Object-Oriented Programming
and Design

Part 111




Topics in this section

e Abstract classes review
e Interfaces, multiple inheritance
e Inner classes introduced
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Abstract classes and methods

* An abstract class may contain abstract methods

e An abstract method is a method with no body (i.e., simply a
semicolon after the parameter list)

* An abstract method constitutes a protocol or contract, that is,
regular or non-abstract subclasses are required to implement the
abstract methods of superclasses

e Thus, if a superclass has an abstract method, it guarantees that all
subclasses (even future subclasses) implement this method

* For example, an abstract toString() method in a class forces all its
subclasses to implement a toString() method

| nteractive programming exercises. Wind2.java revisited
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Interfaces (1)

e Defined using the keyword “interface” instead of “class” -- Both
interface and class names are types in Java

* Interfaces contain
& Only abstract methods
& public static final fields (i.e., constants)
e All membersofaninterface arepublic by default
* A Java interface can be used in the same way as a Java class
e Just like abstract classes, interfaces cannot be instantiated
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Interfaces (2)

* Interfaces are basically abstract classes except
& All methods inani nterface are abstr act
& An abstract class may contain non-abstract methods

& Thus, some methods of an abstract cl ass may be
implemented

2 No methods of ani nt er f ace may be implemented
e Aclassinplenents aninterface by
& Declaring that it i npl enents thei nterface
class X inplenents | { ...}

& Defining (or providing) implementations of all the i nterface
methods
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Interfaces (3)

e An interface may ext end one or more interfaces
| nterface Stack extends List, Conparable { ...}
I nterface Container extends Collection { ...}

* When aclassi npl enent s an interface method, it must implement
Its exact signhature

e Interfaces form their own inheritance hierarchy

* A class may implement multiple interfaces and extend one or zero
classes

& This is essentially multiple inheritance
class X inplenments 11, 12 { ...}
class X extends Ainplenents 11, 12 { ...}

* The relationships induced by ext ends and i npl enent s are all is-a
relationships (so we can do upcasting!)
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| nteractive programming
exercise. Music.java
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Defining and implementing interface Comparable

public interface Conparable {
I nt conpareTo(Cbject x); [/ public by default!

public abstract class Shape inplenents Conparabl e {
publ i c abstract double area();
public int conpareTo(Object x) { // provides inplenentation
Shape s = ( Shape) x;
double diff = area() — s.area();
I f (diff == 0) return O;
else if (diff < 0) return -1;
el se return 1;
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Multiple inheritance in more detail....

* We can have multiple inheritance in Java without some of the
sticky issues faced in other languages (such as C++)

* There is only one implementation, so we know which method should
be run
shstract or Concrete mterﬁacel
Base Class | e,
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Base Class Funchons |interface 1 | interface 2 | ... | iInterface n

|nteractive programming exercise: Adventure.java
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Separating the What from the How

Complexity is a big problem in software engineering
We can control complexity by:

& Separating concerns

& Breaking software into smaller, simpler pieces

& Making sure that each piece knows only what other pieces do,
not how they do it

e Abstraction, information hiding, encapsulation
e High coupling within components
e Low coupling among components
Benefits of this approach:
& ease of use
& ease of modification
& Ease of maintenance and evolution
Java interfaces separate the what from the how (reduce coupling)

Java classes encapsulate all that is necessary to implement an
interface (increase cohesion)
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Interface relationships
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Interface relationships
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e Sorting interface
# Implemented by different sorting algorithms (e.g., Quicksort,
Heapsort, Insertionsort, Bubblesort, Mergesort, Radixsort)

& Used by different clients to sort Strings, integers, doubles, dates,
records
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General hint for design

e Should you use an abstract or an interface?

* An interface gives you the benefits of a class and an interface, so
use an interface if you can! (but use an abstract class if you need
some implementations or non-static final fields)
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Inner Classes -- introduced

* You can place class definitions inside other class definitions - called
an Inner class

* More than just a simple code-hiding mechanism!

e |If just hiding was an issue, we would just make a class be friendly
so that only classes in the package would see it

* It knows about and can communicate with surrounding classes

* Inner classes are important when you want to upcast to a base class
or interface

* We will see inner classes soon when you learn about iterators

Interactive programming exercise: Parcell.java
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