
Software Engineering Principles
Qualities of Software

CSc 115 Software engineering principles 2

Some off the wall questions….

• How many lines of code are there approx in the entire world?
• What percentage of it would you think would be unstructured,

patched and poorly documented?

CSc 115 Software engineering principles 3

2 Altimeter example (Parnas)

CSc 115 Software engineering principles 4

Software Evolution

• Legacy software (a crisis?)
? First Law of Lehman [Leh80] :

"Software which is used in a real-world environment
must change or become less and less useful in that
environment."

? Second Law of Lehman [Leh80] :
"As an evolving program changes, its structure becomes
more complex, unless active efforts are made to avoid
this phenomenon."

• Mass software changes:
? Y2K, eCommerce, mobile computing, distributed

embedded software in ubiquitous devices…

CSc 115 Software engineering principles 5

Software maintenance

Defn:
The process of modifying a software system or component after
delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment [IEE90a]

CSc 115 Software engineering principles 6

Types of software maintenance

• Corrective maintenance
• Adaptive maintenance
• Perfective maintenance
• Preventive maintenance

CSc 115 Software engineering principles 7

Corrective maintenance

Deals with the repair of faults found in the code

CSc 115 Software engineering principles 8

Adaptive Maintenance

Deals with adapting software to changes in the environment, such as
new hardware or the next release of an operating system.

Adaptive maintenance does not lead to changes in the system’s
functionality

CSc 115 Software engineering principles 9

Perfective maintenance

Mainly deals with accommodating new or changed user requirements
i.e. functional enhancements to the system.

Perfective maintenance also includes activities to increase the
system’s performance or to enhance its user interface.

CSc 115 Software engineering principles 10

Preventive maintenance

Activities aimed at increasing the system’s maintainability, such as
updating documentation, adding comments, and improving the
modular structure of the system

CSc 115 Software engineering principles 11

Cost of maintenance

• 50-80% of total’s project lifetime cost

? Hence, the term software evolution is probably a better term than
maintenance

CSc 115 Software engineering principles 12

Main problems in maintenance

• Maintenance has a poor image!
• Not taught enough in university/college
• Lack of documentation – especially on “design rationale”
• Programmers lacking in domain/application knowledge
• Unstructured code
• Old code that can’t be thrown away (mixed languages, special

purpose hardware)

CSc 115 Software engineering principles 13

What are some of the symptoms of unstructured or poorly structured
code?

• Goto’s
• Long procedures
• Poor/inconsistent naming
• High module complexity
• Weak cohesion and strong coupling
• Unreachable/dead code
• Deeply nested control structures (if, etc)

CSc 115 Software engineering principles 14

How can we reduce maintenance costs and problems?

• Higher quality code
• Better test procedures
• Better documentation (up to date, complete, readable/usable)
• Standards
• Anticipate changes during Reqs. Engineering
• Design a good architecture (flexible – to allow for future changes, can’t think of

all possible changes)
? isolate parts that are likely to change a lot

• More awareness and consideration of users’ needs early on
• Less code -> less maintenance (reuse and use of components)
• Better management – put best people on the maintenance activities (not the new

people), training (how to debug, design etc)., planning

CSc 115 Software engineering principles 15

Design Goals and Principles

• Design goals and software qualities
? Robustness
? Adaptability
? Reusability, interoperability
? Correctness
? Maintainability
? Usability
? Scalability

• Design principles
? Abstraction
? Encapsulation
? Modularity

CSc 115 Software engineering principles 16

Robustness

• Handling unexpected input (i.e., string instead of number, entering
zero and subsequently dividing by zero)

• Checking input for range and accuracy (e.g., Therac-25)
• Preventing operator mistakes due to alarm overloads (e.g., nuclear

power plants)
• Redundancy checks (e.g., Mars lander had imperial and metrics

system data mixed together in the same calculation)
• Reaching memory and array limits and other boundaries (e.g.,

expand and shrink data structures, java.util.Vector)
• One strategy to make programs robust is to use the exception

mechanism to deal with unexpected data and situations
• Robustness, reliability and correctness work together and must be

designed into the program from the beginning

CSc 115 Software engineering principles 17

Adaptability

• The programs we are writing today might last for 30 years
• For programs to stay useful, they must adapt over time
• Different parts of the program evolve at different times and at a

different pace
? Database
? User interface

• Programs are expected to run on many platforms
? Windows
? Mac
? Unix/Linux
? Solaris
? Network-centric
? Web-centric

• Laws of software evolution…

CSc 115 Software engineering principles 18

Other software qualities …

• Reusability
? ability to construct new software from existing pieces
? must be planned for
? occurs at all levels: from people to process, from requirements

to code
• Interoperability

? ability of software (sub)systems to cooperate with others
? easily integratable into larger systems
? common techniques include APIs, plug-in protocols, etc.

• Scalability
? ability of a software system to grow in size while maintaining its

properties and qualities
? assumes maintainability and evolvability
? goal of component-based development

CSc 115 Software engineering principles 19

Software qualities …

• Correctness
? Ideal quality
? Established w.r.t. Requirements specification
? absolute

• Reliability
? Statistical quality
? Probability that software will operate as expected over a give

period of time
? Relative

• Usability
? Ability of end-users to easily use software
? Extremely subjective

CSc 115 Software engineering principles 20

Software qualities …

• Understandability
? Ability of developers to understand produced artifacts easily
? Internal product quality
? Subjective

• Verifiabilty
? Ease of establishing desired properties
? Performed by formal analysis or testing
? Internal quality

• Performance
? Equated with efficiency
? assessable by measurement, analysis, and simulation

• Evolvability
? ability to add or modify functionality
? addresses adaptive and perfective maintenance
? problem: evolution of implementation is too easy
? evolution should start at requirements or design

CSc 115 Software engineering principles 21

Software qualities …

• Heterogeneity
? ability to compose a system from pieces developed in multiple

programming languages, on multiple platforms, by multiple
developers, etc.

? necessitated by reuse
? goal of component-based development

• Portability
? ability to execute in new environments with minimal effort
? may be planned for by isolating environment-dependent

components
? necessitated by the emergence of highly-distributed systems
? an aspect of heterogeneity

• Maintainability
? the ease with which a software system or component can be

modified to correct faults, improve performance, or other
attributes, or adapt to a changed environment

? Addresses corrective, adaptive, and perfective maintenance

CSc 115 Software engineering principles 22

Summary of Software qualities

• Software engineering is concerned with software qualities
• Qualities (a.k.a. “ilities”) are goals in the practice of software engineering

• External qualities
? visible to the user
? reliability, efficiency, usability

• Internal qualities
? the concern of developers
? they help developers achieve external qualities
? verifiability, maintainability, extensibility, evolvability, adaptability

• Product qualities
? concern the developed artifacts
? maintainability, understandability, performance

• Process qualities
? deal with the development activity
? products are developed through process
? maintainability, productivity, timeliness

CSc 115 Software engineering principles 23

Design Goals and Principles

• Design goals
? Robustness
? Adaptability
? Reusability

• Design principles
? Abstraction
? Encapsulation
? Modularity

CSc 115 Software engineering principles 24

Design principles: Abstraction

• To emphasize the important aspects and deemphasize immaterial
aspects

• For example, a program is a string of bits, characters, tokens,
syntax tree, classes, logical units, subsystems, application

• Levels of abstraction
? Application

• Concepts, business rules, policies
? Function

• Logical and functional specifications,
non-functional requirements

? Structure
• Data and control flow, dependency graphs
• Structure and subsystem charts
• Software architectures

? Implementation
• AST’s, symbol tables, source text

CSc 115 Software engineering principles 25

Design Principles: Encapsulation

• Packaging code and data that belong together
• Information hiding

? Information hiding allows details to be hidden from those
who do not need to see them.

? Different components of a software system should not
reveal the internal details of their respective
implementations

? Gives programmers freedom on how to implement the details
of a system

? Rule of thumb:
• usually we hide the internal data/state associated with

an object
• usually we hide the implementation details of an object’s

methods
• Localize change
• Encapsulation supports adaptability

CSc 115 Software engineering principles 26

Design principles: Modularity

• An organizing structure in which different components of a
software system are divided into separate functional units

• Separation of concerns
• The architecture of a house can be viewed as several interacting

units
? Electrical, heating and cooling, plumbing, structural subsystem

• The elements of subsystems can be readily replaced if certain
standards are followed
? Facilitates reuse and understanding

• Subsystems are organized into hierarchies of subsystems
? Part-of hierarchies (i.e., packages, classes, fields, methods,

statements, local variables)
? Is-a hierarchies (i.e., inheritance)

