
Object-Oriented Programming
and Design

Part III

CSc 115 Introduction 0-2

Topics in this section

• Abstract classes review
• Interfaces, multiple inheritance
• Inner classes introduced

CSc 115 Introduction 0-3

Abstract classes and methods

• An abstract class may contain abstract methods
• An abstract method is a method with no body (i.e., simply a

semicolon after the parameter list)
• An abstract method constitutes a protocol or contract, that is,

regular or non-abstract subclasses are required to implement the
abstract methods of superclasses

• Thus, if a superclass has an abstract method, it guarantees that all
subclasses (even future subclasses) implement this method

• For example, an abstract toString() method in a class forces all its
subclasses to implement a toString() method

Interactive programming exercises: Wind2.java revisited

CSc 115 Introduction 0-4

Interfaces (1)

• Defined using the keyword “interface” instead of “class” -- Both
interface and class names are types in Java

• Interfaces contain
? Only abstract methods
? public static final fields (i.e., constants)

• All members of an interface are public by default
• A Java interface can be used in the same way as a Java class
• Just like abstract classes, interfaces cannot be instantiated

CSc 115 Introduction 0-5

Interfaces (2)

• Interfaces are basically abstract classes except
? All methods in an interface are abstract
? An abstract class may contain non-abstract methods
? Thus, some methods of an abstract class may be

implemented
? No methods of an interface may be implemented

• A class implements an interface by
? Declaring that it implements the interface

class X implements I { … }
? Defining (or providing) implementations of all the interface

methods

CSc 115 Introduction 0-6

Interfaces (3)

• An interface may extend one or more interfaces
interface Stack extends List, Comparable { … }
interface Container extends Collection { … }

• When a class implements an interface method, it must implement
its exact signature

• Interfaces form their own inheritance hierarchy
• A class may implement multiple interfaces and extend one or zero

classes
? This is essentially multiple inheritance

class X implements I1, I2 { … }
class X extends A implements I1, I2 { … }

• The relationships induced by extends and implements are all is-a
relationships (so we can do upcasting!)

CSc 115 Introduction 0-7

•

Interactive programming
exercise: Music.java

CSc 115 Introduction 0-8

Defining and implementing interface Comparable

public interface Comparable {
int compareTo(Object x); // public by default!

}

public abstract class Shape implements Comparable {
public abstract double area();
public int compareTo(Object x) { // provides implementation
Shape s = (Shape)x;
double diff = area() – s.area();
if (diff == 0) return 0;
else if (diff < 0) return -1;
else return 1;

}
}

CSc 115 Introduction 0-9

Multiple inheritance in more detail….

• We can have multiple inheritance in Java without some of the
sticky issues faced in other languages (such as C++)

• There is only one implementation, so we know which method should
be run

Interactive programming exercise: Adventure.java

CSc 115 Introduction 0-10

Separating the What from the How

• Complexity is a big problem in software engineering
• We can control complexity by:
? Separating concerns
? Breaking software into smaller, simpler pieces
? Making sure that each piece knows only what other pieces do,

not how they do it
• Abstraction, information hiding, encapsulation
• High coupling within components
• Low coupling among components

• Benefits of this approach:
? ease of use
? ease of modification
? Ease of maintenance and evolution

• Java interfaces separate the what from the how (reduce coupling)
• Java classes encapsulate all that is necessary to implement an

interface (increase cohesion)

CSc 115 Introduction 0-11

Interface relationships

Interface

Implementation

Client4Client3
Client2

Client1

Interface

Client

Implementation4
Implementation3Implementation2

Implementation1

CSc 115 Introduction 0-12

Interface relationships

• Sorting interface
? Implemented by different sorting algorithms (e.g., Quicksort,

Heapsort, Insertionsort, Bubblesort, Mergesort, Radixsort)
? Used by different clients to sort Strings, integers, doubles, dates,

records

Interface

Client4Client3
Client2

Client1

Implementation4
Implementation3

Implementation2
Implementation1

CSc 115 Introduction 0-13

General hint for design

• Should you use an abstract or an interface?
• An interface gives you the benefits of a class and an interface, so

use an interface if you can! (but use an abstract class if you need
some implementations or non-static final fields)

CSc 115 Introduction 0-14

Inner Classes -- introduced

• You can place class definitions inside other class definitions – called
an Inner class

• More than just a simple code-hiding mechanism!
• If just hiding was an issue, we would just make a class be friendly

so that only classes in the package would see it
• It knows about and can communicate with surrounding classes
• Inner classes are important when you want to upcast to a base class

or interface
• We will see inner classes soon when you learn about iterators

Interactive programming exercise: Parcel1.java

