Priority Queues
Heaps and Heapsort

Reading Assignment
Chapter 7

Priority Queues

* A priority queue stores a collection of
prioritized elements
* Applications
911 event queues
&sAirport landing patterns
& Triage in a hospital
* Operations

einsert(), deleteMin()or deleteMax() but not both

esfunctions like member(), search() or find() are not
supported - why?

* Implementation strategies

esLinear lists or sequences
eHeaps

CSc 115 Priority Queues

Priority Queue Interface

public interface PriorityQueue {
void insert(Comparable x);
Comparable deleteMin(); // or deleteMax() instead
Comparable getMin(); // gets min, does not delete it
Int size();
boolean iIsEmpty();

}

* We use an interface to insert any comparable objects
Into our PQ.

CSc 115 Priority Queues

Priority Queue Sort

* The priority queue operations allow for a simple
sorting algorithm by definition

void pgSort(Integer a[]) {

SonmePQ pg = new SonePQ);

for (int k=0; k<a.length; k++) { // first |oop
pg. i nsert(a[k]);

}

k = 0;

while (!'pg.enmpty()){ // second | oop
al k] = pg.deleteM n();
K++;

}

CSc 115 Priority Queues

| 1IMNE bomplexny OT 1IS1
gn@ ir@epﬁt[@“igweue operations

efficiently in a list?
Running time analysis of pgSort() assuming n input
values
First loop
T (n) = n* T(insert)
Second loop
Tgy(n) = n * T(del eteM n)

Total |
Tp(’]((nglel_et-ré r;})) * Tg(n) =n* T(insert) +n
Tu(n) =n* {T(insert) + T(deleteMn)}

Linked list implementation
. Linked list is sorted at insert time
. T(insert) =? O(n)
. T(delete) =? O(1)

. Tpye(n) ?20(n?) + O(n) ? O(N?) & &

CSc 115 Priority Queues

Heap Encoding

* Array representation

* Assume complete binary tree
& All levels are full except possibly the last level
& No holes
& called the Heap shape property

* Heap encoding

&Process the binary tree in level order and enter the
elements in an array starting with array index 1
(zero Is not used)

0 1 2 3 4) 6 I 8 9

a b C d e T h i

g
. Parent of a[k] is at a[k/2]
esLeft child of a[k] is at a[2k]
&Right child of a[k] is at a[2k+1]

CSc 115 Priority Queues 1

Heap Encoding:

* Parent of &5] is at a[5/2] = a[2]
esParent of “e” Is “b”

* Left child of a[3] is at a[2*3] = a[0]
esLeft child of “c” is “f”

* Right child of a[3] is at a[2*3+1] = a[7]
&sRight child of “c” is “g”

CSc 115 Priority Queues 1

Heap Properties

* Shape property
& All levels in a heap are complete except possibly
the last level.
* Order property

& A heap is a binary tree in which the nodes are
labelled with elements of a set such that all
elements in the left and right subtrees of a node
labelled x are greater than or equal to x.

* A Heap is a partially ordered tree

Heap shape
property

Heap
order

property

CSc 115 Priority Queues

DeleteMin operation

The smallest element is the root node

Remove and return root node which is constant time

O(1)

Re-establish shape property

& Move last element in the tree to the root
& Except for the root node, order is fine too
Re-establish order property

&Push the root element, which is out of order, down by

swapping elements until order property is established

R SN
SN0 AR Sk

CSc 115 Priority Queues

1

DeleteMin() -
QercolateDown

sh element 9 down until Heap()rder property is re-
established

Keep on swapping with the smallest child

At most log n swap operations (i.e., # of levels)

Thus, the time complexity of percolateDown() is O(log n)
The time complexity of deleteMin() is also of O(log n)

s
SP6D FOSD /oS

CSc 115 Priority Queues 1

Insert ? percolateUp()

* Insert the element at the first open array position
* Shape property is trivially established

* Push the element up the tree until the order property
IS re-established by swapping with the parent

* At most log n swap operations (i.e., # of levels)
* Thus, the time complexity of insert() is also O(log n)

LN N
SHED /FED F060

éod (1%6 600

CSc 115 Priority Queues 1

Code walkthrough

Heapsort

voi d heapSort(int a[]) {

| nt Heap heap = new | nt Heap();

for (int k=0; k<a.length; k++)
heap.insert(a[k]);

k = 0;

while (!heap.empty()) {
a[k] = heap. del eteM n();
K++;

CSc 115 Priority Queues

HeapSort — Analysis

* Insert() and deleteMin() each take O(log n) time
* The running time of Heapsort is therefore
T,s(n)=nlogn+nlogn=2nlogn

* Hence the time complexity of Heapsort is of
O(n log n)

* Fundamental result of Computer Science
&3Sorting takes O(n log n) time

CSc 115 Priority Queues

Summary

* PriorityQueue

esinsert(), deleteMin() (or deleteMax())
& Applications
& Implementation strategies: list or heap
* PriorityQueue Sort
&sUsing linear list data structure O(n?)
* Heap
&Encoding of a binary tree in an array
& Shape and order property

* deleteMin()
Remove min (root); bubble down by swapping

* insert()

&sInsert at the end of array; bubble up by swapping
* Heapsort

&Using heap data structure O(n log n)

CSc 115 Priority Queues

