
Object-Oriented Programming
and Design

Part II

CSc 115 Introduction 0-2

Object-based vs. object-oriented programming

• So far, we did mostly object-based programming
? Classes, objects, instantiating objects, this
? calling methods
? has-a and part-of relationships (i.e., fields)

• Object-oriented programming = object-based +
? Subclass, extends, superclass, super(), protected
?Assignment of subclass object to superclass var

i.e. casting
? Inheritance or is-a hierarchies
?Abstract classes and methods
? Polymorphism (i.e., calling generic methods)
?Method overriding in a subclass (i.e., method in a subclass

with the same name)
? Inheritance hierarchies are used to express commonality,

abstraction and facilitate reuse

CSc 115 Introduction 0-3

Inheritance, Is-a, Class Hierarchy

Shape

Rectangle

Oval FreeformShapePolygon

Triangle

Square

java.lang.Object

Circle

CSc 115 Introduction 0-4

Data Modeling: Result Inheritance Quiz

• Arrange the classes below into an inheritance hierarchy

Organism

java.lang.Object

Animal Plant

Herbivore Carnivore Tomato

TyrannosaurusRex CherryTomatoCow HumanHawkElephant

CSc 115 Introduction 0-5

Inheritance Relationships review

• Subclass
? extends a superclass definition with new fields or methods
? inherits the fields and methods of the superclass
? modifies the meaning of the superclass
? forms an is-a relationship with its superclass

• A subclass inherits both data (fields) and behavior (methods)
? inherited members can be accessed as if they were present in

the subclass itself
? Subclasses have access to the public, protected and package

members of its superclasses
? Subclass methods and other methods of other classes in the

same package have access to protected members
? constructors and private members are not inherited

CSc 115 Introduction 0-6

Inheriting and Extending -- review

• Overriding a superclass method
? A subclass can redefine a superclass method by using the same

signature
• Overloading of a method
? A method in the same class or a subclass with the same name

but different signature

CSc 115 Introduction 0-7

Overriding and Overloading

extendsdifferentinstance or static field

extendsdifferentsamestatic method

extendsanydifferentinstance or static method

hidessameinstance or static field

hidessamesamestatic method

overloadsdifferentsameinstance method

overridessamesameinstance method

EffectArgument types
and return type

NameSubclass member kind

CSc 115 Introduction 0-8

super, this

• This and super are references
• The keyword super refers to the parent class within which super

appears
• The keyword this refers to the object of the class within which

this appears

CSc 115 Introduction 0-9

Two kinds of method overriding

• Replacement
? A method completely replaces the method of the superclass

that is overridden (e.g., a toString() routine in every subclass).
• Refinement
? The superclass method is not replaced but rather refined, that

is, code is added to the superclass method. This is accomplished
by first calling the superclass method (e.g., super.abc())

? All subclass constructors use the refinement method. This is
called constructor chaining. Each subclass constructor begins
its execution by first calling its superclass constructor (i.e.,
super())

• There is one exception to this….

Interactive programming exercise: MyClass2.java

CSc 115 Introduction 0-10

Inheritance Quiz

• For each member of class B, state the effect of each member,
that is, overrides, overloads, hides, or extends

class A {
protected String name;
public static int getCount() {return 1;}
public String toString() {return name;}
private void doStuff() { … }
public Object getStuff() { … }

}

class B extends A {
public StringBuffer name = new StringBuffer(toString());
public static int getCount() {return 2;}
public String toString(String suffix) {

name.append(suffix); return name.toString();
}
public void doStuff() { … }
protected String getStuff() { … }

}

CSc 115 Introduction 0-11

Type Polymorphism
• a method declared in a superclass is overridden in the subclass
• you have an instance of the subclass that did the override, but it's

referenced by a variable of the type of the superclass…
• Which actual method implementation will be called?

class Oval extends Shape {
public String toString() {

return "Oval";
}

}

class Shape {
public String toString() {

return "Shape";
}

}

public static void main(String[] args) {
Shape shape = new Shape();
Oval oval = new Oval();
shape.toString(); // prints Shape
oval.toString(); // prints Oval
shape = oval;
shape.toString(); // prints ?
}

Interactive programming exercises: Oval.java; Wind2.java

CSc 115 Introduction 0-12

Polymorphism – why?

• Polymorphism deals with decoupling in terms of types.
• We already saw how inheritance allows the treatment of an object

as its own type or its base type.
• This allows many types (derived from the same base type) to be

treated as if they were one type, and a single piece of code to work
on all those different types equally.

• The polymorphic method call allows one type to express its
distinction from another, similar type, as long as they’re both
derived from the same base type.

• Polymorphism is possible because of late or dynamic binding
• Polymorphism allows us to more easily extend our programs – it

allows us to separate the things that will change in our programs to
the things that won’t change

CSc 115 Introduction 0-13

Subtyping and Substitutability

• Whenever an instance of a class is expected, you can always
substitute an instance of one of its descendants

Shape s = new Rectangle(); // ok
Circle c = new Circle(); // ok
s = c; //ok
s = doMagic(c); //ok

• But you cannot substitute an instance of one of its ancestors, or of
an unrelated class

Rectangle r = new Polygon(); //run-time error
r = new Circle(); //run-time error
r = doMagic(r); //run-time error

Shape doMagic(Shape s) {
…
return new Square();

}

CSc 115 Introduction 0-14

Overriding Details -- summary

• Constructors
? are not inherited
? in a subclass, every constructor must call a superclass

constructor as its first operation
• called constructor chaining
• super(); is usually (implicitly) called first in every subclass

constructor
• Regular methods
? Overridden methods can completely replace the super class’s

method or can refine the method by calling
super.method(arguments) within the subclass method

• static methods
? Cannot be overridden, but can be hidden

• abstract methods
? Must be overridden unless the subclass is also abstract

CSc 115 Introduction 0-15

Classic shape inheritance hierarchy

Shape

Circle Rectangle

Square

CSc 115 Introduction 0-16

Class Shape -- revisited

public abstract class Shape {

// forces all subclasses to implement a method area()
public abstract double area();
public abstract double circumference();

// toString() can be overriden by subclasses;
// toString() could also be declared abstract;
// if a subclass does not implement a toString()
// method, then it will output "Shape"
public String toString() { return "Shape"; }

}

CSc 115 Introduction 0-17

Class Circle

//this class has no toString() method
public class Circle extends Shape {

protected int r;

public Circle(int r) { super(); this.r = r; }

public double area() { return r*r*Math.PI; }

public double circumference() { return (r+r)*Math.PI; }
}

CSc 115 Introduction 0-18

Class Rectangle
public class Rectangle extends Shape {

protected int width;
protected int height;

// constructor
public Rectangle(int width, int height) {

this.width = width; this.height = height;
}
public double area() { return width*height; }
public double circumference() {

return width+width + height + height;
}

// override the toString() method of Shape
public String toString() { return "Rectangle"; }

}

CSc 115 Introduction 0-19

Class Square

public class Square extends Rectangle {

public Square(int side) { super(side, side); } // calls Rectangle’s
// constructor

public double area() { return width*width; }

public String toString() { return "Square"; }

}

CSc 115 Introduction 0-20

Class Geometry

public class Geometry {

public static void main(String[] args) {
Shape[] s = new Shape[10]; // holds any shapes
// an object of a subclass can be treated as an object of its superclass
s[0] = new Circle(5); s[1] = new Circle(10); s[2] = new Circle(20);
s[3] = new Circle(30); s[4] = new Rectangle(10,20);
s[5] = new Rectangle(5, 10); s[6] = new Rectangle(3, 4);
s[7] = new Square(10); s[8] = new Square(20); s[9] = new Square(5);
for (int k=0; k<s.length; k++) {

// polymorphism, dynamic method binding
System.out.println(k + " " + s[k].toString() + " a=" +

(int)(s[k].area()) + " c=" + (int)(s[k].circumference()));
}

}
}

CSc 115 Introduction 0-21

Output produced by main() in class Geometry

0 Shape a=78 c=31
1 Shape a=314 c=62
2 Shape a=1256 c=125
3 Shape a=2827 c=188
4 Rectangle a=200 c=60
5 Rectangle a=50 c=30
6 Rectangle a=12 c=14
7 Square a=100 c=40
8 Square a=400 c=80
9 Square a=25 c=20

CSc 115 Introduction 0-22

Casting

• What if you want to substitute an instance of what looks like an
ancestor, but you know is really a descendant?

Shape s = new Rectangle();
Rectangle r = (Rectangle)s; // we can do this!
Square q = (Square)s; // what about this?

• You must explicitly state that the instance is actually of a
substitutable type
? this is called casting (or, more specifically, downcasting)
? this can fail at compile-time if what you state is completely

impossible:
Square q = (Square) new Circle(); // error

? usually, your statement is checked at runtime; if it's wrong, a
ClassCastException is thrown

CSc 115 Introduction 0-23

Casting Quiz

• Insert appropriate casts where needed, mark invalid statements:

class Holder {
private Object o;
Holder() {}
void set(Object o) {

this.o = o;
}
Object get() {

return o;
}

}

Shape shape;
Square square;
Oval oval;

oval = new Oval();
shape = oval;
square = oval;
square = shape;
shape = new Square();
square = shape;

Holder h = new Holder();
h.set(square);
shape = h.get();
oval = h.get();
h.set(h.get());

CSc 115 Introduction 0-24

Casting Quiz

• Insert appropriate casts where needed, mark invalid statements:

class Holder {
private Object o;
Holder() {}
void set(Object o) {

this.o = o;
}
Object get() {

return o;
}

}

Shape shape;
Square square;
Oval oval;

oval = new Oval(); // ok
shape = oval; // ok
square = oval; // error
Square = shape; // error
shape = new Square(); // ok
square = (Square) shape; //cast

Holder h = new Holder();
h.set(square);
shape = (Shape) h.get(); //cast
oval = h.get(); // error
h.set(h.get());

CSc 115 Introduction 0-25

UVic inheritance hierarchy

UVicPerson

AdministratorProfessorInstructor

FacultyStaff

StudentEmployeeAlumni

CSc 115 Introduction 0-26

Class UVicPerson

public abstract class UVicPerson {
protected String first;
protected String last;
protected long id;

public UVicPerson(String last, String first) {
this.last = last; this.first = first;
this.id = (long)(Math.random()*1000000);

}

public String toString() {
return “ " + last + ", " + first + ", " + id;

}
}

CSc 115 Introduction 0-27

Class Employee

public abstract class Employee extends UVicPerson {
protected double salary;
public Employee(String last, String first) {

super(last, first);
}
public Employee(String last, String first, double salary) {

super(last, first);
this.salary = salary;

}
public String toString() {

return "" +
super.toString() + ", " +
(int)salary;

}
public abstract void work();

}

CSc 115 Introduction 0-28

Classes Faculty and Staff

public abstract class Faculty extends Employee {
public Faculty(String last, String first) {

super(last, first);
}
public Faculty(String last, String first, double salary) {

super(last, first, salary);
}

}

public class Staff extends Employee {
public Staff(String last, String first) {

super(last, first);
}
public Staff(String last, String first, double salary) {

super(last, first, (double)(Math.random()*100000));
}
public void work() { System.out.println("I admin"); }

}

CSc 115 Introduction 0-29

Classes Administrator and Professor

public class Administrator extends Faculty {
public Administrator(String last, String first) {

super(last, first);
}
public void work() {

System.out.println("I admin");
}

}

public class Professor extends Faculty {
public Professor(String last, String first) {

super(last, first);
salary = (double)(Math.random()*100000);

}
public Professor(String last, String first, double salary) {

super(last, first, salary);
}
public void work() {

System.out.println("I research, teach and admin");
}

}

CSc 115 Introduction 0-30

Class Instructor

public class Instructor extends Faculty {
public Instructor(String last, String first) {

super(last, first);
salary = (double)(Math.random()*100000);

}
public Instructor(String last, String first, double salary) {

super(last, first, salary);
}
public void work() { System.out.println("I teach and admin"); }

}

CSc 115 Introduction 0-31

Classes Student and Alumni

public class Student extends UVicPerson {
public Student(String last, String first) {

super(last, first);
}

}

public class Alumni extends UVicPerson {
public Alumni(String last, String first) {

super(last, first);
}

}

CSc 115 Introduction 0-32

Class UVicCommunity

public class UVicCommunity {

public static void main(String[] args) {
UVicPerson[] p = new UVicPerson[100];
p[0] = new Student(“Smith", “John"); p[1] = new Student(“Carlson", "Brian");
p[2] = new Student(“Gannon", “David"); p[3] = new Student("Cuche", "Didier");
p[4] = new Alumni(“Gosling", “Richard"); p[5] = new Alumni("Parnas", “Gene");
p[6] = new Professor("Muller", "Hausi"); p[7] = new Professor("Stege", "Ulrike");
p[8] = new Professor("Ellis", "John"); p[9] = new Instructor("Bultena", "Bette");
for (int k=0; k<10; k++) {

// polymorphism, generically process
// all objects of a class hierarchy
System.out.println(p[k].toString());
// determining the actual type of the object
if (p[k] instanceof Employee) {

// dynamic method binding
((Employee)p[k]).work(); // cast to Employee

}
}

}
}

CSc 115 Introduction 0-33

Output produced by main() in class UVicCommunity

Smith, John, 511250
Carlson, Brian, 2446
Gannon, David, 205344
Cuche, Didier, 945873
Gosling, Richard, 569145
Parnas, Gene, 662656
Muller, Hausi, 985427, 83142
I research, teach and admin
Stege, Ulrike, 192916, 44089
I research, teach and admin
Ellis, John, 475706, 15197
I research, teach and admin
Bultena, Bette, 437523, 87410
I teach and admin

CSc 115 Introduction 0-34

Abstract classes and methods

• An abstract class may contain abstract methods
• An abstract method is a method with no body (i.e., simply a

semicolon after the parameter list)
• An abstract method constitutes a protocol or contract, that is,

regular or non-abstract subclasses are required to implement the
abstract methods of superclasses

• Thus, if a superclass has an abstract method, it guarantees that all
subclasses (even future subclasses) implement this method

• For example, an abstract toString() method in a class forces all its
subclasses to implement a toString() method

Interactive programming exercises: Wind2.java revisited

