
Priority Queues
Heaps and Heapsort

Reading Assignment
Chapter 7

CSc 115 Priority Queues 1

Priority Queues
• A priority queue stores a collection of

prioritized elements
• Applications
?911 event queues
?Airport landing patterns
?Triage in a hospital

• Operations
?insert(), deleteMin()or deleteMax() but not both
?functions like member(), search() or find() are not

supported - why?
• Implementation strategies
?Linear lists or sequences
?Heaps

CSc 115 Priority Queues 1

Priority Queue Interface
public interface PriorityQueue {

void insert(Comparable x);
Comparable deleteMin(); // or deleteMax() instead
Comparable getMin(); // gets min, does not delete it
int size();
boolean isEmpty();

}

• We use an interface to insert any comparable objects
into our PQ.

CSc 115 Priority Queues 1

Priority Queue Sort
• The priority queue operations allow for a simple

sorting algorithm by definition

void pqSort(Integer a[]) {
SomePQ pq = new SomePQ();
for (int k=0; k<a.length; k++) { // first loop

pq.insert(a[k]);
}
k = 0;
while (!pq.empty()){ // second loop

a[k] = pq.deleteMin();
k++;

}
}

CSc 115 Priority Queues 1

Time Complexity of list
PQ Operations• Can we implement the Priority Queue operations
efficiently in a list?

• Running time analysis of pqSort() assuming n input
values

• First loop
Tfl(n) = n * T(insert)

• Second loop
Tsl(n) = n * T(deleteMin)

• Total
Tpq(n) = Tfl(n) + Tsl(n) = n * T(insert) + n * T(deleteMin)
Tpq(n) = n * {T(insert) + T(deleteMin)}

• Linked list implementation
• Linked list is sorted at insert time
• T(insert) = ? O(n)
• T(delete) = ? O(1)
• Tpq(n) ? O(n2) + O(n) ? O(n2) ??

CSc 115 Priority Queues 1

Heap Encoding
• Array representation
• Assume complete binary tree
?All levels are full except possibly the last level
?No holes
?called the Heap shape property

• Heap encoding
?Process the binary tree in level order and enter the

elements in an array starting with array index 1
(zero is not used)

? Parent of a[k] is at a[k/2]
?Left child of a[k] is at a[2k]
?Right child of a[k] is at a[2k+1]

a

b

d e

c

f g

h i j

jihgfedcba
109876543210

CSc 115 Priority Queues 1

Heap Encoding:
Example
• Parent of a[5] is at a[5/2] = a[2]
?Parent of “e” is “b”

• Left child of a[3] is at a[2*3] = a[6]
?Left child of “c” is “f”

• Right child of a[3] is at a[2*3+1] = a[7]
?Right child of “c” is “g” a

b

d e

c

f g

h i j

jihgfedcba
109876543210

CSc 115 Priority Queues 1

Heap Properties
• Shape property
?All levels in a heap are complete except possibly

the last level.
• Order property
?A heap is a binary tree in which the nodes are

labelled with elements of a set such that all
elements in the left and right subtrees of a node
labelled x are greater than or equal to x.

• A Heap is a partially ordered tree

x

= x = x

Heap
order

property

Heap shape
property

CSc 115 Priority Queues 1

DeleteMin operation
• The smallest element is the root node
• Remove and return root node which is constant time

O(1)
• Re-establish shape property
?Move last element in the tree to the root
?Except for the root node, order is fine too

• Re-establish order property
?Push the root element, which is out of order, down by

swapping elements until order property is established

3
7 6

2
5 6

7 8 9

9

3
7 6

2
5 6

7 8

1

3
7 6

2
5 6

7 8 9

CSc 115 Priority Queues 1

DeleteMin() -
percolateDown()

• Push element 9 down until Heap order property is re-
established

• Keep on swapping with the smallest child
• At most log n swap operations (i.e., # of levels)
• Thus, the time complexity of percolateDown() is O(log n)
• The time complexity of deleteMin() is also of O(log n)

2

3
7 6

9
5 6

7 8

2

3
7 6

5
9 6

7 8

9

3
7 6

2
5 6

7 8

CSc 115 Priority Queues 1

Insert ? percolateUp()
• Insert the element at the first open array position
• Shape property is trivially established
• Push the element up the tree until the order property

is re-established by swapping with the parent
• At most log n swap operations (i.e., # of levels)
• Thus, the time complexity of insert() is also O(log n)

2

3
7 6

5
9 6

7 8 2

2

3
7 2

5
9 6

7 8 6

2

2
7 3

5
9 6

7 8 6

Code walkthrough
•

CSc 115 Priority Queues 1

Heapsort
void heapSort(int a[]) {

IntHeap heap = new IntHeap();
for (int k=0; k<a.length; k++)

heap.insert(a[k]);
k = 0;
while (!heap.empty()) {

a[k] = heap.deleteMin();
k++;

}
}

• insert() and deleteMin() each take O(log n) time
• The running time of Heapsort is therefore

Ths(n) = n log n + n log n = 2 n log n
• Hence the time complexity of Heapsort is of

O(n log n)
• Fundamental result of Computer Science
?Sorting takes O(n log n) time

HeapSort – Analysis

CSc 115 Priority Queues 1

CSc 115 Priority Queues 1

Summary
• PriorityQueue
?insert(), deleteMin() (or deleteMax())
?Applications
?Implementation strategies: list or heap

• PriorityQueue Sort
?Using linear list data structure O(n2)

• Heap
?Encoding of a binary tree in an array
?Shape and order property

• deleteMin()
?Remove min (root); bubble down by swapping

• insert()
?Insert at the end of array; bubble up by swapping

• Heapsort
?Using heap data structure O(n log n)

