
Java™ Basics and
Object-based Programming

CSc 115 Object-based programming 2

Reading assignment

• Finish Chapter 1 and start on chapter 2!

CSc 115 Object-based programming 3

Topics to be covered….

• So far
? Classes and Objects
? Methods
? Primitive Types
? Variables
? References
? Parameter passing
? Arrays
? Control Flow

• Today (and tomorrow …)
? Expressions, operators

(see part2 notes)
? Castings
? Input and Output
? Strings
? Packages
? Inheritance (intro)
? Modifiers
? Static members of a class

• Next (may start tomorrow)
? Designing your programs
? Object oriented design
? Inheritance in Java
? Interfaces
? Exceptions

CSc 115 Object-based programming 4

Casting

• We can take a variable of one type and cast it into a variable of
another type

• Syntax:
(<desired_type>)<variable>;
e.g. double age = 0.0; (int)age;

• 2 types of casting (base types and wrt objects)

Interactive examples: Casting.java

CSc 115 Object-based programming 5

Casting and base types

• double -> int (may lose precision, does not round up, but truncates)
• E.g.

double d1 = 3.2;
double d2 = 3.99;
int i1 = (int)d1; // i1 = 3
int i2 = (int)d2; // i2 = 3
double d3 = (double)d1; // d3 = 3.0

CSc 115 Object-based programming 6

Casting with operators

• Must do the cast before the operator does its job

int i1 = 3; int i2 = 6; double dresult;
dresult = (double)i1/(double)i2; // dresult = 0.5
dresult = i1/i2; // dresult = 0.0

// this last line performed an integer division
// which is then implicitly cast to a double result

CSc 115 Object-based programming 7

Implicit Casting

• Need to be careful!

int result, i = 3;
double dresult, d = 3.2;

dresult = i/d; // dresult?
iresult = i/d; // iresult?

System.out.println("dresult is : " + dresult);
System.out.println("iresult is : " + iresult);

• General rule: play it safe, explicitly cast!!!

CSc 115 Object-based programming 8

Implicit Casting with String Objects

• There is one situation in Java when only implicit casting is allowed
? String concatenation!
? Any time a string is concatenated with any object or base type,

that object or base type is automatically converted to a string
? Examples:

String s = (string)4.5; // wrong!
String u = 22; // u = “22”, correct.

String u = (int)22; // is this ok?

// But could do
String u = Integer.toString(22);

// Or implicitly cast!

CSc 115 Object-based programming 9

Input and output

• Java provides a rich set of classes for performing i/o
• Java provides classes for simple text i/o using a console window

import java.io.*;
• Java also provides i/o using a Graphical User Interface (GUI)

import java.awt.*; // for drawing
import javax.swing.*; // for widgets

CSc 115 Object-based programming 10

Simple text Output

• Output to the console:
? Very useful for debugging logical errors in your program! And

just for understanding the different features in Java
? System.out is a static object of type java.io.PrintStream
? The PrintStream class defines methods for a

buffered output stream where the characters are
put in a temporary location called a buffer, which
is then emptied into the Java console window

• print(), and println() methods take the following
arguments:

– Any object (provided it has a toString()) method
– Any string or concatenated strings
– Any base type (automatically cast to String)

CSc 115 Object-based programming 11

Simple text Input

• Input from the console
? must import java.io.*;
? System.in is an object of type InputStream (abstract class)

• inputs bytes only (crude)
? InputStreamReader translates bytes to characters.

• API recommends wrapping an InputStreamReader within a
BufferedReader

java.io.BufferedReader stndin;
stndin = new java.io.BufferedReader(new

java.io.InputStreamReader(System.in));
String input = “”;

// to hold the user's reply to play again
input = stndin.readLine();

CSc 115 Object-based programming 12

Text Input cont.

• readLine() – reads a string of characters up to a newline which is
not included in the return String (if input is empty, it returns Null)

• read() – reads a single character, if input stream is at the end, it
returns a ‘-1’

• See P. 35 for more details and try some examples!

• These methods also raise an error condition if an input error occurs
• For now use this code (we will discuss exceptions later!)

try {
answer =

Integer.valueOf(stndin.readLine()).intValue();
} catch (IOException e) {
}
ourCasino.playAllSlotMachines(answer);

CSc 115 Object-based programming 13

The surroundings of a class

• Package
? A class belongs to a named package or the default package

package cscc115assignment1;
? A class can import packages

import javax.swing.*;
import java.io.*;

• Inheritance
? A class can extend another class (i.e., be a subclass)

public class Manager extends Employee { … }
public class Model extends Observable { … }

? A class can be a superclass for another class

• Interfaces
? A class can implement an interface

public class TextView implements Observer { … }

CSc 115 Object-based programming 14

Packages

• Large software systems have many more classes than lines of code
per class. Thus, organizing classes is as important as programming
individual classes.

• Java offers the notion of a package to aggregate related classes.
• Classes are assigned to a package using a package directive before

the class declaration:
package packagename;
package assignment3;

• Package names are usually in all lower case.
• Using the import directive, packages can be imported (i.e., made

available) to classes.
import packagename.*;
import assignment3.*;

CSc 115 Object-based programming 15

Inheritance, Is-a, Class Hierarchy

Shape

Rectangle

Oval FreeformShapePolygon

Triangle

Square

java.lang.Object

Circle

CSc 115 Object-based programming 16

Inheritance Relationship

• Subclass
? extends a superclass definition with new fields or methods
? inherits the fields and methods of the superclass
? modifies the meaning of the superclass
? forms an is-a relationship with its superclass

• Genealogical terminology
? the parent of a class is its superclass
? the children of a class are its immediate subclasses
? the ancestors of a class are its parents, and their parents…
? the descendants of a class are its children, and their children…

• Since each class has only one parent, this is single inheritance
• The classes form an inheritance or is-a hierarchy
• In Java, the Object class is the root of this hierarchy

CSc 115 Object-based programming 17

Data Modeling: Inheritance Quiz

• Arrange the classes below into an inheritance hierarchy

Organism

java.lang.Object

Animal

Plant

Herbivore Carnivore

TyrannosaurusRex

CherryTomato

Cow
TomatoHuman

HawkElephant

CSc 115 Object-based programming 18

Data Modeling: Inheritance Quiz

• Arrange the classes below into an inheritance hierarchy

Organism

java.lang.Object

Animal

Plant

Herbivore Carnivore

TyrannosaurusRex

CherryTomato

Cow
TomatoHuman

HawkElephant

CSc 115 Object-based programming 19

Data Modeling: Inheritance Quiz

• Arrange the classes below into an inheritance hierarchy

Organism

java.lang.Object

Animal Plant

Herbivore Carnivore Tomato

TyrannosaurusRex CherryTomatoCow HumanHawkElephant

CSc 115 Object-based programming 20

Inheriting and Extending

• A subclass inherits both data (fields) and behavior (methods)
? inherited members can be accessed as if they were present in

the subclass itself
? constructors and private members are not inherited

• Overriding a superclass method
? A subclass can redefine a superclass method by using the same

signature
• Overloading of a method

? A method in the same class or a subclass with the same name
but different signature

CSc 115 Object-based programming 21

Classic shape inheritance hierarchy

Shape

Circle Rectangle

Square

Interactive examples: Shape.java, Square.java

CSc 115 Object-based programming 22

Class modifiers

• Class modifiers are optional keywords preceding the class keyword.
• abstract

? The class has at least one abstract method (an abstract
method has no method body and is preceded by abstract
modifier).

? A class with only final instance variables and only abstract
methods is called an interface

• final
? A final class cannot be subclassed

• public
? A public class can be instantiated or extended by anything in

the same package or anything that imports this class.
? Each public class is declared in a separate file; downloadable

component.
• friendly (default – if no modifier is specified)

? Can be used and instantiated by all classes in the same package

Interactive examples: FriendlyClasses.java, Final.java

CSc 115 Object-based programming 23

public, protected, private, and package modifiers

• These modifiers apply to both fields and methods
• public

? Any method can access public members
• protected

? Only methods of the same package or subclasses can access
protected members

• private
? Only methods of the same class can access private members

(not even methods in subclasses can access private members!)
• friendly – default (no modifier)

? Members, which are not public, protected, or private, are called
package members

? Only methods in the same package can access package members

Interactive examples: Protected.java, TestingPrivateMethods.java

CSc 115 Object-based programming 24

Constructors -- revisited

• The abstract, static, and final modifiers are not allowed for
constructors

• A public, no-argument constructor is provided by the Java run-time
environment if the class does not define one

CSc 115 Object-based programming 25

Usage modifiers -- fields

• static
? A static variable is associated with its class, is shared by all

objects of its class, and its storage exists once (i.e., with the
class rather than all the objects)

• final
? A final variable must be initialized and is read-only after

initialization (i.e., it is constant)
? final variables are usually also declared static so that storage

is allocated only once for an entire class
? The naming convention for final variables is all upper case
? final variables are often declared in interfaces
? final variables that point to objects will always point to the

same object (even if it changes state)

Interactive examples: UsageModifiers.java

CSc 115 Object-based programming 26

Usage modifiers -- methods

• static
? A static method is associated with its class and is shared by all

objects of its class (i.e., with the class rather than all the
objects)

? The static fields should only be changed by static methods (as
long as the fields are not declared as final)

• final
? A final method cannot be overridden by a subclass.

Interactive examples: UsageModifiers.java

CSc 115 Object-based programming 27

Classes and Instances of Classes

• Class variables (e.g. numberOfGears) are used to hold state
common to all instances

• Class methods can be invoked from a class, but instance methods
must be called using a particular instance (see these later)

Interactive examples: StaticMethod.java

CSc 115 Object-based programming 28

static members
• Example

public class Node {
private static int noObjects = 0;
private int id;
public Node(int k) { id=k; noObjects++ }
public static int getNoObjects() {

return noObjects;
}

}
System.out.println(Node.noObjects()); // 0
Node n1 = new Node(17);
System.out.println(Node.noObjects()); // 1
Node n2 = new Node(22);
System.out.println(Node.noObjects()); // 2
Node n3 = new Node(29);
System.out.println(Node.noObjects()); // 3

CSc 115 Object-based programming 29

static field

• Execute program

n1 17

n2 22

n3 29

0noObjects 1noObjects 2noObjects 3noObjects

CSc 115 Object-based programming 30

Notes….

• We can both static and final modifiers
• But only one scope modifier (can’t say it will be both public and

private, but we can say a member will be both final and static)

CSc 115 Object-based programming 31

Usage modifiers -- methods

• abstract
? An abstract method has no body.
? The parameter list is followed by a semicolon to terminate the

abstract method declaration.
? abstract methods may only appear within an abstract class.
? abstract methods are typically overridden by subclasses.

Interactive examples: Abstractmethods.java

CSc 115 Object-based programming 32

Modifiers (Quiz)

abstract
final
static
private
(default)
protected
public

MethodsFieldsClasses
Can be applied to

Modifier

access
modifiers

CSc 115 Object-based programming 33

Other Modifiers

? synchronized, native, transient, volatile,
strictfp

CSc 115 Object-based programming 34

Accessing members -- revisited

• Dot notation
• Accessing instance members

objectName.classMember
objectName.field
objectName.method()

• Accessing static members
className.classMember
className.field
className.method()

