
Object-oriented Design

Reading Assignment
Chapters 1-2



CSc 115 Object-based programming 2

Topics to be covered….

• So far
? Review of basic 110 material

• Next…
? Designing your programs
? Object oriented design
? Inheritance in Java
? Interfaces
? Exceptions
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Designing Software

• How do we solve a large problem?
? break it down into smaller ones

• Top-down design
• Divide and conquer
• Separation of concerns
• Stepwise refinement

? if some of the problems have already been solved, identify 
existing components that can be reused

? when the problems are small enough, solve them directly
• How do we divide a problem?
? By identifying functionality
? By identifying classes (data and code)
? By identifying reusable components
? By separating concerns
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Basic Idea

• The class:
? It has attributes that uniquely define an object.

• instance variables
? It allows some access to other classes

• through public methods
? It allows internal activities

• through private methods and variables

• An object can be anything we imagine it to be:
? A computer interpretation of a tangible thing

• car, cartoon drawing, check out line
? A collection of data
? A single data item
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What is good design?

• Objective
? Identifying classes (i.e., fields and methods)

• Software engineering principles
? Encapsulation

• Package data and access functions
• Abstract data types (ADTs)
• Localize changes

? High cohesion among the members of a class
• Lots of dependencies among the methods and fields of a 

class
? Low coupling among classes

• Classes communicate by calling each others’ methods
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What is good design? (2)

? Small interfaces
• Keep parameters lists short (i.e., 0 to 3 parameters)
• For longer lists, pack the list into a class/object

? Information hiding
• Keep the fields as private, protected, or package if possible
• Provide get() and set() functions for private, protected, and 

package fields
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Design techniques

• Identifying responsibilities and behaviours
? Divide the work among different actors, each with a different 

responsibility (i.e., verb)
? Striving for independence; define the work for each class to be 

as independent from each other as possible; each class should 
have some autonomy

? Define the behaviour (i.e., methods) of class so that it is easily 
understood by other classes; the set of methods of a class 
constitutes the protocol of a class
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Design techniques (2)

• CRC
? Component-responsibility-collaborator cards
? Index cards
? Left: responsibilities of the component
? Right: collaborators of the component

• UML
? Unified Modeling Language
? Industry standard

• Goodrich & Tamassia, p. 42-43
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UML – Class diagrams example
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CRC cards
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A Simple Object-Oriented Design Technique
• Start with a statement of the problem to be solved.
? Circle or colour all the important-looking nouns

• they become candidates for classes and fields
? Underline or colour all the important-looking verbs

• they become candidates for methods
? Put them together into coherent classes

• write a short description for each class
? Identify relationships among the classes
? If classes share characteristics, extract them into 

superclasses (i.e., generalization)

• If your descriptions or relationships use vocabulary not yet 
identified, iterate through the process.
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Design Quiz

The registrar’s office is upgrading its course registration system to be 

written in Java.  Students can enroll in courses being offered, but 

each course has an enrollment limit:  once this is reached, all further 

registrants are placed on a waiting list.  Students can also withdraw 

from a course they are enrolled in.
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Strategies for Unit Testing

• Unit testing
? The practice of testing a single method or class, separately 

from the overall program in which it is used
• Important things to test for
? API of a class (methods, parameters)
? Proper initialization of fields
? Boundary conditions (e.g., array bounds, off by one)
? Error conditions
? Execution paths (statement coverage )

• Using println() and toString() for debugging purposes
? Design this ability in from the start like other requirements
? Write/override the toString() method for each class
? You can then print before-after pictures in your test code

• Code inspection and code walk-throughs
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Bottom-Up Testing

• Why is bottom-up testing a useful approach?
? the smaller the piece of code being tested, the easier it is to 

locate and fix bugs
? if the code being tested has dependencies, those dependencies 

are also tested
? so start at the bottom, with the smallest possible modules and 

fewest dependencies
• Classes are tested from the bottom to the top of the class 

hierarchy
• If a group of modules forms a dependency cycle, you can only test 

the cluster as a whole—so avoid creating dependency cycles!

Bottom-Up Testing Order Principle:
Whenever possible, before testing a given method X, test
all methods that X calls or that prepare data that X uses.



CSc 115 Object-based programming 15

Top-Down Testing

• Why would you want to do this?
? when working in a team, layers are often implemented in parallel
? A component may depend on others that aren’t available yet
? Don’t wait for others before starting testing; use stubs

• How to do it?
? stub out any dependencies of your component:  fake realistic 

results with a minimum of effort
? the stub might:

• return a very small number of hard-coded items
• only be able to deal with your specific test data

• Stubbing out components can also be useful in breaking dependency 
cycles, allowing the co-dependent components to be tested 
individually
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Integration, Acceptance and Regression Testing

• When unit testing is complete, you must test the interactions of
the classes with integration testing

• When the project is complete, you often have to run a final 
acceptance test before the customer officially accepts your work

• Once a system is released into service, it enters the maintenance 
phase of its lifecycle
? in this phase, more bugs are discovered and fixed, and new 

features added
? as things change, you want to do regression testing to make 

sure that the changes don’t break previously working code
? it’s useful to have a suite of test drivers that can automatically 

run all unit and integration tests, and report on the results
? note:  it’s very common for fixes or upgrades to interfere with 

seemingly unrelated code



CSc 115 Object-based programming 17

Assertions

• An assertion is the statement of a fact that should be true at a 
given point in the execution of a program
? assertions can be written as comments, to document the code:

count--;
// assert:  count >= 0

? they can be written as code, to verify assumptions at runtime:
count--;
if (!(count >= 0)) throw new AssertionFailure();

• An assertion at the beginning of a method is called a precondition
? it will often validate the method’s arguments

• An assertion at the end of a method is called a postcondition
? it will often validate the method’s work and/or result

• When assertions are stated using a formal logical language, it’s
sometimes possible to prove a program’s correctness; this is called 
verification


