Priority Queues
Heaps and Heapsort

Reading Assignment
Chapter 7




Priority Queues

* A priority queue stores a collection of
prioritized elements
* Applications
911 event queues
&sAirport landing patterns
& Triage in a hospital
* Operations

einsert(), deleteMin()or deleteMax() but not both

esfunctions like member(), search() or find() are not
supported - why?

* Implementation strategies

esLinear lists or sequences
eHeaps
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Priority Queue Interface

public interface PriorityQueue {
void insert(Comparable x);
Comparable deleteMin(); // or deleteMax() instead
Comparable getMin(); // gets min, does not delete it
Int size();
boolean iIsEmpty();

}

* We use an interface to insert any comparable objects
Into our PQ.
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Priority Queue Sort

* The priority queue operations allow for a simple
sorting algorithm by definition

void pgSort(Integer a[]) {

SonmePQ pg = new SonePQ);

for (int k=0; k<a.length; k++) { // first |oop
pg. i nsert(a[k]);

}

k = 0;

while ( !'pg.enmpty() ){ // second | oop
al k] = pg.deleteM n();
K++;

}
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efficiently in a list?
Running time analysis of pgSort() assuming n input
values
First loop
T (n) = n* T(insert)
Second loop
Tgy(n) = n * T(del eteM n)

Total |
Tp(’]((nglel_et-ré r;})) * Tg(n) =n* T(insert) +n
Tu(n) =n* {T(insert) + T(deleteMn)}

Linked list implementation
. Linked list is sorted at insert time
. T(insert) =? O(n)
. T(delete) =? O(1)

. Tpye(n) ?20(n?) + O(n) ? O(N?) & &

CSc 115 Priority Queues



Heap Encoding

* Array representation

* Assume complete binary tree
& All levels are full except possibly the last level
& No holes
& called the Heap shape property

* Heap encoding

&Process the binary tree in level order and enter the
elements in an array starting with array index 1
(zero Is not used)

0 1 2 3 4 ) 6 I 8 9

a b C d e T h i

g
. Parent of a[k] is at a[k/2]
esLeft child of a[k] is at a[2k]
&Right child of a[k] is at a[2k+1]

CSc 115 Priority Queues 1



Heap Encoding:

* Parent of &5] is at a[5/2] = a[2]
esParent of “e” Is “b”

* Left child of a[3] is at a[2*3] = a[0]
esLeft child of “c” is “f”

* Right child of a[3] is at a[2*3+1] = a[7]
&sRight child of “c” is “g”
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Heap Properties

* Shape property
& All levels in a heap are complete except possibly
the last level.
* Order property

& A heap is a binary tree in which the nodes are
labelled with elements of a set such that all
elements in the left and right subtrees of a node
labelled x are greater than or equal to x.

* A Heap is a partially ordered tree

Heap shape
property

Heap
order

property
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DeleteMin operation

The smallest element is the root node

Remove and return root node which is constant time

O(1)

Re-establish shape property

& Move last element in the tree to the root
& Except for the root node, order is fine too
Re-establish order property

&Push the root element, which is out of order, down by

swapping elements until order property is established
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DeleteMin() -
QercolateDown

sh element 9 down until Heap()rder property is re-
established

Keep on swapping with the smallest child

At most log n swap operations (i.e., # of levels)

Thus, the time complexity of percolateDown() is O(log n)
The time complexity of deleteMin() is also of O(log n)
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Insert ? percolateUp()

* Insert the element at the first open array position
* Shape property is trivially established

* Push the element up the tree until the order property
IS re-established by swapping with the parent

* At most log n swap operations (i.e., # of levels)
* Thus, the time complexity of insert() is also O(log n)
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Code walkthrough




Heapsort

voi d heapSort(int a[]) {

| nt Heap heap = new | nt Heap();

for (int k=0; k<a.length; k++)
heap.insert(a[k]);

k = 0;

while (!heap.empty()) {
a[ k] = heap. del eteM n();
K++;
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HeapSort — Analysis

* Insert() and deleteMin() each take O(log n) time
* The running time of Heapsort is therefore
T,s(n)=nlogn+nlogn=2nlogn

* Hence the time complexity of Heapsort is of
O(n log n)

* Fundamental result of Computer Science
&3Sorting takes O(n log n) time
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Summary

* PriorityQueue

esinsert(), deleteMin() (or deleteMax())
& Applications
& Implementation strategies: list or heap
* PriorityQueue Sort
&sUsing linear list data structure O(n?)
* Heap
&Encoding of a binary tree in an array
& Shape and order property

* deleteMin()
Remove min (root); bubble down by swapping

* insert()

&sInsert at the end of array; bubble up by swapping
* Heapsort

&Using heap data structure O(n log n)
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