
Object-oriented Design

Reading Assignment
Chapters 1-2

CSc 115 Object-based programming 2

Topics to be covered….

• So far
? Review of basic 110 material

• Next…
? Designing your programs
? Object oriented design
? Inheritance in Java
? Interfaces
? Exceptions

CSc 115 Object-based programming 3

Designing Software

• How do we solve a large problem?
? break it down into smaller ones

• Top-down design
• Divide and conquer
• Separation of concerns
• Stepwise refinement

? if some of the problems have already been solved, identify
existing components that can be reused

? when the problems are small enough, solve them directly
• How do we divide a problem?
? By identifying functionality
? By identifying classes (data and code)
? By identifying reusable components
? By separating concerns

CSc 115 Object-based programming 4

Basic Idea

• The class:
? It has attributes that uniquely define an object.

• instance variables
? It allows some access to other classes

• through public methods
? It allows internal activities

• through private methods and variables

• An object can be anything we imagine it to be:
? A computer interpretation of a tangible thing

• car, cartoon drawing, check out line
? A collection of data
? A single data item

CSc 115 Object-based programming 5

What is good design?

• Objective
? Identifying classes (i.e., fields and methods)

• Software engineering principles
? Encapsulation

• Package data and access functions
• Abstract data types (ADTs)
• Localize changes

? High cohesion among the members of a class
• Lots of dependencies among the methods and fields of a

class
? Low coupling among classes

• Classes communicate by calling each others’ methods

CSc 115 Object-based programming 6

What is good design? (2)

? Small interfaces
• Keep parameters lists short (i.e., 0 to 3 parameters)
• For longer lists, pack the list into a class/object

? Information hiding
• Keep the fields as private, protected, or package if possible
• Provide get() and set() functions for private, protected, and

package fields

CSc 115 Object-based programming 7

Design techniques

• Identifying responsibilities and behaviours
? Divide the work among different actors, each with a different

responsibility (i.e., verb)
? Striving for independence; define the work for each class to be

as independent from each other as possible; each class should
have some autonomy

? Define the behaviour (i.e., methods) of class so that it is easily
understood by other classes; the set of methods of a class
constitutes the protocol of a class

CSc 115 Object-based programming 8

Design techniques (2)

• CRC
? Component-responsibility-collaborator cards
? Index cards
? Left: responsibilities of the component
? Right: collaborators of the component

• UML
? Unified Modeling Language
? Industry standard

• Goodrich & Tamassia, p. 42-43

CSc 115 Object-based programming 9

UML – Class diagrams example

CSc 115 Object-based programming 10

CRC cards

CSc 115 Object-based programming 11

A Simple Object-Oriented Design Technique
• Start with a statement of the problem to be solved.
? Circle or colour all the important-looking nouns

• they become candidates for classes and fields
? Underline or colour all the important-looking verbs

• they become candidates for methods
? Put them together into coherent classes

• write a short description for each class
? Identify relationships among the classes
? If classes share characteristics, extract them into

superclasses (i.e., generalization)

• If your descriptions or relationships use vocabulary not yet
identified, iterate through the process.

CSc 115 Object-based programming 12

Design Quiz

The registrar’s office is upgrading its course registration system to be

written in Java. Students can enroll in courses being offered, but

each course has an enrollment limit: once this is reached, all further

registrants are placed on a waiting list. Students can also withdraw

from a course they are enrolled in.

CSc 115 Object-based programming 13

Strategies for Unit Testing

• Unit testing
? The practice of testing a single method or class, separately

from the overall program in which it is used
• Important things to test for
? API of a class (methods, parameters)
? Proper initialization of fields
? Boundary conditions (e.g., array bounds, off by one)
? Error conditions
? Execution paths (statement coverage)

• Using println() and toString() for debugging purposes
? Design this ability in from the start like other requirements
? Write/override the toString() method for each class
? You can then print before-after pictures in your test code

• Code inspection and code walk-throughs

CSc 115 Object-based programming 14

Bottom-Up Testing

• Why is bottom-up testing a useful approach?
? the smaller the piece of code being tested, the easier it is to

locate and fix bugs
? if the code being tested has dependencies, those dependencies

are also tested
? so start at the bottom, with the smallest possible modules and

fewest dependencies
• Classes are tested from the bottom to the top of the class

hierarchy
• If a group of modules forms a dependency cycle, you can only test

the cluster as a whole—so avoid creating dependency cycles!

Bottom-Up Testing Order Principle:
Whenever possible, before testing a given method X, test
all methods that X calls or that prepare data that X uses.

CSc 115 Object-based programming 15

Top-Down Testing

• Why would you want to do this?
? when working in a team, layers are often implemented in parallel
? A component may depend on others that aren’t available yet
? Don’t wait for others before starting testing; use stubs

• How to do it?
? stub out any dependencies of your component: fake realistic

results with a minimum of effort
? the stub might:

• return a very small number of hard-coded items
• only be able to deal with your specific test data

• Stubbing out components can also be useful in breaking dependency
cycles, allowing the co-dependent components to be tested
individually

CSc 115 Object-based programming 16

Integration, Acceptance and Regression Testing

• When unit testing is complete, you must test the interactions of
the classes with integration testing

• When the project is complete, you often have to run a final
acceptance test before the customer officially accepts your work

• Once a system is released into service, it enters the maintenance
phase of its lifecycle
? in this phase, more bugs are discovered and fixed, and new

features added
? as things change, you want to do regression testing to make

sure that the changes don’t break previously working code
? it’s useful to have a suite of test drivers that can automatically

run all unit and integration tests, and report on the results
? note: it’s very common for fixes or upgrades to interfere with

seemingly unrelated code

CSc 115 Object-based programming 17

Assertions

• An assertion is the statement of a fact that should be true at a
given point in the execution of a program
? assertions can be written as comments, to document the code:

count--;
// assert: count >= 0

? they can be written as code, to verify assumptions at runtime:
count--;
if (!(count >= 0)) throw new AssertionFailure();

• An assertion at the beginning of a method is called a precondition
? it will often validate the method’s arguments

• An assertion at the end of a method is called a postcondition
? it will often validate the method’s work and/or result

• When assertions are stated using a formal logical language, it’s
sometimes possible to prove a program’s correctness; this is called
verification

