Java™ Basics and
Object-based Programming

Reading assignment

e Finish Chapter 1 and start on chapter 2!

CSc 115 Object-based programming

Topics to be covered....

e So far

Classes and Objects
Methods

Primitive Types
Variables
References
Parameter passing
Arrays

Control Flow

b

R & & B & & R

Today (and tomorrow ...)

&5

R & &R R &R R

b

Expressions, operators
(see part2 notes)

Castings

Input and Output

Strings

Packages

Inheritance (intro)
Modifiers

Static members of a class

e Next (may start tomorrow)
& Designing your programs

Interfaces

&
&
&
& EXceptions

Object oriented design
Inheritance in Java

CSc 115 Object-based programming

Casting

* \We can take a variable of one type and cast it into a variable of
another type

e Syntax:
(<desired_type>)<variable>;
e.g. double age = 0.0; (int)age;
e 2 types of casting (base types and wrt objects)

Interactive examples: Casting.java

CSc 115 Object-based programming

Casting and base types

e double -> int (may lose precision, does not round up, but truncates)
 E.g

doubl e d1 = 3. 2;

doubl e d2 = 3. 99;

int 11 = (int)dl, // 11 =3

int 12 = (int)d2; [/ 12 3

doubl e d3 = (double)dl; // d3 = 3.0

CSc 115 Object-based programming

Casting with operators

* Must do the cast before the operator does its job

int i1l =3; int 12 = 6; double dresult;
dresult = (double)il/(double)i2; // dresult = 0.5
dresult =11/12; [/ dresult = 0.0

[l this last |ine perfornmed an integer division
[l which is then inplicitly cast to a double result

CSc 115 Object-based programming

Implicit Casting
e Need to be careful!

Int result, 1 = 3;
d

doubl e dresult, = 3. 2;

dresult =1i/d; [/ dresult?
iresult =1i/d; [/ iresult?
Systemout.printin("dresult is : " + dresult);
Systemout.printin("iresult is : " + iresult);

e General rule: play it safe, explicitly cast!!!

CSc 115 Object-based programming

Implicit Casting with String Objects

* There is one situation in Java when only implicit casting is allowed
& String concatenation!

& Any time a string is concatenated with any object or base type,
that object or base type is automatically converted to a string

& Examples:
String s = (string)4.5; [// wong!
String u = 22, [l u = *"22", correct.

String u = (int)22; // is this ok?

/1l But could do
String u = Integer.toString(22);
[l O inmplicitly cast!

CSc 115 Object-based programming

Input and output

e Java provides a rich set of classes for performing i/o

e Java provides classes for simple text i/o using a console window
| nport java.io.*;

e Java also provides i/0 using a Graphical User Interface (GUI)
| nport java.awt.*; // for draw ng
| nport javax.swing.*; // for w dgets

CSc 115 Object-based programming

Simple text Output

* Qutput to the console:

& Very useful for debugging logical errors in your program! And
just for understanding the different features in Java

& Syst em out is a static object of type java.io.Pri nt Stream

& The PrintStream cl ass defines nethods for a
buf f ered out put stream where the characters are
put in a tenporary |ocation called a buffer, which
Is then enptied into the Java consol e wi ndow

e print(), and printl n() methods take the following
arguments:

— Any object (provided it hasatoStri ng()) method
— Any string or concatenated strings
— Any base type (automatically cast to String)

CSc 115 Object-based programming 10

Simple text Input

Input from the console

& mustinport java.io.*;

& System i n is an object of type InputSt r eam (abstract class)
e inputs bytes only (crude)

& | nput St r eanReader translates bytes to characters.

e API recommends wrapping an | nput St r eanReader within a
Buf f er edReader

java.io. Buf f eredReader stndin;

stndin = new java.i o. Buf f eredReader (new
java.io. |l nput StreanReader (Systemin));

String input = *";
/[l to hold the user's reply to play again
| nput = stndin.readLi ne();

CSc 115 Object-based programming

11

Text Input cont.

* readLine() - reads a string of characters up to a newline which is
not included in the return String (if input is empty, it returns Null)

* read() - reads a single character, if input stream is at the end, it
returns a -1’

e See P. 35 for more details and try some examples!

* These methods also raise an error condition if an input error occurs
* For now use this code (we will discuss exceptions later!)

try {

answer =
| nt eger. val ue (st ndi n.readLine()).intValue();

} catch (1 OException e) {
}

our Casi no. pl ayAl | SI ot Machi nes(answer) ;

CSc 115 Object-based programming 12

The surroundings of a class

e Package
& A class belongs to a named package or the default package
package csccllb5assi gnnent 1,
&5 A class can import packages
| nport javax.sw ng. *;
| nport java.io.*;

e Inheritance
& A class can extend another class (i.e., be a subclass)
public class Manager extends Enpl oyee { ...}
public class Mdel extends Cbhservable { ...}
& A class can be a superclass for another class

* Interfaces
& A class can implement an interface
public class TextView inplenents Cbserver {

CSc 115 Object-based programming

13

Packages

e Large software systems have many more classes than lines of code
per class. Thus, organizing classes is as important as programming
individual classes.

e Java offers the notion of a package to aggregate related classes.

e C(Classes are assigned to a package using a package directive before
the class declaration:

package packagenane;
package assi gnment 3;
e Package names are usually in all lower case.

e Using the i nport directive, packages can be imported (i.e., made
available) to classes.

| nport packagenane. *;
| mport assi gnnent 3. *;

CSc 115 Object-based programming 14

Inheritance, Is-a, Class Hierarchy

java.lang.Object

JAN

Shape

N

FreeformShape

Polygon Oval
JANERVAN A\
Triangle Rectangle Circle
/)
Square

CSc 115 Object-based programming

15

Inheritance Relationship

e Subclass
& extends a superclass definition with new fields or methods
& inherits the fields and methods of the superclass
& modifies the meaning of the superclass
& forms an is-a relationship with its superclass

* (Genealogical terminology
& the parent of a class is its superclass
& the children of a class are its immediate subclasses
& the ancestors of a class are its parents, and their parents...

& the descendants of a class are its children, and their children...

* Since each class has only one parent, this is single inheritance
e The classes form an inheritance or is-a hierarchy
* In Java, the Object class is the root of this hierarchy

CSc 115 Object-based programming

16

Data Modeling: Inheritance Quiz

* Arrange the classes below into an inheritance hierarchy

Human

java.lang.Object

Animal

Elephant

Herbivore

Tomato
Plant Cow
Organism
Hawk
TyrannosaurusRex
Carnivore
CherryTomato

CSc 115 Object-based programming

17

Data Modeling: Inheritance Quiz

* Arrange the classes below into an inheritance hierarchy

Huma

Animal

java.lang.Object

Elephynt

g omato
. N\ Cow
Plan > A
Ls; j.

Sl

~-

AHOSauUro A:\

Wk

CherryTomato

CSc 115 Object-based programming

18

Data Modeling: Inheritance Quiz

* Arrange the classes below into an inheritance hierarchy

java.lang.Object

Organism
Animal Plant
/\
Herbivore Carnivore Tomato
Elephant Cow | | TyrannosaurusRex | | Hawk Human CherryTomato

CSc 115 Object-based programming 19

Inheriting and Extending

e A subclass inherits both data (fields) and behavior (methods)

& Inherited members can be accessed as if they were present in
the subclass itself

&5 constructors and private members are not inherited
e Overriding a superclass method

& A subclass can redefine a superclass method by using the same
signhature

* Overloading of a method

2 A method in the same class or a subclass with the same name
but different signature

CSc 115 Object-based programming

20

Classic shape inheritance hierarchy

Circle Rectangle

Square

Interactive examples: Shape.java, Square.java

CSc 115 Object-based programming 21

Class modifiers

Class modifiers are optional keywords preceding the class keyword.
abstract

& The class has at least one abstract method (an abstract
method has no method body and is preceded by abstract
modifier).

& A class with only final instance variables and only abstract
methods is called an interface

final

& A final class cannot be subclassed

public

& A public class can be instantiated or extended by anything in
the same package or anything that imports this class.

& Each public class is declared in a separate file; downloadable
component.

friendly (default - if no modifier is specified)
& Can be used and instantiated by all classes in the same package

Interactive examples: FriendlyClasses.java, Final.java

CSc 115 Object-based programming 22

public, protected, private, and package modifiers

These modifiers apply to both fields and methods
public

& Any method can access public members
protected

& Only methods of the same package or subclasses can access
protected members

private

& Only methods of the same class can access private members
(not even methods in subclasses can access private members!)

friendly - default (no modifier)

& Members, which are not public, protected, or private, are called
package members

& Only methods in the same package can access package members

Interactive examples: Protected.java, TestingPrivateMethods.java

CSc 115 Object-based programming 23

Constructors -- revisited

e The abstract, static, and final modifiers are not allowed for
constructors

e A public, no-argument constructor is provided by the Java run-time
environment if the class does not define one

CSc 115 Object-based programming 24

Usage modifiers -- fields

e gstatic

& A static variable is associated with its class, is shared by all
objects of its class, and its storage exists once (i.e., with the
class rather than all the objects)

e final

& A Tinal variable must be initialized and is read-only after
initialization (i.e., it is constant)

& Final variables are usually also declared static so that storage
Is allocated only once for an entire class

& The naming convention for final variables is all upper case
& Tinal variables are often declared in interfaces

& Final variables that point to objects will always point to the
same object (even if it changes state)

Interactive examples: UsageModifiers.java

CSc 115 Object-based programming 25

Usage modifiers -- methods

e gstatic

& A static method is associated with its class and is shared by all
objects of its class (i.e., with the class rather than all the
objects)

& The static fields should only be changed by static methods (as
long as the fields are not declared as final)

* final
& A final method cannot be overridden by a subclass.

Interactive examples: UsageModifiers.java

CSc 115 Object-based programming 26

Classes and Instances of Classes

e C(Class variables (e.g. numberOfGears) are used to hold state
common to all instances

e C(Class methods can be invoked from a class, but instance methods
must be called using a particular instance (see these later)

currentspeed = 15
currentCadence = 90

numberfCears = 18 numberfCears = 15

currentCear = 2

Bilke YourBilke

Class Instance of a Class

Interactive examples: StaticMethod.java

CSc 115 Object-based programming 27

static members

e Example
public class Node {
private static int noCbjects = O;
private int id;
public Node(int k) { id=k; noObjects++ }
public static int getNoCbjects() {
return noQbj ects;

}

}
System out . printl n(Node. noCbjects()); // O

Node nl = new Node(17);
System out. printl n(Node. noQbjects()); // 1
Node n2 = new Node(22);
System out . printl n(Node. noQbjects()); // 2
Node n3 = new Node(29);
System out . printl n(Node. noCbjects()); // 3

CSc 115 Object-based programming

static field

e Execute program

nl
n2
n3

H

noODbjects

17

22

29

CSc 115 Object-based programming

29

Notes....

e \We can both static and final modifiers

e But only one scope modifier (can't say it will be both public and
private, but we can say a member will be both final and static)

CSc 115 Object-based programming

30

Usage modifiers -- methods

* abstract
& An abstract method has no body.

& The parameter list is followed by a semicolon to terminate the
abstract method declaration.

& abstract methods may only appear within an abstract class.
& abstract methods are typically overridden by subclasses.

Interactive examples: Abstractmethods.java

CSc 115 Object-based programming 31

Modifiers (Quiz)

Modifier

Can be applied to

Classes Fields | Methods

public

2CCOSS protected

modifiers (default)

private

static

final

abstract

CSc 115 Object-based programming

32

Other Modifiers

&« Ssynchronized, native, transient, volatile,
strictfp

CSc 115 Object-based programming

33

Accessing members -- revisited

e Dot notation

e Accessing instance members
obj ect Nane. cl assMenber
obj ect Nane. fiel d
obj ect Nane. net hod()

* Accessing static members
cl assNane. cl assMenber
cl assNane. field
cl assNane. net hod()

CSc 115 Object-based programming

34

