
Recursion, Stacks, and Queues

Exceptions, Collections, and
Lists

Recursion, Stacks, Queues

October 2-3 2002
Neil Ernst

Reading Assignment
Chapters 4-5

Recursion, Stacks, and Queues

Outline
• Questions from last time
• Reading assignment – chap. 4 and 5 in the text
• Today:
? Exceptions
?Collections in Java
?Dynamic data structure: Linked List

• Tomorrow:
?Dynamic data structure: Stack
?Dynamic data structure: Queue
? Iterators (depending on time)

Recursion, Stacks, and Queues

Interface example: linear search
• Practical example of why we use interfaces
• Knowing something implements an interface allows

us to make certain assumptions about that class
• Code walkthrough

Recursion, Stacks, and Queues

Exceptions

Recursion, Stacks, and Queues

Why are Exceptions in Java?
• Basic philosophy of Java is to minimize chances for

programmers to make mistakes

?At expense of flexibility (C/C++)
?e.g. type-checking, garbage collection

• Best time to prevent errors is at compile time

• But of course this isn’t always the case….. e.g. null
references are hard for compiler to identify

• So what do we do when we encounter things we don’t
expect?

• Let the program crash?

Recursion, Stacks, and Queues

Exceptions

• Exceptions provide a convenient way to handle abnormal
conditions

• Could be used to handle problems and continue on –
resumption vs. termination
?But, this can be difficult to anticipate
?New error conditions need to be handled

• Terminology:
? throw an exception to indicate a problem
?catch an exception to deal with the problem
? finally do something, whether an exception happened

or not
• Naturally, exceptions are objects.

Recursion, Stacks, and Queues

Exceptions
?Thrown exceptions bypass the normal method call-return

mechanism
• a method that throws an exception does not return a value (but it

will return a reference to an exception object!)
• a thrown exception may propagate out through multiple layers of

called methods

?Exceptions can be….
• thrown by either the Java Virtual Machine or the program
• caught by the program — if the VM catches one, it’s a crash!

Recursion, Stacks, and Queues

What happens when an exception is
thrown?

• First an exception object is created
• The current path of execution is halted
• Next the Java exception handling mechanism tries

to find an appropriate place to continue executing
the program
? That is, an exception handler for that type of exception

• If no exception handler (catcher) is immediately
found the reference to the exception object is
ejected up a calling level in your program and so
on until a handler is found

• If there is no obvious handler in your code, the
JVM will halt execution (crash!).

Recursion, Stacks, and Queues

How to Throw Exceptions
• Use the throw statement, with an exception object as

argument
? e.g. if <some error> throw new Exception();

• You almost always want to create a new instance of
the exception (sometimes you may wish to reuse an
exception object and rethrow it)

• Unless the exception is caught in the same method or
is unchecked, your method must declare that it might
throw this exception
?e.g. public myMethod(arg1...) throws

Exception { ... }

Recursion, Stacks, and Queues

How to Catch Exceptions
• Use the try-catch-finally statement
• try { }

• put code that may throw exceptions here
• also any code that needs results from code above

• catch (AnExceptionClass e) { }
• deal with errors of kind AnExceptionClass here
• the parameter e will contain the exception object

• finally { }
• put code here that you want to execute after the try

block whether an exception was thrown or not (and
whether it was caught or not)

• cleanup code

Recursion, Stacks, and Queues

Example of a Catch
• Here we’ll be catching an exception generated by the

virtual machine:

<Eclipse code>

Recursion, Stacks, and Queues

Exceptions Hierarchy
• An exception is just an object, but:
? all exception classes must derive from Throwable
? problems at the virtual machine level are Errors, and should

almost never be caught
? all user (and many system) exception classes derive from

Exception

? unchecked exception classes derive from RuntimeException

Throwable

Error Exception

RuntimeException

unchecked

unchecked

myException

Recursion, Stacks, and Queues

Collections

Recursion, Stacks, and Queues

Why a Collections Framework
• Almost all programs need storage space
• Few know exactly how much to allocate until run-time
• Arrays are good (speedy, small) at:
? holding relatively fixed amounts of identical type data, e.g. a

list of students in a class – changes are small
• Arrays are bad at:
? inserting and repositioning data
? expanding and contracting as needed
? holding data of different types

• Collections other than arrays provide this flexibility
• Sometimes different tradeoffs are useful
? speed, access time, permitted operations

• Therefore, number of different collection classes
• In practice, often end up using one type more than

others

Recursion, Stacks, and Queues

Java Collections Hierarchy

Collection

List Set

ArrayList LinkedList SortedSet

TreeSetHashSet

Maps

Recursion, Stacks, and Queues

Types of Collections
• Almost all collections are defined to contain

objects
?As a result, any object can be put into a collection

?Use the instanceof operator to determine the kind of
object during retrieval

x instanceof String

?Cast the instance to the correct type accordingly

String s = (String)x;

• Collections are heterogeneous or homogeneous
?Homogeneous: all components are of the same type

?Heterogeneous: components may be of different types

• Most collections in Java are heterogeneous

Recursion, Stacks, and Queues

Wrappers for primitive types
• Primitive types (i.e., byte, short, int, long,

float, double, char, boolean) are not
compatible with the reference type Object

• Thus, values of primitive cannot be passed to
parameters of type Object

• To get around this problem, Java provides wrapper
classes for all primitive types
public final class Integer implements Comparable {

private int value;
public Integer(int x) { value = x; }
public int intValue() { return value; }
public String toString() { return “” + value; }
public int compareTo() { … }

}
Integer k1 = new Integer(17);

Recursion, Stacks, and Queues

Collections
• Collections, data structures, abstract data types

(ADTs) consist of two parts
? data representation
? operations on those data

• Java provides an entire set of collection APIs
? interfaces and implementations for fundamental data

structures such as lists, stack, queues, deques, trees, graphs
• A container or dictionary is a special collection which

supports the operations member , insert, delete,
isEmpty

• Here is a simple container interface
public interface Container {
Object member(Object x);
void insert(Object x);
Object delete(Object x);
boolean isEmpty();

}

Recursion, Stacks, and Queues

The Java Collection interface
public interface Collection {

boolean add(Object x);
boolean addAll(Collection c);
void clear();
boolean contains(Object x);
boolean containsAll(Collection c);
boolean equals(Object x);
int hashCode();
boolean isEmpty();
Iterator iterator();
boolean remove(Object x);
boolean removeAll(Collection c);
boolean retainAll(Collection c);
int size();
Object[] toArray();
Object[] toArray(Object[] a);

}

Recursion, Stacks, and Queues

Linked Lists
• A list is a collection of data much like an array
• Advantage: easy to resize a list
? add: create a new Node and update references
? delete: change the references, Node is garbage collected
? insert: change references

• Disadvantage:
? greater space demands (a new object for each node)
?more complex operations

• What might we want to do with a list?
? Taken from Java API: insertFirst, insertLast, deleteFirst,

deleteLast, isEmpty, add
• Let’s examine the list code
? <Eclipse>

Recursion, Stacks, and Queues

Outline
• Questions from last time
• Today:
? List exercise, notion of double-linked list
?Recursion
?Dynamic data structure: Stack
?Dynamic data structure: Queue
? Iterators (depending on time)

Recursion, Stacks, and Queues

Class exercise
• Yesterday we discussed a singly linked-list structure.
• Question: how to insert an element at a certain

position in the list?
?write a pseudocode method add(Object o, int index)

which takes the object to insert into the data field and an index
which is the number of the element after insertion (indexed
from zero, like an array).

? be careful with the references.
? assume the list is not empty and that we’re inserting in the

middle (otherwise you need some error conditions).
? good midterm/final question!

Recursion, Stacks, and Queues

Node and LinkedList
public class LinkedList {
private Node head;
private int size;

public LinkedList() {...}
public Node getHead() {...}
public boolean isEmpty()

{..}
public int size() {..}
public Object getFirst()

{...}
public void insertFirst

(Object data) {..}
public String toString()

{..}
public Object deleteFirst()

{...}

public class Node {
private Object data;
private Node next;
public Node(Object data,

Node next) {..}
public Node(Object data) {..}
public Object getData() {...}
public Node getNext() {...}
public void setData(Object data)

{.. }
public void setNext(Node

next) {...}
}

Recursion, Stacks, and Queues

Double linked list
• The same as a single-linked list but...
? new Node type, with pointers in two directions, next and
prev

? reference to end of the list - tail
? additional methods insertLast() and deleteLast()

Recursion, Stacks, and Queues

Recursion

text, pp 148-149 (brief)

Recursion, Stacks, and Queues

Recursive algorithms and data
structures

• A method (algorithm) or class that is partially
defined in terms of itself is called recursive

• Recursion is a powerful algorithm design and
programming tool that can lead to elegant and
efficient algorithms and data structures

• A recursive algorithm consists of
? a base case

? a recursive call

Recursion, Stacks, and Queues

Recursive methods and classes
• A recursive method is a method that directly or indirectly

calls itself
• Simplest direct and indirect recursive methods; note that

both examples result in infinite recursion since there is no
base case
void a() { a(); } // direct recursion
void a() { b(); } void b() { a(); } // indirect

• Shortest and simplest direct and indirect recursive
classes
class X { X x; } // direct recursion
class X { Y y; } class Y { X x; } // indirect

Recursion, Stacks, and Queues

Compute the sum of k integers recursively and
iteratively
recursiveAlgo(int n)

if (“simplest case”)
// base case
“solve directly”
“for example for n=1”

else
// induction step
“make a recursive call
with simpler case”

“for example for n-1”

Recursive algorithm
int sum(int k) {
if (k==1) return 1;
else return sum(k-1) + k;

}

• <- Pseudocode for a recursive
method

• Base case is a simple case where we
know the solution

• For the induction step, we assume
that we know the solution for a
previous solution, say n-1, and
compute the solution in terms of this
solution

• For example, if we know the sum of
the first n-1 integers (i.e., sum(n-1)),
the sum of n integers is n + sum(n-1)

• Iterative algorithm:int sum(int k) {
int s = 0;
for (int j=1; j<=k;
j++)
s = s + j;

return s;
}

Recursion, Stacks, and Queues

Stacks and Queues

chap 4.1 and 4.2

Recursion, Stacks, and Queues

Stack interface
public interface Stack {
void push(Object data);
Object pop();
Object top();
boolean isEmpty();
int size();

}

• LIFO (Last-in, first-out) list
• Examples:
?Stack of plates in cafeteria
?Run-time stack in operating systems
?Recursion
?Evaluating expressions
?Balanced parentheses

Recursion, Stacks, and Queues

Queue interface
public interface Queue {
void enqueue(Object data);
Object dequeue();
Object front();
boolean isEmpty();
int size();

}

• FIFO (First-in, First-out) list
• Examples:
?Check-out line at store
?Car wash
?Network queues
?Traffic simulation

Recursion, Stacks, and Queues

Stack and queue definitions
• Interface code defined in Eclipse

Recursion, Stacks, and Queues

Run-time stack
• Every recursive algorithm can be converted into a

non-recursive or iterative algorithm by simulating
the run-time stack

• The run-time stack consists of activation records
or stack frames

• An activation record contains the following
information
?Return address (address of caller)
?Destination address (address of callee)
?Actual parameters (parameters being passed)
? Local variables (local variables of the routine being

called)
• Whenever a method call is made, a new activation record is

allocated and pushed onto the run-time stack
• When a call returns, its record is popped off the run-time

stack

