Java™ Basics
Object-based Programming

Reading Assignment Chapters 1-2

Reading assignment

* Chapters 1-2 in textbook
+ Study Java libraries extensively
» http://java.sun.com/j2se/1.3/docs/api/overview-summary.html

> java.lang
« Boolean, Integer

¢ Math (PI, max, min, sin, cos, random(), round(), sqrt())
+ Object (clone(), equals())

+ String (CharAt(), CompareTo(), equals(), length())

+ System (println(), print(), flush(), Assignment 1)

> java.io
+ BufferedReader (Section 1.6 in textbook)
* Stdin, flush(), readLine()
> java.util
+ List, LinkedList, Iterator
* Observer
¢ Calendar, set(), get() (Assignment 1)
+ Hashtable
+ Random (Assignment 1)
* Stack
> The more you know what is in these libraries, the less code you have to write.

CSc 115 Object-based programming

Classes and objects

* The main “actors” in an OO programming language are objects
Objects are alive ©

An object stores the state (i.e., data) of its actor in fields

An object provides capabilities to its actor with methods
Methods of an object operate (i.e., access, modify) on its fields
Every object is an instance of a class

v

v

Y V VvV

* Aclass consists of members
» There are two categories of class members
+ Fields or variables
*+ Methods
> A class defines types for all of its members
» The type of a field can be primitive or reference

CSc 115 Object-based programming

The surroundings of a class

* Package
> A class belongs to a named package or the default package
package csccll5assignmentl;
> A class can import packages
import javax.swing.*;
Import java.io.*;

* Inheritance
> A class can extend another class (i.e., be a subclass)
public class Manager extends Employee { .. }
public class Model extends Observable { .. }
> A class can be a superciass for another class

* Interfaces
» A class can implement an interface
public class TextView implements Observer { .. }

€Sc 115 Object-based programming

Class declaration

* Syntax
[modifiers] class ClassName [extends SuperClassName]
[implements Interfacel, Interface2, ..] {
class member declarations;

* Example
public class Course {
// two fields and two methods
private int noStudents;
private String instructor;
public Course(int k, String s) {
noStudents = k; instructor = s; }

public int getNoStudents() { return noStudents; }
public String getInstructor() { return instructor; }
}
CSc 115 Object-based programming 5

Class modifiers

* Class modifiers are optional keywords preceding the class keyword.
* abstract
» The class has abstract methods (i.e., no method body and
preceded by abstract modifier).
> A class with only final instance variables and only abstract
methods is called an interface

* final
» A final class has no subclasses.
* public

» A public class can be instantiated or extended by anything in
the same package or anything that imports this class.

» Each public class is declared in a separate file; downloadable
component.

CSc 115 Object-based programming

Creating fields or variables

* Creating fields of primitive types
* Examples

int k = 3;

double d = 3.14159;

boolean b = true;

* Creating fields of reference types (i.e., objects)
+ Examples
String s = new String(“hi”);
Point p = new Point (3, 7);
Course c = new Course (256, “Muller”);

CSc 115 Object-based programming 7

Creating or instantiating objects

* Anobject is created from a defined class using the new operator

* new allocates storage for the object on the Aeap and returns a
reference to the object

* Anobject can be declared anywhere (even within a for loop)

* Anobject can be accessed from its declaration to the end of the
block

» this is called its scope
> ablock ends at its closing curly brace "“}"
* Anobject must be assigned a value before it can be read

\ objectName H reference

Storage
allocated
for object

€Sc 115 Object-based programming

‘ Creating or instantiating objects

* Syntax
objectName = new ConstructorClassName (paramters) ;

object name
(variable)

class name
(type)

Constructor
parameters

CSc 115 Object-based programming 9

Creating or instantiating objects

* Example
Point p = new Point (4, 7);

reference

object data
4
7

Allocated
on the stack
or heap

Allocated
on the heap

CSc 115 Object-based programming 10

Class members

* Fields
Data associated with an object
Represent and store the state of an object
The type of an field or a parameter can be primitive or reference
All fields are initialized to default values automatically
Examples
private int k = 17;
protected Point p = new Point(17,12);
* Methods
> Define the behaviour of the objects instantiated from that class
» A method definition has two parts: signature and body
» Methods have a return type
+ The return type is void if the method does hot return anyting
» Methods are also called functions or procedures
void doNothing() { }

Y YV ¥V

v v

ComplexNumber makeComplex (double r, double i){ /* .. */
int findSock(Color ¢, Socks([] a) { /* .. */ }
double[] getGrades() { /* .. */ }

CSc 115 Object-based programming 1

public, protected, private, and package modifiers

* These modifiers apply o both fields and methods
* public
» Any method can access public members
* protected
» Only methods of the same package or subclasses can access
protected members
* private
> Only methods of the same class can access private members
* Package (no modifier)
» Members, which are not public, protected, or private, are called
package members
» Only methods in the same package can access package members

€Sc 115 Object-based programming 12

Field modifiers

* public, protected, private, package modifiers
» As discussed on previous slide
* static
> A static variable is associated with its class, is shared by all
objects of its class, and its storage exists once (i.e., with the
class rather than all the objects)
+ final
> A final variable must be initialized and is readonly after
initialization (i.e., it is constant)
final variables are usually also declared static so that storage
is allocated only once for an entire class
The naming convention for final variables is all upper case
> final variables are often declared in interfaces

v

v

Method modifiers

* public, protected, private, package modifiers
» As discussed on a previous slide
* static
» A static method is associated with its class and is shared by all
objects of its class (i.e., with the class rather than all the
objects)
» The static fields can only be changed by static methods (as
long as they are not declared final)
+ final
» A final methods cannot be overridden by a subclass.
* abstract
» An abstract method has no body.
» The parameter list is followed by a semicolon to terminate the
abstract method declaration.
> abstract methods may only appear within an abstract class.
> abstract methods are typically overridden by subclasses.

CSc 115 Object-based programming 13 CSc 115 Object-based programming 14
static members ‘ static field
* Example * Execute program
public class Node {
private static int noObjects = 0; noObjects
private int id;
public Node (int k) { id=k; noObjects++ }
public static getNoObjects() {
return noObjects;
)
}
System.out.println (Node.noObjects()); // 0
Node nl = new Node (17);
System.out.println(Node.noObjects()); // 1
Node n2 = new Node (22);
System.out.println(Node.noObjects()); // 2
15 CSc 115 Object-based programming 16

CSc 115 Object-based programming

Accessing members

* Dot notation

* Accessing instance members
objectName.classMember
objectName.field
objectName.method ()

* Accessing static members
className.classMember
className.field
className.method ()

Constructors

* A special type of method
+ Instantiates and initializes objects
* Has same name as the class and no return type

* The abstract, static, and final modifiers are not allowed for
constructors

* A public, no-argument constructor is provided by the Java run-time

environment if the class does not define one

* A class can have many constructors; all have the same name, but all
signatures must be different

CSc 115 Object-based programming 17 CSc 115 Object-based programming 18
main() method Parameters
* The main entry point of a Java program + All method parameters are passed by value
* This is the first routine called by the operating system * Asaresult
- Specific signature: > aparameter of a primitive type is input-only (i.e., its value is input into
b1t at ” o (Stri the method)
public static voi malnA(ringl]A args) | } > A parameter of reference type is input-and-output (i.e., the data of an
* Each class can have amain () routine for testing purposes object parameter can be changed by the method and the changes are
visible to the caller of the method)
* Example
void abc(int k; Point q) {
kbt qu.xtdi q.y==i Output:
System.out.println(k, g.x, g.y): 17 3 7
}
1846
int j = 17; Point p = new Point(3,7); 17 4 6
System.out.println(j, p.x, p.y);
abc (3, p)i
System.out.println(j, p.x, p.v);
CSc 115 Object-based programming 19 €Sc 115 Object-based programming 20

Primitive types

* Primitive types are defined by the language:
» byte, short, int, long, float, double, boolean, char

* All primitive types have literals
> A literal is an unnamed constant value

> Examples
int 42 052 Ox2a
double 420 42. 4.2el 42d
float 42.0f A2e2f
boolean true false
char ‘e \n' \\ \"

* Youcan wrap primitive data inside objects, if necessary
* Sometimes useful to treat all variables uniformly
Integer intWrapper = new Integer(3);
int i = intWrapper.intValue();

CSc 115 Object-based programming 21

Reference types

* Two kinds
» Classes
» Arrays

*+ String class
String hello = String(“hello”);
String hello = ”“hello”; // short form
hello.charAt (1); // returns ’e’
> Strings are ot arrays of characters

CSc 115 Object-based programming 22

Arrays

* Anarray is a numbered collection of components all of the same type

* Each component has an index

* The indices range from O to length-1

+ Every array has a length field (e.g., a.length)

* An.index outside this range is referred to as out of bounds and generates
an IndexOutOfBounds exception

+ Component types can either be primitive or reference (e.g., classes or

arrays)

int [] a;

a = new int([5];

al[0] = 42;

alll = bl4];

String[] answers = {“yes”, “no”};

Color[] col = new Color([5];

col[0] = new Color();

int [] b = {12, -15, 42, 12, 10};

b[5] = 11; // error, throws IndexOutOfBoundsException
b.length == 5; // b.length returns 5; expression is true

CSc 115 Object-based programming 23

Storage allocation for variables

* Allocating an object or an array reference
String name;

Abc k;
int[] a;
Point[] p;
* Allocating a cell for a variable of a primitive type
int j;
double d;
+ Instantiation and initialization
j = 3;
d = 3.14159;
name = “Bette”;

k = new Abc();
a=1{1,1, 3,5 9, 15, 25, 41, 67, 109};
p = new Point[10];

€Sc 115 Object-based programming 24

Variables Quiz

int sumSquares(int n) {
partialSum = 0;
int i;
while (i <= n) {
int square = i*i;
partialSum += square;
i++;
System.out.println(”last square = ” + square);

return partialSum;

Variables Quiz (Solutions)

int sumSquares(int n) {

partialSum = 0;
// The variable named partialSum has no type

int i;

while (i <= n) {

// The variable named i is not initialized
int square = i*i;
partialSum += square;
it

System.out.println(”last square = ” + square);
// The variable named square is not defined
return partialSum;

} }
CSc 115 Object-based programming 25 CSc 115 Object-based programming 26
Modifiers (Quiz) Modifiers (Quiz)
Can be applied to Can be applied to
Modifier PP Modifier PP
Classes | Fields | Methods Classes | Fields | Methods
public public X
access protected access protected X X
modifiers (default) modifiers (default) X X X
private private X X
static static X X
final final x X
abstract abstract X X
* Other modifiers: * Other modifiers:
synchronized, native, transient, volatile, strictfp synchronized, native, transient, volatile, strictfp
CSc 115 Object-based programming 27 CSc 115 Object-based programming 28

Identifiers and Reserved Words

* Identifiers are used as names for variables, constants, classes,

Identifier Quiz

. ‘o
methods, etc. Identifier Valid?
sum
Must follow certain rules: 4you
> must begin with a letter salary%
» may contain additional letters and digits MEDIUM
> all characters are significant long
“r case sensi‘rive' 4 longint
» must not conflict with a reserved word Double
NO_VALUE
_12
goto
Rect$1
WHBE o7
CSc 115 Object-based programming 29 CSc 115 Object-based programming 30
Identifier Quiz (Solutions) Naming conventions
. X Variables, fields, parameters
Identifier Valid? » Mixed case, start with lower case
7 .
sum —— * inputMode
4you No - Must begin with letter Classes, constructors
salary% No - No special chars allowed > Mixi‘i::::/ start with upper case
MEDIUM v - Clock
long reserved Constants
- » All upper case
longint v > PI, MAXNUMBER, LASTINDEX
Double \ Methods
» Mixed case, start with lower case, parenthesis
NO_VALUE | V - getAge()
_12 V- _is considered a char * setUserID()
Packages
goto Reserved word > All lower case
Rect$l \'$ is considered * awt
+ swingx
WEoR l *+ project
CSc 115 Object-based programming 31 €Sc 115 Object-based programming 32

Operators and Expressions

Operator Quiz

* Operators can be unary, binary or ternary int x = 42, y = 20, z = 1; int[] a = {19, 4, 7};

* Operators are left-associative, except for assignment operators Expression bR TR
2-17-5 > (42 - 17) - 5 y*2-x/7+1 ! 14 35
a=b=42 D a= (b= 42) 3/2 15 1 2

» assignment operators return the value assigned 3/2d 15 1 2
y%6 3 2 -2
Operators have precedence yH+ 20 21 22
a.length > 5 + 42 / 7 +oy 20 21 22
= (a.length) > (5 + (42 / 7)) alze] 2 2 7
x <5688y !'=6?42 : 0
2 ((x <5) && (y '=6)) 2 42 : 0 al0] - af2] 12 15 v
alength >3 &&a[3]==7 true 7 false
> See table on page 22 in Goodrich and Tamassia. x=y/=5 4 8 5
> when in doubt, don't skimp on parentheses! (y %=7)==02-1:x/((double) y) -1 7 70
CSc 115 Object-based programming 33 CSc 115 Object-based programming 34
Operator Quiz Control Flow — If
int x = 42, y = 20, z =1; int[] a = {19, 4, 7}; if (condition) {
statements 1;
Expression Which Result s correct? } else { -
y*2-x/7+1 1 14 35 statements 2;
3/2 15 1 2 }
3/2d 15 1 2
y%6 3 2 -2 * the condition must be a boolean expression
y++ 20 21 22 » if itis true, the first block is executed
ry 20 21 22 * otherwise, the second block is executed, if present
alz++] 2 4 7 + execution then resumes after the end of the if statement
a[0] - a[2] 12 15 19
alength > 3 && a[3] == true 7 false
xzy/=5 4 8 5
(y %=7)==02?-1:x/ ((double) y) -1 7 7.0
CSc 115 Object-based programming 35 €Sc 115 Object-based programming 36

Control Flow — Switch

switch (expression) {

case constant 1:
statements 1;
break;

case constant 2:
statements 2;
break;

// .

default:

statements default;

* the expression must be of
type char, byte, short or
int

*+ each case label must be a
unique constant

* code is executed starting at
the case label whose constant
matches the value of the
expression

* if no constant matches, the
default block is executed

* code is executed until a break
statement (or the end of the
switch) is reached

Switch Quiz

A switch that determines if a number between 2 and 8 is prime.

int n = (int) (Math.random()*7)+2; int n = (int) (Math.random()*7)+2;

boolean isPrime;
switch (n)

}

break; (isPrime 2 " :
“prime”) ;
System.out.println(n + ” is ” +
(isPrime ? ”” : ”"not ”) +
“prime”) ;

boolean isPrime;
switch (n) {

case 2: isPrime = true; break;
case 3: isPrime = true; break;
case 4: isPrime = false;
break;

case 5: isPrime = true; break;
case 6: isPrime = false;
break;

case 7: isPrime = true; break;
case 8: isPrime = false;

}

System.out.println(n + ” is ” +

“not) +

CSc 115 Object-based programming 37 CSc 115 Object-based programming 38
Switch Quiz Control Flow — While
A switch that determines if a number between 2 and 8 is prime. while (condition) {
statements;
int n = (int) (Math.random()*7)+2; | int n = (int) (Math.random()*7)+2; }
boolean isPrime; boolean isPrime;
switch (n) { switch (n) { - .
case 2: isPrime = true; break; case 2: * the condition must be a boolean expression
case 3: isPrime = true; break; case 3: + if it is true, the statements are executed, then the condition is
case 4: isPrime = false; case 5 evaluated again
break; case 7: isPrime = true; break; s . . .
case 5: isPrime = true; break; case 4: + if it is false, execution resumes after the end of the while
case 6: isPrime = false; case 6 statement
break; case 8 isPrime = false;
case 7: isPrime = true; break; break;
case 8: isPrime = false;) do {
break; System.out.println(n + 7 is ” + statements;
} (isPrime ? ”” : “not ") + . s X
System.out.println(n + ” is ” + “prime”) ; } while (condition);
(isPrime ? ”” : “not ") +
“prime”) ;
* as above, but the statements are executed at least once
CSc 115 Object-based programming 39 €Sc 115 Object-based programming 40

Control Flow — For

for (initialization ; condition ; increment) {
statements;
}
+ isequivalentto———
initialization;
while (condition) {

Control Flow — Break and Continue

* allow you to change the flow of a for, while, or ado while loop
> break will inmediately exit the loop
» continue will skip ahead to evaluating the loop's condition
* Example
> Given an array of "sock pair objects"” (i.e., a pair can have 1, 2
socks of the same colors)
» return the firstindex of a pair of socks (i.e., two socks) that

statements; matches a given color
increment; . .
} int findPairOfSocks (Color c, Socks[] a) { if nota pair,
for (int i = 0; i < a.length; i++) { keep looking
+ often used for iterating over the elements of an array 1: (a [%] 'ison:s"‘:k:“t()) °°nti““e" i match,
* the initialization statements can contain a variable declaration: } if (alil.matchesColor(c)) break; stop looking
for (int i = 0; i < a.length; i++) { . .
sum 4= a[il; return i < a.length ? i : -1; if no match,
! } return -1
}
CSc 115 Object-based programming 41 CSc 115 Object-based programming 42
Control Flow Quiz Control Flow Quiz
« What is the difference between a while statement and a do * What is the difference between a while statement and a do
while statement? while statement?
» The block in the do while statement is executed at least
once.
. i i 2 . . .
How can you translate a £ox loop info a while loop? » The block in the while statement is potentially never
executed.
* How can you translate a £or loop into a while loop?
for (init; terminationCondition;
incrementalStep) {
statements;
}
init;
while (terminationCondition) {
statements;
incrementalStep;
}
CSc 115 Object-based programming 43 €Sc 115 Object-based programming 44

Packages

* Large software systems have many more classes than lines of code
per class. Thus, organizing classes is as important as programming
individual classes.

+ Java offers the notion of a package to aggregate related classes.
* Classes are assigned to a package using a package directive before
the class declaration:
package packagename;
package assignment3;
* Package names are usually in all lower case.
* Using the import directive, packages can be imported (i.e., made
available) to classes.
import packagename.*;

import assignment3.*;

CSc 115 Object-based programming 45

Input and output

+ Java provides a rich set of classes for performing i/o

+ Java provides classes for simple text i/o using a console window
import java.io.*;

+ Java also provides i/o using a Graphical User Interface (6UI)
import java.awt.*; // for drawing

import javax.swing.*; // for widgets

CSc 115 Object-based programming

46

Simple text I/0

* Output to the console:
» Very useful for debugging logical errors in your program.
> System.out is a static object of type PrintStream
+ Print(), and println() methods take the following
arguments:
- Any object (provided it has a toString()) method
- Any string or concatenated strings
- Any base type (automatically cast to String)
*+ Input from the console
» must import java.io.*;
> System.in is anobject of type InputStream (abstract class)
+ inputs bytes only (crude)
» InputStreamReader translates bytes to characters.
+ API recommends wrapping an InputStreamReader withina
BufferedReader
+ See page 35 of text

CSc 115 Object-based programming 47

Simple text I/0

import java.io.*;
BufferedReader inp;

String line;

inp = new BufferedReader (new InputStreamReader (System.in));

System.out.print (“Type a double: “);
System.out.flush();
if ((line = inp.readLine()) != null) {

double d = Double.valueOf (line) .doubleValue();
System.out.print (“Type an int: “);
System.out.flush();
if ((line = inp.readLine()) != null) {

int k = Integer.valueOf (line).intValue();
double sum = d + k;

System.out.println(“Sum is “ + sum);

€Sc 115 Object-based programming

48

