require O(n) operations in the worst case
• How much space is required?
• What are some suitable applications for this implementation?

• But for applications that have roughly the same number of finds as 
insertions – this implementation would not be suitable!



CSc 115 Dictionaries 11

Hash Tables

• In a hash table, we consider the key of an element its address
• Worst case for finding an element in a hash table can still be O(n) –

but in the expected case it could be as good as O(1)…  (we will come 
back to this….)

• Two major parts of a Hash Table:
? Bucket Arrays (where we put stuff)
? Hash Functions (how we know where to put and find stuff)
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Bucket Arrays

• A bucket is a container for each key-element pair
• A bucket array for a hash table is an Array A of size N, 

where each cell of A is thought of as a “bucket”
• An element e with key k is simply inserted into the bucket 

A[k]
• Any bucket cells associated with keys not present in the 

dictionary hold the special NO_SUCH_KEY object
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Bucket Arrays -- 2

• Problems with this?
• Well, if keys are not unique, then >1 element may be mapped 

to the same bucket causing a collision… (we will come back to 
this….)

• Assuming keys are unique – searches, insertions and removals 
take how long?

• But how much space does it use?
• N is not necessarily related to n, the number of items in the 

dictionary

• …..  So we need a good mapping from our keys to integers in 
the range [0,N-1]
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Hash Functions

• The hash function h maps each key k in our dictionary to an integer 
in the range [0, N-1] – where N is the capacity of the bucket array

• Then we can use h (k) as an index into the bucket array instead of 
key k – item (k,e) is stored in A[h (k)]

• A hash function is good if –
? Collisions are minimized as much as possible
? The evaluation of the hashing function is fast and easy to 

compute
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Hash Functions -- 2

• The hashing function consists of two actions –
?Mapping the key k to an integer – which we call the hash 

code
?And then mapping the hash code to an integer within the 

rage of indices of the bucket array – we call this the 
compression map
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Hash Codes…

• Take our arbitrary key k in our dictionary and assign it an integer 
value – does not have to be in the range [0,N-1] or even be a 
positive integer

• But the set of hash codes should be as unique as possible to avoid 
collisions

• Note the hash codes should be the same for the keys that are the
same (to enable equality testing)
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Generating Hash Codes

• The Object class in Java has a default hashCode() method, but we 
usually need to override it (could just a representation of the 
object’s location in memory)

• For data types that have the same number as bits as an integer, 
simply map all the bits to an integer representation
? For byte, short, int and char – cast to int
? For float, convert to an integer by calling 

Float.floatToIntBits(x)
• For longer types, we can take the low-order bits and sum all the 

high order bits and add it to the low-order bits:
int hashCode(long i) 

{ return (int)((i > > 32) + (int)i);}
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String Hash Function: An Example

• Let
? s be a key of type String
? sum be the sum of the ordinal values of all the characters in s
? N be the hashtable size

• Then the hashtable index k is
? k = sum % N

• where % is the modulo operator.
• Thus, k is in the range 0 to N-1

• Example
s = “ABC”
N = 59 (prime number)
sum = ord(‘A’) + ord(‘B’) + ord(‘C’)

= 60 + 61 + 62 = 183
k = sum % N = 183 % 59 = 6
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Generating Hash Codes -- 2

• Polynomial hash codes may be more suitable for characters or 
other multiple-length objects that are tuples
? Suppose we just used the previous summation method for 

strings – but comon strings like “pots”, “stop” and “spot” would 
collide…

? So a better approach is to take into the consideration the 
locaiton of each of the letters…. 

? See p. 345 for more details on how to generate polynomial hash 
codes 
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Compression Maps

• Note, we have generated some integer for each key but we still 
need to map onto the range [0, N-1]

• The simplest compression map is :
? h (k) = |k| mod N
? If N is a prime number then the hash function will help evenly 

spread out the the distribution of the hashed values and reduce 
collisions

• When two keys map to the same index, we have a hash collision
• When a collision occurs, a collision resolution algorithm is used to 

establish the locations of the colliding keys
• Designing good hash functions is an art!
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Collision Resolution

• If two keys map to the same hashtable index, we have a collision
• Two approaches to resolve collisions
? Separate chaining

• Store all elements which map to the same location in a 
linked list

? Open addressing or rehash
• When more than one elements map to the same location 

check other cells of the hashtable whether they are free in 
a given order

• Linear probing
– inspect k+1, k+2, k+3, ...

• Quadratic probing
– inspect k+1, k+4, k+9, k+16, k+25, k+36, …
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Separate Chaining
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Load Factor

• We expect each bucket to be of size ? n/N ? -- this parameter is 
called the load factor 

• The load factor should be bounded by 1, therefore the expected 
time for the standard dictionary operations is O(1)  -- provided 
that n is O(N)
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Open Addressing

• The disadvantage of the separate chaining method is that it 
requires the implementation of yet another data structure to hold 
the items in the log files – it also uses extra space

• There is another approach where we just store at most one 
element per bucket!

• It requires that n <= N 
• Two approaches:
? Linear probing
? Quadratic probing
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Linear Probing

• Linear probing is an open addressing 
algorithm 

• Locations are checked from the hash 
location k to the end of the table and 
the element is placed in the first 
empty slot
? If the bottom of the table is 

reached, checking “wraps around” 
to the start of the table (i.e., 
modulo hashtable size)
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Linear Probing -- 2

• Collision resolution factors into 
member(), insert(), 
delete()

• Thus, if linear probing is used, 
these routines must continue down 
the table until a match or empty 
location is found

• Even though the hashtable size is 
a prime number (i.e., 13), this is 
probably not an appropriate size; 
the size should be at least 30% 
larger than the maximum number 
of elements ever to be stored in 
the table
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Quadratic Probing

• Quadratic probing is another open 
addressing algorithm 

• Locations are checked from the hash 
location to the end of the table and the 
element is placed in the first computed 
empty slot
? Instead of probing consecutive 

location, we probe the 1st, 4th, 9th, 
16th, etc. ? this is called quadratic 
probing

? If the bottom of the table is 
reached, checking “wraps around” to 
the start of the table (i.e., modulo 
hashtable size) empty12
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Animating collision resolution approaches

• http://www.engin.umd.umich.edu/CIS/course.des/cis350/hashing/
WEB/HashApplet.htm


