October 7 2002

Reading Assignment
Chapter 4




* An iterator is an object that allows us to enumerate or
go through all the elements of a collection or a data
structure

* An iterator object controls iteration of the elements of
a collection
* The Java collections API uses the iterator pattern
extensively
¢ \What if the collection is modified while an iterator is in
use?
&5 Copy: iterator operates on a snapshot taken at instantiation
& fail-fast: iterator throws an exception on the next method call

« flexible: iterator tries to adjust to the changes in a manner
that varies with the collection type




on of iterators

* An iterator object holds a pointer into the data structure

* The pointer is always between elements, that is, between the
element returned last and the element to be returned next

* Thus, for a list the iterator pointer is initialized with head or
tai | when the iterator is constructed and advanced with the
next () or next El enent () call

* Since the iterator is defined as a class, multiple iterators can be
instantiated from it and hence multiple iterators can be used
concurrently on the same data structure

iterator‘. A. A. A. A.




iterators

Oon O

Iterators can be defined separately from the data structure
class or as an inner class of the data structure class

If an iterator is defined as a separate class, then except for
naming conventions and passing the data structure to the
constructor as a parameter, it is not clear to which data
structure it belongs. Also too much information of the
implementation is exposed.

A better strategy is to define the iterator as an inner class
of the data structure. As a result, the iterator is intimately
tied to the data structure and the implementation details
are nicely hidden (i.e., information hiding software
engineering principle is followed).

We first present the better solution, the inner class solution
and then the separate class solution.




class Iterator

public class LinkedList {
private class Locallterator inplenments Enuneration {
private Node cur Node;
public Locallterator() {
cur Node = head;

public bool ean hasMoreEl enents() {
return curNode != null;

}

public Object nextEl enent() {
bj ect ¢ = cur Node;
cur Node = cur Node. get Next () ;
return ((Node)c).getData();

public Enunmeration iterator() {
return new Local lterator();

}

/1 other fields and methods of class LinkedList

}

Really nice thing about thisis that you can have multiple hidden iterators for a class!



Stack s = new Li nkedSt ack();
s. push(new I nteger(4)); s.push(new Integer(7));
s. push(new I nteger(9)); s.push(new String("CSc115"));
s. push(new String("CSc160")); s.push(new Double(3.14));
Enuneration litr = ((LinkedList)s).iterator();
while (litr.hasMoreEl enents()) {
oj ect obj = litr.nextEl enent();
if (obj instanceof Integer) {
int k = ((Integer)obj).intValue();
Systemout.printIn("litr " + k);
} else if (obj instanceof String) {
String str = (String)obj;
Systemout.printIn("litr " + str);
} else {
Systemout.printIn("litr unknown");




public class LinkedListFwterator {
private LinkedList II;
private Node curNode;

public LinkedListFw terator(LinkedList 1) {
this. Il =11;
this.curNode = |1.getHead();

public bool ean hasNext () {
return curNode != null;

}
public Object next() {
bj ect ¢ = cur Node;
cur Node = cur Node. get Next () ;
return ((Node)c).getData();
}
public void remove() {
I'l. del et e(cur Node) ;

}

}




class Iterator

Li nkedLi st FW terator gitr =

new LinkedLi st Fwl terat or ((Li nkedLi st)s);

while (gitr.hasNext()) {

Obj ect obj = gitr.next();

if (obj instanceof Integer) {
int k = ((Integer)obj).intValue();
Systemout.println("gitr " + k);

} else if (obj instanceof String) {
String str = (String)obj;
Systemout.println("gitr " + str);

} else {

Systemout.println("gitr unknown");




* In Eclipse: LinkedList.java (look at Dnode.java also)

e Exercise: With a partner read the code just
handed out and make sure you understand it. Write
on the sheet how you would add another iterator to
the class which does a fifo iteration on the list.




