
Dictionaries
Hashtables and Hashsearch

Reading Assignment
Chapter 8.1-8.3

CSc 115 Dictionaries 2

Dictionaries….

• Many, many examples in our everyday life of dictionaries….
• The primary purpose is to look things up using some key…. The

motivation being is that there is some additional information to the
key that we would find useful

• E.g. account number in our bank, or a dictionary might hold a set of
windows open in a graphical interface

• Like a priority queue, a dictionary if a container of key-element
pairs – but a total order relation on the keys is always required for
the priority queue, but not for the dictionary

• The simplest form of a dictionary only assumes that we can
compare two elements to see if they are equal

• For an ordered dictionary, we will have additional methods defined
• Computer dictionaries are more powerful than paper dictionaries,

why?
• So we need at least methods for inserting, removing and searching

for elements using their keys

CSc 115 Dictionaries 3

Dictionary

• A dictionary is an unordered container that contains key-element pairs
• The keys are unique, but the elements can be anything (e.g., don’t have

to be unique)

235

Maarten

Bette

HausiPeggy

339

137 439

keys

elements

439Maarten
235Peggy
137Hausi
339Bette

Associated elementSearch key

CSc 115 Dictionaries 4

Dictionary ADT
• size(): returns the number of items in D. Output: Integer
• isEmpty(): Test whether D is empty. Output: Boolean
• elements(): Return the elements stored in D. Output: iterator of

elements (objects)
• keys(): Return the keys stored in D. Output: iterator of keys

(objects)
• findElement(k): if D contains an item with key == k, then return

the element of that item, else return
NO_SUCH_KEY. Output: Object

• findAllElements(k): Output: Iterator of elements with key k
• insertItem(k,e): Insert an Item with element e and key k into D.
• removeElement(k): Remove an item with key == k and return it.

If no such element, return NO_SUCH_KEY
Output: Object (element)

• removeAllElements(k): Remove from D the items with key == k.
Output: iterator of elements.

CSc 115 Dictionaries 5

Dictionary Interface

public interface Dictionary {
public void insert(Object key, Object element);
public Object member(Object key);
public Object delete(Object key);
public Enumeration keys();
public Enumeration elements();
boolean isEmpty();
int size();

}

• To implement a generic interface, we also need to compare the search key
against the keys in the dictionary

• Provide an equals() routine and a Comparable interface

int equals(Object x)
interface Comparable {…} --- optional, only if the dictionary

is ordered.

See: http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Comparable.html

CSc 115 Dictionaries 6

Abstract Class java.util.Dictionary

• The Dictionary class is the abstract parent of any class, such as Hashtable,
which maps keys to elements

• Any non-null object can be used as a key and as an element
• As a rule, the equals method should be used by implementations of this class to

decide if two keys are the same.

public abstract class java.util.Dictionary {
abstract void put(Object k, Object v); // inserts key & value
abstract Object get(Object k); // returns value for this key
abstract Object remove(Object k); // removes key & its element
abstract Enumeration elements(); // returns all elements
abstract Enumeration keys(); // returns enumeration of all keys
boolean isEmpty(); // returns true if dictionary is empty
abstract int size(); // returns number of keys in dictionary

}

This abstract class is now obsolete….

CSc 115 Dictionaries 7

Interface -- java.util.Map
• Keys must be unique in the implementing classes of Map
• The method equals will be used to determine if two keys are

equal – therefore we must hard-code the equals method
within the key class

Method Summary
boolean containsKey(Object key) -- Returns true if this map contains a

mapping for the specified key.
boolean containsValue(Object value) -- Returns true if this map maps

one or more keys to the specified value.
Object get(Object key) -- Returns the value to which this map maps

the specified key.
boolean isEmpty() -- Returns true if this map contains no key-value

mappings.
SetkeySet() -- Returns a set view of the keys contained in this

map.
Object remove(Object key) -- Removes the mapping for this key from

this map if it is present (optional operation).
int size() Returns the number of key-value mappings in this map.

CSc 115 Dictionaries 8

Interface -- java.util.Map (2)

• Sentinel value? How is this done for get(k)?

• Returns null if the map contains no mapping for this key.
• But a return value of null does not necessarily indicate that the

map contains no mapping for the key; it's also possible that the map
explicitly maps the key to null.

• The Boolean containsKey(Object key) operation may be used
to distinguish these two cases…

CSc 115 Dictionaries 9

Implementing Dictionaries…..

• We will look at:
? Log Files (see Section 8.2 in the book) and
? Hash Tables (see Section 8.3 in the book)

CSc 115 Dictionaries 10

Log Files

• We could implement a dictionary using an unordered vector, list or
general sequence to store key-element pairs

• Often referred to as a log file or audit file
• If the log file is
• Each new pair is added to the end of the log file (O(1) cost to add a

new pair)
• A find could require O(n) operations in the worst case
• How much space is required?
• What are some suitable applications for this implementation?

• But for applications that have roughly the same number of finds as
insertions – this implementation would not be suitable!

CSc 115 Dictionaries 11

Hash Tables

• In a hash table, we consider the key of an element its address
• Worst case for finding an element in a hash table can still be O(n) –

but in the expected case it could be as good as O(1)… (we will come
back to this….)

• Two major parts of a Hash Table:
? Bucket Arrays (where we put stuff)
? Hash Functions (how we know where to put and find stuff)

CSc 115 Dictionaries 12

Bucket Arrays

• A bucket is a container for each key-element pair
• A bucket array for a hash table is an Array A of size N,

where each cell of A is thought of as a “bucket”
• An element e with key k is simply inserted into the bucket

A[k]
• Any bucket cells associated with keys not present in the

dictionary hold the special NO_SUCH_KEY object

CSc 115 Dictionaries 13

Bucket Arrays -- 2

• Problems with this?
• Well, if keys are not unique, then >1 element may be mapped

to the same bucket causing a collision… (we will come back to
this….)

• Assuming keys are unique – searches, insertions and removals
take how long?

• But how much space does it use?
• N is not necessarily related to n, the number of items in the

dictionary

• ….. So we need a good mapping from our keys to integers in
the range [0,N-1]

CSc 115 Dictionaries 14

Hash Functions

• The hash function h maps each key k in our dictionary to an integer
in the range [0, N-1] – where N is the capacity of the bucket array

• Then we can use h (k) as an index into the bucket array instead of
key k – item (k,e) is stored in A[h (k)]

• A hash function is good if –
? Collisions are minimized as much as possible
? The evaluation of the hashing function is fast and easy to

compute

CSc 115 Dictionaries 15

Hash Functions -- 2

• The hashing function consists of two actions –
?Mapping the key k to an integer – which we call the hash

code
?And then mapping the hash code to an integer within the

rage of indices of the bucket array – we call this the
compression map

CSc 115 Dictionaries 16

Hash Codes…

• Take our arbitrary key k in our dictionary and assign it an integer
value – does not have to be in the range [0,N-1] or even be a
positive integer

• But the set of hash codes should be as unique as possible to avoid
collisions

• Note the hash codes should be the same for the keys that are the
same (to enable equality testing)

CSc 115 Dictionaries 17

Generating Hash Codes

• The Object class in Java has a default hashCode() method, but we
usually need to override it (could just a representation of the
object’s location in memory)

• For data types that have the same number as bits as an integer,
simply map all the bits to an integer representation
? For byte, short, int and char – cast to int
? For float, convert to an integer by calling

Float.floatToIntBits(x)
• For longer types, we can take the low-order bits and sum all the

high order bits and add it to the low-order bits:
int hashCode(long i)

{ return (int)((i > > 32) + (int)i);}

CSc 115 Dictionaries 18

String Hash Function: An Example

• Let
? s be a key of type String
? sum be the sum of the ordinal values of all the characters in s
? N be the hashtable size

• Then the hashtable index k is
? k = sum % N

• where % is the modulo operator.
• Thus, k is in the range 0 to N-1

• Example
s = “ABC”
N = 59 (prime number)
sum = ord(‘A’) + ord(‘B’) + ord(‘C’)

= 60 + 61 + 62 = 183
k = sum % N = 183 % 59 = 6

CSc 115 Dictionaries 19

Generating Hash Codes -- 2

• Polynomial hash codes may be more suitable for characters or
other multiple-length objects that are tuples
? Suppose we just used the previous summation method for

strings – but comon strings like “pots”, “stop” and “spot” would
collide…

? So a better approach is to take into the consideration the
locaiton of each of the letters….

? See p. 345 for more details on how to generate polynomial hash
codes

CSc 115 Dictionaries 20

Compression Maps

• Note, we have generated some integer for each key but we still
need to map onto the range [0, N-1]

• The simplest compression map is :
? h (k) = |k| mod N
? If N is a prime number then the hash function will help evenly

spread out the the distribution of the hashed values and reduce
collisions

• When two keys map to the same index, we have a hash collision
• When a collision occurs, a collision resolution algorithm is used to

establish the locations of the colliding keys
• Designing good hash functions is an art!

CSc 115 Dictionaries 21

Collision Resolution

• If two keys map to the same hashtable index, we have a collision
• Two approaches to resolve collisions
? Separate chaining

• Store all elements which map to the same location in a
linked list

? Open addressing or rehash
• When more than one elements map to the same location

check other cells of the hashtable whether they are free in
a given order

• Linear probing
– inspect k+1, k+2, k+3, ...

• Quadratic probing
– inspect k+1, k+4, k+9, k+16, k+25, k+36, …

CSc 115 Dictionaries 22

Separate Chaining

329
ABC

377
XYZ

415
PQR

379
s4t

369
frg

null12
11

null10
null9
null8
null7
null6

5
null4

3
null2
null1
null0

Hashtable

CSc 115 Dictionaries 23

Load Factor

• We expect each bucket to be of size ? n/N ? -- this parameter is
called the load factor

• The load factor should be bounded by 1, therefore the expected
time for the standard dictionary operations is O(1) -- provided
that n is O(N)

CSc 115 Dictionaries 24

Open Addressing

• The disadvantage of the separate chaining method is that it
requires the implementation of yet another data structure to hold
the items in the log files – it also uses extra space

• There is another approach where we just store at most one
element per bucket!

• It requires that n <= N
• Two approaches:
? Linear probing
? Quadratic probing

CSc 115 Dictionaries 25

Linear Probing

• Linear probing is an open addressing
algorithm

• Locations are checked from the hash
location k to the end of the table and
the element is placed in the first
empty slot
? If the bottom of the table is

reached, checking “wraps around”
to the start of the table (i.e.,
modulo hashtable size)

empty12
s4t11

empty10
deleted9
empty8
PQR7
XYZ6
ABC5

empty4
frg3

deleted2
empty1
empty0

CSc 115 Dictionaries 26

Linear Probing -- 2

• Collision resolution factors into
member(), insert(),
delete()

• Thus, if linear probing is used,
these routines must continue down
the table until a match or empty
location is found

• Even though the hashtable size is
a prime number (i.e., 13), this is
probably not an appropriate size;
the size should be at least 30%
larger than the maximum number
of elements ever to be stored in
the table

empty12
s4t11

empty10
deleted9
empty8
PQR7
XYZ6
ABC5

empty4
frg3

deleted2
empty1
empty0

CSc 115 Dictionaries 27

Quadratic Probing

• Quadratic probing is another open
addressing algorithm

• Locations are checked from the hash
location to the end of the table and the
element is placed in the first computed
empty slot
? Instead of probing consecutive

location, we probe the 1st, 4th, 9th,
16th, etc. ? this is called quadratic
probing

? If the bottom of the table is
reached, checking “wraps around” to
the start of the table (i.e., modulo
hashtable size) empty12

s4t11
empty10
PQR9

empty8
empty7
XYZ6
ABC5

empty4
frg3

deleted2
empty1
empty0

CSc 115 Dictionaries 28

Animating collision resolution approaches

• http://www.engin.umd.umich.edu/CIS/course.des/cis350/hashing/
WEB/HashApplet.htm

