
Java™ Basics and
Object-based Programming

Part 1, Csc 115 Fall 2002
Dr. Storey

CSc 115 Object-based programming 2

Reading assignment

• Chapter 1 in textbook
• Study Java libraries extensively

? http://java.sun.com/j2se/1.3/docs/api/overview-summary.html
? java.lang

• Boolean, Integer
• Math (PI, max, min, sin, cos, random(), round(), sqrt())
• Object (clone(), equals())
• String (CharAt(), CompareTo(), equals(), length())
• System (println(), print(), flush(), Assignment 1)

? java.io
• BufferedReader (Section 1.6 in textbook)
• Stdin, flush(), readLine()

? java.util
• List, LinkedList, Iterator
• Observer
• Calendar, set(), get() (Assignment 1)
• Hashtable
• Random (Assignment 1)
• Stack

? The more you know what is in these libraries, the less code you have to write.

CSc 115 Object-based programming 3

Topics to be covered….

• Today
? Classes and Objects
? Methods
? Primitive Types
? Variables

• Next class or two
? References
? Parameter passing
? Arrays
? Control Flow
? Input and Output
? Strings
? Expressions, operators

• Followed by….
? Packages
? Castings
? Inheritance
? Interfaces
? Modifiers
? Static members of a class
? Exception

CSc 115 Object-based programming 4

What is an object?

• The main “actors” in an OO programming language are objects
? Objects are alive ?

• They can represent real world objects (such as dogs,
bicycles) or abstract concepts (such as a GUI event)

? Objects have state and behaviour
• State determines everything an object knows
• Behaviour determines all of the actions an object can do

Definition: An object is a software bundle of variables and
related methods.

CSc 115 Object-based programming 5

One view of an object…

CSc 115 Object-based programming 6

An example of an object

CSc 115 Object-based programming 7

Why objects?

• They provide encapsulation of its methods and variables
• Lends to more modular code (information hiding)

CSc 115 Object-based programming 8

Objects communicate via messages

An object's behavior is expressed through its methods therefore message
passing supports interactions between objects

Objects don’t have to be part of the same program or even on the same
machine to send messages to each other

CSc 115 Object-based programming 9

What is a class?

• We often have objects of the same kind (type)
• Using object-oriented terminology, we say that a particular dog

object is an instance of the class of objects known as dogs.
• Dogs have some state in common (number of legs etc) and behavior

(barking ability) in common. However, each dog's state is
independent of and can be different from that of other dogs.

• We can take advantage of the fact that objects of the same kind
are similar and create a blueprint for those objects. A software
blueprint for objects is called a class

Definition: A class is a blueprint, or prototype, that
defines the variables and the methods common to all
objects of a certain kind.

CSc 115 Object-based programming 10

Classes and objects

• Every object is an instance of a class

• A class consists of members
? There are two categories of class members

• Fields or variables
• Methods

? Methods of an object operate (i.e., access, modify) on its fields

? A class defines types for all of its fields and variables
? The type of a field can be a primitive type or reference to a

user defined type

CSc 115 Object-based programming 11

Class members

• Fields
? Data associated with an object
? Represent and store the state of an object
? The type of an field or a parameter can be primitive or reference
? All fields are initialized to default values automatically
? Examples

public int k = 17;
public Point p = new Point(17,12);

• Methods
? Define the behaviour of the objects instantiated from that class
? Methods are also called functions or procedures (no return types)

void doNothing() { }
ComplexNumber makeComplex(double r, double i){ /* … */
int findSock(Color c, Socks[] a) { /* … */ }
double[] getGrades() { /* … */ }

CSc 115 Object-based programming 12

Our first piece of code…

• Let’s look at how to write a very class in Java….
• An Interactive programming session:

FirstClass.java

• Recap:
?FirstClass – defines blueprint for a set of

objects of type FirstClass
?Let’s add another instance…. Now we have two

instances (objects) of type FirstClass

CSc 115 Object-based programming 13

Class declaration

Syntax

[modifiers] class ClassName [extends SuperClassName]
[implements Interface1, Interface2, …] {
class member declarations;

}

Legend:
[] – optional
Bold – keywords

Note: identifiers (must begin with a letter or any other unicode character)

CSc 115 Object-based programming 14

Accessing members

• Dot notation
• Accessing instance members

objectName.classMember
objectName.field
objectName.method()

CSc 115 Object-based programming 15

Methods

• Every method in Java has to be specified in the body of some class
• 2 parts:
? Signature: defines the name and parameters (note, not the

return type)
? Body: what the method actually does for a living

• Syntax:
[<method-modifiers>] <return_type> <method_name>

([param_type param1, ….] {
// method body

}
• Note: Use the keyword void if there are no return types

CSc 115 Object-based programming 16

Constructors

• A special type of method
• Instantiates and initializes objects
• Has same name as the class
• A class can have many constructors; all have the same name, but all

signatures must be different
• A public, no-argument constructor is provided by the Java run-time

environment if the class does not define one
• Can only be called using new

Syntax:
[construct_modifiers] <constructor_name> ([<param_list>) {

// constructor body
}

Notice anything different from other methods?

CSc 115 Object-based programming 17

main() method

• The main entry point of a Java program
• This is the first routine called by the operating system
• Specific signature:

public static void main(String[] args) { … }
• Each class can have a main() routine for testing purposes

CSc 115 Object-based programming 18

Statement blocks and local variables

• A statement block is in between { }
• Method bodies and statement blocks can have statement blocks

nested within them
• Local variables (either a base type or reference to an instance of

some class) can be used within statement blocks

CSc 115 Object-based programming 19

Primitive types

• Primitive types are defined by the language:
? byte, short, int, long, float, double, boolean, char

• All primitive types have literals
? A literal is an unnamed constant value
? Examples

• You can wrap primitive data inside objects, if necessary
• Sometimes useful to treat all variables uniformly

Integer intWrapper = new Integer(3);
int i = intWrapper.intValue();

’\’’’\\’’\n’’c’char
falsetrueboolean
.42e2f42.0ffloat

42d4.2e142.42.0double
0x2a05242int

CSc 115 Object-based programming 20

Storage allocation for variables

• Allocating an object
String name;
Abc k;

• Allocating a cell for a variable of a primitive type
int j;
double d;

• Instantiation and initialization
j = 3;
d = 3.14159;
name = “Bette”;
k = new Abc();

• Variables of primitive types always given an initial value whenever
an object containing them is created (O for all, except boolean
which is set to false)

CSc 115 Object-based programming 21

Variables Quiz
int sumSquares(int n) {

partialSum = 0;

int i;

while (i <= n) {
int square = i*i;
partialSum += square;
i++;

}

System.out.println(”last square = ” + square);

return partialSum;
}

CSc 115 Object-based programming 22

Identifiers and Reserved Words

• Identifiers are used as names for variables, constants, classes,
methods, etc.

• Must follow certain rules:
? must begin with a letter
? may contain additional letters and digits
? all characters are significant
? case sensitive
? must not conflict with a reserved word

CSc 115 Object-based programming 23

Identifier Quiz

goto

? ? ? ?

Rect$1

_12
NO_VALUE
Double
longint
long
MEDIUM
salary%
4you
sum

Valid?Identifier

CSc 115 Object-based programming 24

Naming conventions

• Variables, fields, parameters
? Mixed case, start with lower case

• k
• inputMode

• Classes, constructors
? Mixed case, start with upper case

• Person
• Clock

• Constants
? All upper case
? PI, MAXNUMBER, LASTINDEX

• Methods
? Mixed case, start with lower case, parenthesis

• getAge()
• setUserID()

• Packages
? All lower case

• awt
• swingx
• project

