
Java™ Basics and
Object-based Programming

CSc 115 Object-based programming 2

Reading assignment

• Chapter 1 in textbook, try some of the exercises and the tutorials online
• Study Java libraries extensively

? http://java.sun.com/j2se/1.3/docs/api/overview-summary.html
? java.lang

• Boolean, Integer
• Math (PI, max, min, sin, cos, random(), round(), sqrt())
• Object (clone(), equals())
• String (CharAt(), CompareTo(), equals(), length())
• System (println(), print(), flush(), Assignment 1)

? java.io
• BufferedReader (Section 1.6 in textbook)
• Stdin, flush(), readLine()

? java.util
• List, LinkedList, Iterator
• Observer
• Calendar, set(), get() (Assignment 1)
• Hashtable
• Random (Assignment 1)
• Stack

? The more you know what is in these libraries, the less code you have to write.

CSc 115 Object-based programming 3

Topics to be covered today and next day….

• Done so far….
? Classes and Objects
? Methods
? Primitive Types
? Variables

• Today (if time)
? Recap
? References
? Parameter passing
? Program comments
? Arrays
? Strings
? Control Flow
? Expressions, operators
? Input and Output
? Strings

• Followed by…. (on Wed/Thurs)
? Packages
? Castings
? Inheritance
? Interfaces
? Modifiers
? Static members of a class
? Exceptions

CSc 115 Object-based programming 4

Reference types

• Two kinds
? Classes
? Arrays (will look at later)

• String class (will also discuss later)
String hello = String(“hello”);
String hello = ”hello”; // short form
hello.charAt(1); // returns ’e’

CSc 115 Object-based programming 5

Creating or instantiating objects

• An object is created from a defined class using the new operator
• new allocates storage for the object on the heap and returns a

reference to the object
• An object can be declared anywhere (even within a for loop)
• An object can be accessed from its declaration to the end of the

block
? this is called its scope
? a block ends at its closing curly brace “}”

• An object must be assigned a value before it can be read

reference
HeapHeap

Storage
allocated
for object

objectName

CSc 115 Object-based programming 6

Creating or instantiating objects

• Syntax
objectName = new ConstructorClassName(paramters);

• Example
Point p = new Point (4,7);

Constructor
parameters

constructor

class name
(type)

object name
(variable)

operator

CSc 115 Object-based programming 7

Creating or instantiating objects

• Example
Point p = new Point (4, 7);

p

Allocated
on the heap

reference object data
4
7

Allocated
on the stack

or heap

CSc 115 Object-based programming 8

Dot Operator

<object_reference>.<method_name([param1, param2, …]);

Or

<object_reference>.<field_name> [= ….;]

CSc 115 Object-based programming 9

An interactive programming example!

• Point.java

CSc 115 Object-based programming 10

Summary of object allocation

• When new is called three things occur…
1. A new object is dynamically allocated in memory and all

instance variables are initialized to standard default values
2. Constructor for the new object is called with the parameters

specified
3. When the constructor returns, the new operator returns a

reference (memory address) to the newly created object

CSc 115 Object-based programming 11

Parameters

• All method parameters are passed by value
• As a result

? a parameter of a primitive type is input-only (i.e., its
value is input into the method)

?A parameter of reference type is input-and-output (i.e.,
the data of an object parameter can be changed by the
method and the changes are visible to the caller of the
method)

CSc 115 Object-based programming 12

Parameters (2)

• Example – interactive programming exercise (Parameter.java)
void abc(int k; Point q) {

k++; q.x++; q.y--;
System.out.println(k, q.x, q.y);

}

int j = 17; Point p = new Point(3,7);
System.out.println(j, p.x, p.y);
abc(j, p);
System.out.println(j, p.x, p.y);

Output:
17 3 7
18 4 6
17 4 6

CSc 115 Object-based programming 13

A Trick Question or?

Look at this code, what do you think the output should be:

(See TrickyParameterPassing.java)

static void ChangePoint(Point q) {
Point tempP = new Point(1,1);
// q = tempP;
q.x = 1; q.y = 1;
q.PrintPoint();

}
// testing references, what happens?
Point testp = new Point(5,5);
testp.PrintPoint();
ChangePoint(testp);
testp.PrintPoint();

CSc 115 Object-based programming 14

Summary of classes – another example

• Another Example if time (Course.java)
public class Course {

// two fields and two methods
private int noStudents;
private String instructor;
public Course(int k, String s) {

noStudents = k; instructor = s; }
public int getNoStudents() { return noStudents;
}

public String getInstructor() { return
instructor; }

}

CSc 115 Object-based programming 15

Program Comments

• Importance of….
• Inline
• Block
• Javadoc
• Assignments – your code must be clearly and verbosely commented!

Use Javadoc!

CSc 115 Object-based programming 16

Arrays

• An array is a numbered collection of components all of the same
type

• Each component has an index

• The indices range from 0 to length-1

• Every array has a length field (e.g., a.length)

• An index outside this range is referred to as out of bounds and
generates an IndexOutOfBounds exception

• Component types can either be primitive or reference (e.g., classes
or arrays)

• See the book for a discussion of multi-dimensional arrays

CSc 115 Object-based programming 17

Arrays (2)

• Examples

int [] a;
a = new int[5];
a[0] = 42;
a[1] = b[4];
String[] answers = {“yes”, “no”};
Color[] col = new Color[5];
col[0] = new Color();
int [] b = {12, -15, 42, 12, 10};
b[5] = 11; // error, throws IndexOutOfBoundsException
b.length == 5; // b.length returns 5; expression is true

CSc 115 Object-based programming 18

Strings

• A string is a set of characters that comes from some alphabet
• Each character c that makes up a string s can be referenced by its

index in the string (= to the # of characters that comes before c
in s, so 1st character is at index 0)

• In Java, our alphabet is the 16 bit unicode international character
set (most other languages use a subset of this called ASCII)

• Java has a special built-in class of objects called String objects (so
String is not an array)

CSc 115 Object-based programming 19

Storage allocation for variables revisited

• Allocating an object or an array reference
String name;
Abc k;
int[] a;
Point[] p;

• Allocating a cell for a variable of a primitive type
int j;
double d;

• Instantiation and initialization
j = 3;
d = 3.14159;
name = “Bette”;
k = new Abc();
a = {1, 1, 3, 5, 9, 15, 25, 41, 67, 109};
p = new Point[10];

CSc 115 Object-based programming 20

Control Flow — If

if (condition) {
statements_1;

} else {
statements_2;

}

• the condition must be a boolean expression
• if it is true, the first block is executed
• otherwise, the second block is executed if present
• execution then resumes after the end of the if statement

CSc 115 Object-based programming 21

Control Flow — Switch

switch (expression) {
case constant_1:

statements_1;
break;

case constant_2:
statements_2;
break;

// …
default:

statements_default;
}

• the expression must be of
type char, byte, short or
int

• each case label must be a
unique constant

• code is executed starting at
the case label whose constant
matches the value of the
expression

• if no constant matches, the
default block is executed

• code is executed until a break
statement (or the end of the
switch) is reached

CSc 115 Object-based programming 22

Switch Quiz

int n = (int) (Math.random()*7)+2;
boolean isPrime;
switch (n) {

case 2: isPrime = true; break;
case 3: isPrime = true; break;
case 4: isPrime = false;
break;
case 5: isPrime = true; break;
case 6: isPrime = false;
break;
case 7: isPrime = true; break;
case 8: isPrime = false;
break;

}
System.out.println(n + ” is ” +

(isPrime ? ”” : ”not ”) +
”prime”);

int n = (int) (Math.random()*7)+2;
boolean isPrime;
switch (n) {

}
System.out.println(n + ” is ” +

(isPrime ? ”” : ”not ”) +
”prime”);

A switch that determines if a number between 2 and 8 is prime.

CSc 115 Object-based programming 23

Control Flow — While

while (condition) {
statements;

}

• the condition must be a boolean expression
• if it is true, the statements are executed, then the condition is

evaluated again
• if it is false, execution resumes after the end of the while

statement

do {
statements;

} while (condition);

• as above, but the statements are executed at least once

CSc 115 Object-based programming 24

Control Flow — For

for (initialization ; condition ; increment) {
statements;

}
• is equivalent to

initialization;
while (condition) {

statements;
increment;

}

• often used for iterating over the elements of an array
• the initialization statements can contain a variable declaration:

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

CSc 115 Object-based programming 25

Control Flow — Break and Continue

• allows you to change the flow of a for, while, or a do while loop
? break will immediately exit the loop
? continue will skip ahead to evaluating the loop’s condition

• Example
? Given an array of “sock pair objects” (i.e., a pair can have 1, 2

socks of the same color)
? return the first index of a pair of socks (i.e., two socks) that

matches a given color

int findPairOfSocks(Color c, Socks[] a) {
for (int i = 0; i < a.length; i++) {

if (a[i].isOneSockLost()) continue;
if (a[i].matchesColor(c)) break;

}
return i < a.length ? i : -1;

}

if not a pair,
keep looking

if match,
stop looking

if no match,
return -1

CSc 115 Object-based programming 26

Expressions

• Expressions are needed to define new values and to modify
variables

• They involve the use of variables, literals and operators

CSc 115 Object-based programming 27

Arithmetic Operators

• Assignment operator: i = j = 5;
• Arithmetic operators:

? +, -, * , /
?% modulo – n mod m = n – ?n/m?m
?Unary minus (inverts the sign of an arithmetic expression

• See book (p. 22) for precedence chart, use ()’s to change
precedence

CSc 115 Object-based programming 28

Arithmetic Operators (2)

• ++ increments
• -- decrements
• If prefix, then value is increased by one before the operation
• If postfix, then the value is increased by one after the operation

CSc 115 Object-based programming 29

Operational Assignment Operators

• Instead of
<variable> = <variable><op><expression> i = i + 5;

• We can do
<variable> <op>= <expression> i += 5;

CSc 115 Object-based programming 30

Logical Operators

• Comparison between numbers
• < == != <= >= >
• ++ and !+ can be used to compare object references (result is a

boolean)
• Operators that operate on boolean values are:

? ! Not (prefix)
? && Conditional And
? || Conditional Or
? Note: these will not evaluate the second operand if it is not

needed (useful if first test not true would generate an error
condition with the second test)

CSc 115 Object-based programming 31

String Operators

• String concatenation is done using ‘+’ operator
? String rug = “carpet”; String dirt = “spot”;
? String mess = rug + dirt;
? String answer = mess + “ yuck”;
? Answer is “carpetspot yuck”

• Note we can’t do the following:
? If (string1 = string2) { …}
? Need to do: if (string1.equals(string2)) {…}

CSc 115 Object-based programming 32

Input and output

• Java provides a rich set of classes for performing i/o
• Java provides classes for simple text i/o using a console window

import java.io.*;
• Java also provides i/o using a Graphical User Interface (GUI)

import java.awt.*; // for drawing
import javax.swing.*; // for widgets

CSc 115 Object-based programming 33

Simple text I/O

• Output to the console:
? Very useful for debugging logical errors in your program.
? System.out is a static object of type PrintStream

• print(), and println() methods take the following
arguments:

– Any object (provided it has a toString()) method
– Any string or concatenated strings
– Any base type (automatically cast to String)

• Input from the console
? must import java.io.*;
? System.in is an object of type InputStream (abstract class)

• inputs bytes only (crude)
? InputStreamReader translates bytes to characters.

• API recommends wrapping an InputStreamReader within a
BufferedReader

• See page 35 of text

CSc 115 Object-based programming 34

Simple text I/O

import java.io.*;
BufferedReader inp;
String line;
inp = new BufferedReader(new InputStreamReader(System.in));
System.out.print(“Type a double: “);
System.out.flush();
if ((line = inp.readLine()) != null) {

double d = Double.valueOf(line).doubleValue();
System.out.print(“Type an int: “);
System.out.flush();
if ((line = inp.readLine()) != null) {

int k = Integer.valueOf(line).intValue();
double sum = d + k;
System.out.println(“Sum is “ + sum);

