Object-Oriented Programming
and Design

Part 111

Topics in this section

e Abstract classes review
e Interfaces, multiple inheritance
e Inner classes introduced

CSc 115 Introduction

0-2

Abstract classes and methods

* An abstract class may contain abstract methods

e An abstract method is a method with no body (i.e., simply a
semicolon after the parameter list)

* An abstract method constitutes a protocol or contract, that is,
regular or non-abstract subclasses are required to implement the
abstract methods of superclasses

e Thus, if a superclass has an abstract method, it guarantees that all
subclasses (even future subclasses) implement this method

* For example, an abstract toString() method in a class forces all its
subclasses to implement a toString() method

| nteractive programming exercises. Wind2.java revisited

CSc 115 Introduction 0-3

Interfaces (1)

e Defined using the keyword “interface” instead of “class” -- Both
interface and class names are types in Java

* Interfaces contain
& Only abstract methods
& public static final fields (i.e., constants)
e All membersofaninterface arepublic by default
* A Java interface can be used in the same way as a Java class
e Just like abstract classes, interfaces cannot be instantiated

CSc 115 Introduction

0-4

Interfaces (2)

* Interfaces are basically abstract classes except
& All methods inani nterface are abstr act
& An abstract class may contain non-abstract methods

& Thus, some methods of an abstract cl ass may be
implemented

2 No methods of ani nt er f ace may be implemented
e Aclassinplenents aninterface by
& Declaring that it i npl enents thei nterface
class X inplenents | { ...}

& Defining (or providing) implementations of all the i nterface
methods

CSc 115 Introduction 0-5

Interfaces (3)

e An interface may ext end one or more interfaces
| nterface Stack extends List, Conparable { ...}
I nterface Container extends Collection { ...}

* When aclassi npl enent s an interface method, it must implement
Its exact signhature

e Interfaces form their own inheritance hierarchy

* A class may implement multiple interfaces and extend one or zero
classes

& This is essentially multiple inheritance
class X inplenments 11, 12 { ...}
class X extends Ainplenents 11, 12 { ...}

* The relationships induced by ext ends and i npl enent s are all is-a
relationships (so we can do upcasting!)

CSc 115 Introduction 0-6

interface Instrument

vold playi);
String what);
vold adjust),

&

implefments

mplefnents

implements

W

Fercission

Stringed

vold play()
String what)
yold adjust))

vald playi()
String whatl)
vold adjusti)

vald play(()
String what(]
vaold adjust))

i
extands extgnds
Woodwind Brass
vold plav() vold plav()
String what]) vold adjust))

| nteractive programming
exercise. Music.java

CSc 115 Introduction

0-7

Defining and implementing interface Comparable

public interface Conparable {
I nt conpareTo(Cbject x); [/ public by default!

public abstract class Shape inplenents Conparabl e {
publ i c abstract double area();
public int conpareTo(Object x) { // provides inplenentation
Shape s = (Shape) x;
double diff = area() — s.area();
I f (diff == 0) return O;
else if (diff < 0) return -1;
el se return 1;

CSc 115 Introduction 0-8

Multiple inheritance in more detail....

* We can have multiple inheritance in Java without some of the
sticky issues faced in other languages (such as C++)

* There is only one implementation, so we know which method should
be run
shstract or Concrete mterﬁacel
Base Class | e,
i) interface 2 .
A N g
i interface n

e immmimmmeeeian J;-';ll mmmm——aead

Base Class Funchons |interface 1 | interface 2 | ... | iInterface n

|nteractive programming exercise: Adventure.java

CSc 115 Introduction 0-9

Separating the What from the How

Complexity is a big problem in software engineering
We can control complexity by:

& Separating concerns

& Breaking software into smaller, simpler pieces

& Making sure that each piece knows only what other pieces do,
not how they do it

e Abstraction, information hiding, encapsulation
e High coupling within components
e Low coupling among components
Benefits of this approach:
& ease of use
& ease of modification
& Ease of maintenance and evolution
Java interfaces separate the what from the how (reduce coupling)

Java classes encapsulate all that is necessary to implement an
interface (increase cohesion)

CSc 115 Introduction 0-10

Interface relationships

Interface
| mplementation Clientl
Interface
|mplementationl Client ‘

IIIIPICIIICI ILCALI VI 14
IIIIPICIIICI ILCALl VI IV
| IIIIlJIUIIIUIILUII.IUII“I’

CSc 115 Introduction 0-11

Interface relationships

|nterface

Clientl

11Ol 1L
A\ AW I |5
\11 1 ILT

|mplementationl

IIIIPICIIICI ILCALI VI 14

IIIIPICIIICI el Vi 1=t

e Sorting interface
Implemented by different sorting algorithms (e.g., Quicksort,
Heapsort, Insertionsort, Bubblesort, Mergesort, Radixsort)

& Used by different clients to sort Strings, integers, doubles, dates,
records

CSc 115 Introduction 0-12

General hint for design

e Should you use an abstract or an interface?

* An interface gives you the benefits of a class and an interface, so
use an interface if you can! (but use an abstract class if you need
some implementations or non-static final fields)

CSc 115 Introduction 0-13

Inner Classes -- introduced

* You can place class definitions inside other class definitions - called
an Inner class

* More than just a simple code-hiding mechanism!

e |If just hiding was an issue, we would just make a class be friendly
so that only classes in the package would see it

* It knows about and can communicate with surrounding classes

* Inner classes are important when you want to upcast to a base class
or interface

* We will see inner classes soon when you learn about iterators

Interactive programming exercise: Parcell.java

CSc 115 Introduction 0-14

