Dictionaries
Hashtables and Hashsearch

Reading Assignment
Chapter 8.1-8.3

Dictionaries....

* Many, many examples in our everyday life of dictionaries....

e The primary purpose is to look things up using some key.... The
motivation being is that there is some additional information to the
key that we would find useful

e E.g. account number in our bank, or a dictionary might hold a set of
windows open in a graphical interface

e Like a priority queue, a dictionary if a container of key-element
pairs — but a total order relation on the keys is always required for
the priority queue, but not for the dictionary

* The simplest form of a dictionary only assumes that we can
compare two elements to see if they are equal

e For an ordered dictionary, we will have additional methods defined

e Computer dictionaries are more powerful than paper dictionaries,
why?

e So we need at least methods for inserting, removing and searching
for elements using their keys

CSc 115 Dictionaries

e A dictionary is an unordered container that contains key-element pairs
e The keys are unique, but the elements can be anything (e.g., don't have

to be unique) -
@ @ elements

Associated element

339
137
235
439

CSc 115 Dictionaries 3

Dictionary ADT

* size(): returns the number of items in D. Output: Integer
* isEmpty(): Test whether D is empty. Output: Boolean

* elements(): Return the elements stored in D. Output: iterator of
elements (objects)

e keys(): Return the keys stored in D. Output: iterator of keys
(objects)
* findElement(k): if D contains an item with key == k, then return

the element of that item, else return
NO_ SUCH_KEY. Output: Object

e findAllElements(k): Output: Iterator of elements with key k
* insertltem(k,e): Insert an Item with element e and key k into D.

* removeElement(k): Remove an item with key == k and return it.
1T no such element, return NO_SUCH_KEY
Output: Object (element)

e removeAllElements(k): Remove from D the items with key == k.
Output: iterator of elements.

CSc 115 Dictionaries

Dictionary Interface

public interface Dictionary {
public void insert(Object key, Object el enent);
public Object nenber(Cbj ect key);
public Cbject del ete(Cbject key);
public Enuneration keys();
public Enuneration el enents();
bool ean i sEnmpty();
I nt size();

}

e To implement a generic interface, we also need to compare the search key
against the keys in the dictionary
e Provide an equal s() routine and a Conpar abl e i nterface

I nt equal s(Obj ect x)
I nterface Conparable {.} --- optional, only if the dictionary
I s ordered.

See:

CSc 115 Dictionaries

Abstract Class java.util.Dictionary

e The Dictionary class is the abstract parent of any class, such as Hashtable,
which maps keys to elements

* Any non-null object can be used as a key and as an element

e As arule, the equals method should be used by implementations of this class to
decide if two keys are the same.

public abstract class java.util.Dictionary {
abstract void put(Qobject k, Object v); // inserts key & val ue
abstract Object get(Object k); // returns value for this key
abstract Object renove((Object k); // renoves key & its el enent
abstract Enuneration elenents(); // returns all elenments
abstract Enuneration keys(); // returns enuneration of all keys
bool ean i sEnmpty(); // returns true if dictionary is enpty
abstract int size(); // returns nunber of keys in dictionary

This abstract class is now obsolete....

CSc 115 Dictionaries 6

Interface -- java.util.Map

e Keys must be unigue in the implementing classes of Map

e The method equal s will be used to determine if two keys are
equal - therefore we must hard-code the equal s method
within the key class

Met hod Sunmary

boolean containsKey(Object key) -- Returns true if this map contains a
mappi ng for the specified key.

boolean containsValue(Object value) -- Returns true if this map nmaps
one or nore keys to the specified val ue.

Object get(Objectkey) -- Returns the value to which this map naps
the specified key.

boolean isEmpty() --Returns true if this map contains no key-val ue

mappi ngs.

SetkeySet() -- Returns a set view of the keys contained in this
map.

Object remove(Object key) -- Renobves the mapping for this key from

this map if it is present (optional operation).
int size()) Returns the nunber of key-value mappings in this nap.

CSc 115 Dictionaries 7

Interface -- java.util.Map (2)

e Sentinel value? How is this done for get(k)?

e Returns null if the map contains no mapping for this key.

e But a return value of null does not necessarily indicate that the
map contains no mapping for the key; it's also possible that the map
explicitly maps the key to null.

* The Bool ean cont ai nsKey((bj ect key) operation may be used
to distinguish these two cases...

CSc 115 Dictionaries

Implementing Dictionaries.....

* We will look at:
& Log Files (see Section 8.2 in the book) and
& Hash Tables (see Section 8.3 in the book)

CSc 115 Dictionaries

Log Files

* We could implement a dictionary using an unordered vector, list or
general sequence to store key-element pairs

e Often referred to as a log file or audit file

e If thelog file is

e Each new pair is added to the end of the log file (O(1) cost to add a
new pair)

e A find could require O(n) operations in the worst case

* How much space is required?

* What are some suitable applications for this implementation?

e But for applications that have roughly the same number of finds as
Insertions - this implementation would not be suitable!

CSc 115 Dictionaries 10

Hash Tables

In a hash table, we consider the key of an element its address

Worst case for finding an element in a hash table can still be O(n) -

but in the expected case it could be as good as O(1)... (we will come
back to this....)

e Two major parts of a Hash Table:
& Bucket Arrays (where we put stuff)
& Hash Functions (how we know where to put and find stuff)

CSc 115 Dictionaries 11

Bucket Arrays

* A bucket is a container for each key-element pair

* A bucket array for a hash table is an Array A of size N,
where each cell of A is thought of as a “bucket”

* An element e with key k is simply inserted into the bucket
AlLK]

* Any bucket cells associated with keys not present in the
dictionary hold the special NO_SUCH_KEY object

CSc 115 Dictionaries

12

Bucket Arrays -- 2

e Problems with this?

e Well, if keys are not unique, then >1 element may be mapped
to the same bucket causing a collision... (we will come back to
this....)

e Assuming keys are unique - searches, insertions and removals
take how long?

e But how much space does it use?

* N is not necessarily related to n, the number of items in the
dictionary

° ... So we need a good mapping from our keys to integers in
the range [O,N-1]

CSc 115 Dictionaries 13

Hash Functions

* The hash function h maps each key k in our dictionary to an integer
in the range [0, N-1] - where N is the capacity of the bucket array

e Then we can use h (k) as an index into the bucket array instead of
key k - item (k,e) is stored in A[h (k)]
* A hash function is good if -
& Collisions are minimized as much as possible

& The evaluation of the hashing function is fast and easy to
compute

CSc 115 Dictionaries 14

Hash Functions -- 2

* The hashing function consists of two actions -

& Mapping the key k to an integer - which we call the hash
code

& And then mapping the hash code to an integer within the
rage of indices of the bucket array - we call this the
compression map

CSc 115 Dictionaries 15

Hash Codes...

* Take our arbitrary key k in our dictionary and assign it an integer
value - does not have to be in the range [0O,N-1] or even be a
positive integer

e But the set of hash codes should be as unique as possible to avoid
collisions

* Note the hash codes should be the same for the keys that are the
same (to enable equality testing)

CSc 115 Dictionaries

16

Generating Hash Codes

* The Object class in Java has a default hashCode() method, but we

usually need to override it (could just a representation of the
object’s location in memory)

* For data types that have the same number as bits as an integer,
simply map all the bits to an integer representation
& For byte, short, int and char - cast to int
& For float, convert to an integer by calling
Float.floatTolntBits(x)
* For longer types, we can take the low-order bits and sum all the
high order bits and add it to the low-order bits:
I nt hashCode(long i)
{ return (int)((i >>32) + (int)i);}

CSc 115 Dictionaries 17

String Hash Function: An Example

e Let
& S be a key of type String
& sumbe the sum of the ordinal values of all the charactersin s
& N be the hashtable size
e Then the hashtable index k is
& K = sum % N
 where % is the modulo operator.
e Thus, k isin the range O to N- 1
e Example
s = “ABC
N = 59 (prinme nunber)
sum= ord(‘A) + ord(‘B) + ord(‘C)
= 60 + 61 + 62 = 183
k = sum%N = 183 %59 = 6

CSc 115 Dictionaries

18

Generating Hash Codes -- 2

* Polynomial hash codes may be more suitable for characters or
other multiple-length objects that are tuples

& Suppose we just used the previous summation method for
strings - but comon strings like “pots”, “stop” and “spot” would

collide...

& S0 a better approach is to take into the consideration the
locaiton of each of the letters....

& See p. 345 for more details on how to generate polynomial hash
codes

CSc 115 Dictionaries

19

Compression Maps

* Note, we have generated some integer for each key but we still
need to map onto the range [0, N-1]

* The simplest compression map is :
& h (k) = |k|] mod N
& 1T N is a prime number then the hash function will help evenly

spread out the the distribution of the hashed values and reduce
collisions

* When two keys map to the same index, we have a hash collision

* When a collision occurs, a collision resolution algorithm is used to
establish the locations of the colliding keys

e Designing good hash functions is an art!

CSc 115 Dictionaries 20

Collision Resolution

* If two keys map to the same hashtable index, we have a collision
e Two approaches to resolve collisions
& Separate chaining

e Store all elements which map to the same location in a
linked list

& Open addressing or rehash

 When more than one elements map to the same location

check other cells of the hashtable whether they are free in
a given order

e Linear probing
- inspect k+1, k+2, k+3, ...
e Quadratic probing
— inspect k+1, k+4, k+9, k+16, k+25, k+36, ...

CSc 115 Dictionaries 21

Hashtable

| —
O © 0N O O A W N ~» O

=
N

Separate Chaining

frg

377

415

CSc 115 Dictionaries

22

Load Factor

* We expect each bucket to be of size ?n/N ? -- this parameter is
called the load factor

* The load factor should be bounded by 1, therefore the expected
time for the standard dictionary operations is O(1) -- provided
that n is O(N)

CSc 115 Dictionaries

23

Open Addressing

* The disadvantage of the separate chaining method is that it
requires the implementation of yet another data structure to hold
the items in the log files - it also uses extra space

* There is another approach where we just store at most one
element per bucket!

e Itrequiresthatn<=N
e Two approaches:

& Linear probing

&5 Quadratic probing

CSc 115 Dictionaries

24

Linear Probing

e Linear probing is an open addressing
algorithm

e |ocations are checked from the hash
location k to the end of the table and
the element is placed in the first
empty slot

& I the bottom of the table is
reached, checking “wraps around”
to the start of the table (i.e.,
modulo hashtable size)

0
1
2
3
4
5
6
4
8
9

| deteted |

= =
N =~ O

empty

[deteted |

empty
ABC
XYZ

PQR

empty
s4t
empty

CSc 115 Dictionaries

25

Linear Probing -- 2

Collision resolution factors into
menber (), insert(),
del et e()

Thus, if linear probing is used,
these routines must continue down
the table until a match or empty
location is found

Even though the hashtable size is
a prime number (i.e., 13), this is
probably not an appropriate size;
the size should be at least 30%
larger than the maximum number
of elements ever to be stored in
the table

0
1
2
3
4
5
6
4
8
9

= =
N =~ O

empty

[deteted |

empty
ABC
XYZ

PQR

| deteted |

empty
s4t
empty

CSc 115 Dictionaries

26

Quadratic Probing

e Quadratic probing is another open
addressing algorithm

e |ocations are checked from the hash
location to the end of the table and the
element is placed in the first computed
empty slot

& Instead of probing consecutive
location, we probe the 1st, 4th 9th
16th, etc. ? this is called quadratic
probing

& I the bottom of the table is
reached, checking “wraps around” to
the start of the table (i.e., modulo
hashtable size)

© 00 N O 00 A W N~ O

[=
N = O

empty

empty

!

frg

empty
ABC
XYZ

empty

empty
POR

empty
s4t

empty

CSc 115 Dictionaries

27

Animating collision resolution approaches

CSc 115 Dictionaries

28

