
Recursion revisited

Recursion revisited

Csc 115 Fall 2002

Recursion revisited

Exercise:
• Consider for a few mins: Given a string, how would

you generate all possible permutations of it?

Recursion revisited

• A method (algorithm) or class that is partially
defined in terms of itself is called recursive – i.e.
it calls itself

• Recursion is a powerful algorithm design and
programming tool that can lead to elegant and
efficient algorithms and data structures

• Any algorithm that can be solved with recursion
can also be solved without recursion

Recursive algorithms and data
structures

Recursion revisited

• A recursive algorithm consists of
? a base case

? a recursive call (with smaller or simpler arguments)

• Very important to ensure that the recursion
terminates… that the base case is always reached
for any input

Recursive algorithms and data
structures

Recursion revisited

Recursive methods and classes
• A recursive method is a method that directly or

indirectly calls itself
• Simplest direct and indirect recursive methods; note

that both examples result in infinite recursion since
there is no base case
void a() { a(); } // direct recursion
void a() { b(); } void b() { a(); } // indirect

• Shortest and simplest direct and indirect recursive
classes
class X { X x; } // direct recursion
class X { Y y; } class Y { X x; } // indirect

Recursion revisited

Recursive and Iterative algorithms
public static void writeStars(int n)
// iterative function that produces an output line

// of exactly n stars
{
for (int i = 0; i < n; i++)
System.out.print("*");

System.out.println();
}

public static void writeStars2(int n)
// recursive function that produces an output
// line of exactly n stars

{
if (n <= 0)
System.out.println();

else {
System.out.print("*");
writeStars2(n - 1);

}
}

Recursion revisited

Recursion vs. Iteration

Just because we can use recursion doesn't mean we should,
requires overhead of extra method calls

HOWEVER....

some algorithms are easy to express recursively,
hard to express iteratively

in those cases, recursion is a very useful tool
use when it's natural to define the big problem in terms of

smaller versions of the same problem

trade-off: efficiency vs. simplicity
note: recursion adds constant factors –

doesn't change basic complexity

Recursion revisited

Interactive examples and exercises in Eclipse….

1) Stars.java

2) Reverse.java

Recursion revisited

Example: Factorials
For positive integers n, n! ("n factorial") is

1 * 2 * 3 * ... * n

Recursive definition (recurrence relation):
1! = 1
if n > 1, n! = n * (n-1)!

To compute 4!:

4! = 4 * 3!
= 4 * 3 * 2!
= 4 * 3 * 2 * 1!
= 4 * 3 * 2 * 1
= 24

Recursion revisited

What does this do?
public int mystery(int n) {

if (n == 1) {
return(1);

}
else {

return n + mystery(n - 2);
}

}

if (n <= 1)

Mystery.java

Recursion revisited

Debugging recursive methods
• Draw a stack trace and execute it by hand
• Use lots of println statements
• Use a debugger
• Try boundary cases when testing

Recursion revisited

Fibonacci sequence
1 1 2 3 5 8 ……

Each number in the sequence is the addition of the
previous two numbers – how do we solve this
iteratively and recursively?

Recursion revisited

Example: Fibonacci
• Iteration:

f0=1;
f1=1;
for (i=2; i<=n; i++) {

f=f1+f1;
f0=f1;
f1=f;

}

• Recursion

int F(int n) {
if (n==0) return 1;

else if (n==1) return 1;
else return F(n-1)+F(n-2);

}

Recursion revisited

Example: Permutations
• Given a string s, print out all possible permutations of

the letters in s: void permute(String s)

• Simple idea: For each possible first letter in s,
calculate the permutations of the remaining letters

• For this example, we need to create a helper method
that is more general than permute(s):
? permute(string prefix, string s)

• This example makes use of both recursion and
iteration (similar to the treemap exercise earlier in the
term)

Recursion revisited

Interactive examples and exercises in Eclipse….

Permute.java

Recursion revisited

Swedish pancake problem
• Class exercise -- Pancake sort

• You are a cook in the Swedish Restaurant – Pannkakslandet -,
and you have a stack of n pancakes to serve to the customers.
However, since all the pancakes have different diameters
ranging from 1 to n, and are stacked up on the plate in a
random order, the stack doesn’t look very tidy. Of course you
want to present the plate to the customers with the pancakes
stacked in a tidy pyramid, so that the maple syrup can flow
evenly over the edges of each pancake.

• You have only one kind of operation that you can perform: that
is to stick the spatula into the stack at some position, and to
flip the top substack of pancakes upside-down. For example, if
there are 5 pancakes ordered as (1,3,2,5,4) from the top
down, you might insert the spatula beneath the pancake of
size 2 and flip the top three pancakes, resulting in order
(2,3,1,5,4)

Recursion revisited

Pancake problem

5
4

1
3
2

5
4

1
3
2

Flip

Recursion revisited

Analyze our solution?
• What is the runtime complexity of our solution in the

worst case? Best case?

Recursion revisited

Recurrence relations recap.
Analysis of pancake sort?

T(1) = O(1)
T(n) = n + T(n-1) + b, n > 1

this is a "recursive" definition of a mathematical function f
(defined for all n >= 1)

But not all recurrence relations have such easy solutions!
Our approach here is very informal – don’t prove these

recurrence relations until csc 225

this recurrence relation has a "closed form" solution:

? ?
2

1
)(

?
?

nn
nf

Recursion revisited

Tower of Hanoi
The Tower of Hanoi (sometimes referred to as the Tower of

Brahma or the End of the World Puzzle) was invented by the
French mathematician, Edouard Lucas, in 1883. He was
inspired by a legend that tells of a Hindu temple where the
pyramid puzzle might have been used for the mental discipline
of young priests. Legend says that at the beginning of time
the priests in the temple were given a stack of 64 gold disks,
each one a little smaller than the one beneath it. Their
assignment was to transfer the 64 disks from one of the
three poles to another, with one important proviso–a large
disk could never be placed on top of a smaller one. The priests
worked very efficiently, day and night. When they finished
their work, the myth said, the temple would crumble into dust
and the world would vanish.

Recursion revisited

Towers of Hanoi
Move disks from one post to another.
Rules:

• move one disk at a time
• never have a disk on top of a smaller disk

• Some applets:
? http://www.mazeworks.com/hanoi/
? http://www.simtools.com/ToH.html

Recursion revisited

Towers of Hanoi program
• This program solves the Towers of Hanoi puzzle.
• You specify how many disks to put initially on tower

A and the program will tell you a series of moves to
get them all to tower B.

• E.g. Number of disks? 3
Move disk from A to B
Move disk from A to C
Move disk from B to C
Move disk from A to B
Move disk from C to A
Move disk from C to B
Move disk from A to B

Recursion revisited

Hanoi Algorithm
To move n disks from disk 1 to disk 3:

• move the top n-1 disks from post 1 to post 2
• move the last (largest) disk from post 1 to post 3
• move the n-1 disks from post 2 to post 3

Base case: if n = 1, just move the disk from post 1 to post 3.

Must generalize our goal: move n disks from any post to any
other post.

There will always be an extra post to use for temporary storage.

Recursion revisited

Code in Eclipse

Tower.java

Recursion revisited

Analysis of this program
let T(n) = time to execute tower with numdisks = n.
T(1) = some constant a

if n > 1: call tower twice with numdisks = n-1, plus
a comparison and some printing (constant time)

so T(n) = 2T(n-1) + b when n > 1, for some constant b

T(1) = a
T(n) = 2T(n-1) + b, n > 1

Unroll:
T(n) = 2T(n-1) + b

= 2[2T(n-2) + b] + b = 4T(n-2) + 3b
= 4[2T(n-3) + b] + 3b = 8T(n-3) + 7b

= 16T(n-4) + 15b anyone see a pattern yet?

Recursion revisited

Analysis (2)
after k steps:

T(n) = 2kT(n-k) + (2k-1)b

after n-1 steps:
T(n) = 2n-1T(1) + (2n-1-1)b = 2n-1(a+b) – b = O(2n)

So our Tower of Hanoi problem has exponential complexity

Note 264 = 18446744073709551616

Recursion revisited

Summary
• Recursion is fun!
• http://javaboutique.internet.com/particleTree/

