
CSc 115 Object-based programming 1

Java™ Basics
Object-based Programming

Reading Assignment Chapters 1-2

CSc 115 Object-based programming 2

Reading assignment

• Chapters 1-2 in textbook
• Study Java libraries extensively

¾ http://java.sun.com/j2se/1.3/docs/api/overview-summary.html
¾ java.lang

• Boolean, Integer
• Math (PI, max, min, sin, cos, random(), round(), sqrt())
• Object (clone(), equals())
• String (CharAt(), CompareTo(), equals(), length())
• System (println(), print(), flush(), Assignment 1)

¾ java.io
• BufferedReader (Section 1.6 in textbook)
• Stdin, flush(), readLine()

¾ java.util
• List, LinkedList, Iterator
• Observer
• Calendar, set(), get() (Assignment 1)
• Hashtable
• Random (Assignment 1)
• Stack

¾ The more you know what is in these libraries, the less code you have to write.

CSc 115 Object-based programming 3

Classes and objects

• The main “actors” in an OO programming language are objects
¾ Objects are alive ☺
¾ An object stores the state (i.e., data) of its actor in fields
¾ An object provides capabilities to its actor with methods
¾ Methods of an object operate (i.e., access, modify) on its fields
¾ Every object is an instance of a class

• A class consists of members
¾ There are two categories of class members

• Fields or variables
• Methods

¾ A class defines types for all of its members
¾ The type of a field can be primitive or reference

CSc 115 Object-based programming 4

The surroundings of a class

• Package
¾ A class belongs to a named package or the default package

package cscc115assignment1;
¾ A class can import packages

import javax.swing.*;
Import java.io.*;

• Inheritance
¾ A class can extend another class (i.e., be a subclass)

public class Manager extends Employee { … }
public class Model extends Observable { … }

¾ A class can be a superclass for another class

• Interfaces
¾ A class can implement an interface

public class TextView implements Observer { … }

CSc 115 Object-based programming 2

CSc 115 Object-based programming 5

Class declaration

• Syntax
[modifiers] class ClassName [extends SuperClassName]

[implements Interface1, Interface2, …] {

class member declarations;

}

• Example
public class Course {

// two fields and two methods

private int noStudents;

private String instructor;

public Course(int k, String s) {

noStudents = k; instructor = s; }

public int getNoStudents() { return noStudents; }

public String getInstructor() { return instructor; }

}

CSc 115 Object-based programming 6

Class modifiers

• Class modifiers are optional keywords preceding the class keyword.
• abstract

¾ The class has abstract methods (i.e., no method body and
preceded by abstract modifier).

¾ A class with only final instance variables and only abstract
methods is called an interface

• final
¾ A final class has no subclasses.

• public
¾ A public class can be instantiated or extended by anything in

the same package or anything that imports this class.
¾ Each public class is declared in a separate file; downloadable

component.

CSc 115 Object-based programming 7

Creating fields or variables

• Creating fields of primitive types
• Examples

int k = 3;

double d = 3.14159;

boolean b = true;

• Creating fields of reference types (i.e., objects)
• Examples

String s = new String(“hi”);

Point p = new Point(3, 7);

Course c = new Course(256, “Muller”);

CSc 115 Object-based programming 8

Creating or instantiating objects

• An object is created from a defined class using the new operator
• new allocates storage for the object on the heap and returns a

reference to the object
• An object can be declared anywhere (even within a for loop)
• An object can be accessed from its declaration to the end of the

block
¾ this is called its scope
¾ a block ends at its closing curly brace “}”

• An object must be assigned a value before it can be read

reference
Heap

Storage
allocated
for object

objectName

CSc 115 Object-based programming 3

CSc 115 Object-based programming 9

Creating or instantiating objects

• Syntax
objectName = new ConstructorClassName(paramters);

• Example
Point p = new Point (4,7);

Constructor
parameters

constructor

class name
(type)

object name
(variable)

operator

CSc 115 Object-based programming 10

Creating or instantiating objects

• Example
Point p = new Point (4, 7);

p

Allocated
on the heap

reference object data
4
7

Allocated
on the stack

or heap

CSc 115 Object-based programming 11

Class members

• Fields
¾ Data associated with an object
¾ Represent and store the state of an object
¾ The type of an field or a parameter can be primitive or reference
¾ All fields are initialized to default values automatically
¾ Examples

private int k = 17;
protected Point p = new Point(17,12);

• Methods
¾ Define the behaviour of the objects instantiated from that class
¾ A method definition has two parts: signature and body
¾ Methods have a return type

• The return type is void if the method does not return anyting
¾ Methods are also called functions or procedures

void doNothing() { }
ComplexNumber makeComplex(double r, double i){ /* … */
int findSock(Color c, Socks[] a) { /* … */ }
double[] getGrades() { /* … */ }

CSc 115 Object-based programming 12

public, protected, private, and package modifiers

• These modifiers apply to both fields and methods
• public

¾ Any method can access public members
• protected

¾ Only methods of the same package or subclasses can access
protected members

• private
¾ Only methods of the same class can access private members

• Package (no modifier)
¾ Members, which are not public, protected, or private, are called

package members
¾ Only methods in the same package can access package members

CSc 115 Object-based programming 4

CSc 115 Object-based programming 13

Field modifiers

• public, protected, private, package modifiers
¾ As discussed on previous slide

• static
¾ A static variable is associated with its class, is shared by all

objects of its class, and its storage exists once (i.e., with the
class rather than all the objects)

• final
¾ A final variable must be initialized and is readonly after

initialization (i.e., it is constant)
¾ final variables are usually also declared static so that storage

is allocated only once for an entire class
¾ The naming convention for final variables is all upper case
¾ final variables are often declared in interfaces

CSc 115 Object-based programming 14

Method modifiers

• public, protected, private, package modifiers
¾ As discussed on a previous slide

• static
¾ A static method is associated with its class and is shared by all

objects of its class (i.e., with the class rather than all the
objects)

¾ The static fields can only be changed by static methods (as
long as they are not declared final)

• final
¾ A final methods cannot be overridden by a subclass.

• abstract
¾ An abstract method has no body.
¾ The parameter list is followed by a semicolon to terminate the

abstract method declaration.
¾ abstract methods may only appear within an abstract class.
¾ abstract methods are typically overridden by subclasses.

CSc 115 Object-based programming 15

static members

• Example
public class Node {

private static int noObjects = 0;

private int id;

public Node(int k) { id=k; noObjects++ }

public static getNoObjects() {

return noObjects;

}

}

System.out.println(Node.noObjects()); // 0

Node n1 = new Node(17);

System.out.println(Node.noObjects()); // 1

Node n2 = new Node(22);

System.out.println(Node.noObjects()); // 2

CSc 115 Object-based programming 16

static field

• Execute program

n1 17

n2 22

n3 29

0noObjects 1noObjects 2noObjects 3noObjects

CSc 115 Object-based programming 5

CSc 115 Object-based programming 17

Accessing members

• Dot notation
• Accessing instance members

objectName.classMember

objectName.field

objectName.method()

• Accessing static members
className.classMember

className.field

className.method()

CSc 115 Object-based programming 18

Constructors

• A special type of method
• Instantiates and initializes objects
• Has same name as the class and no return type
• The abstract, static, and final modifiers are not allowed for

constructors
• A public, no-argument constructor is provided by the Java run-time

environment if the class does not define one
• A class can have many constructors; all have the same name, but all

signatures must be different

CSc 115 Object-based programming 19

main() method

• The main entry point of a Java program
• This is the first routine called by the operating system
• Specific signature:

public static void main(String[] args) { … }

• Each class can have a main() routine for testing purposes

CSc 115 Object-based programming 20

Parameters

• All method parameters are passed by value
• As a result

¾ a parameter of a primitive type is input-only (i.e., its value is input into
the method)

¾ A parameter of reference type is input-and-output (i.e., the data of an
object parameter can be changed by the method and the changes are
visible to the caller of the method)

• Example
void abc(int k; Point q) {

k++; q.x++; q.y--;

System.out.println(k, q.x, q.y);

}

int j = 17; Point p = new Point(3,7);

System.out.println(j, p.x, p.y);

abc(j, p);

System.out.println(j, p.x, p.y);

Output:
17 3 7
18 4 6
17 4 6

CSc 115 Object-based programming 6

CSc 115 Object-based programming 21

Primitive types

• Primitive types are defined by the language:
¾ byte, short, int, long, float, double, boolean, char

• All primitive types have literals
¾ A literal is an unnamed constant value
¾ Examples

• You can wrap primitive data inside objects, if necessary
• Sometimes useful to treat all variables uniformly

Integer intWrapper = new Integer(3);

int i = intWrapper.intValue();

’\’’’\\’’\n’’c’char
falsetrueboolean
.42e2f42.0ffloat

42d4.2e142.42.0double
0x2a05242int

CSc 115 Object-based programming 22

Reference types

• Two kinds
¾ Classes
¾ Arrays

• String class
String hello = String(“hello”);

String hello = ”hello”; // short form

hello.charAt(1); // returns ’e’

¾ Strings are not arrays of characters

CSc 115 Object-based programming 23

Arrays

• An array is a numbered collection of components all of the same type
• Each component has an index
• The indices range from 0 to length-1
• Every array has a length field (e.g., a.length)
• An index outside this range is referred to as out of bounds and generates

an IndexOutOfBounds exception
• Component types can either be primitive or reference (e.g., classes or

arrays)

int [] a;
a = new int[5];
a[0] = 42;
a[1] = b[4];
String[] answers = {“yes”, “no”};
Color[] col = new Color[5];
col[0] = new Color();
int [] b = {12, -15, 42, 12, 10};
b[5] = 11; // error, throws IndexOutOfBoundsException
b.length == 5; // b.length returns 5; expression is true

CSc 115 Object-based programming 24

Storage allocation for variables

• Allocating an object or an array reference
String name;

Abc k;

int[] a;

Point[] p;

• Allocating a cell for a variable of a primitive type
int j;

double d;

• Instantiation and initialization
j = 3;

d = 3.14159;

name = “Bette”;

k = new Abc();

a = {1, 1, 3, 5, 9, 15, 25, 41, 67, 109};

p = new Point[10];

CSc 115 Object-based programming 7

CSc 115 Object-based programming 25

Variables Quiz
int sumSquares(int n) {

partialSum = 0;

int i;

while (i <= n) {
int square = i*i;
partialSum += square;
i++;

}

System.out.println(”last square = ” + square);

return partialSum;
}

CSc 115 Object-based programming 26

Variables Quiz (Solutions)
int sumSquares(int n) {

partialSum = 0;
// The variable named partialSum has no type

int i;

while (i <= n) {
// The variable named i is not initialized

int square = i*i;
partialSum += square;
i++;

}

System.out.println(”last square = ” + square);
// The variable named square is not defined
return partialSum;

}

CSc 115 Object-based programming 27

Modifiers (Quiz)

• Other modifiers:
synchronized, native, transient, volatile, strictfp

abstract
final
static
private
(default)
protected
public

MethodsFieldsClasses
Can be applied to

Modifier

access
modifiers

CSc 115 Object-based programming 28

Modifiers (Quiz)

• Other modifiers:
synchronized, native, transient, volatile, strictfp

xxabstract
xxxfinal
xxstatic
xxprivate
xxx(default)
xxprotected
xxxpublic

MethodsFieldsClasses
Can be applied to

Modifier

access
modifiers

CSc 115 Object-based programming 8

CSc 115 Object-based programming 29

Identifiers and Reserved Words

• Identifiers are used as names for variables, constants, classes,
methods, etc.

• Must follow certain rules:
¾ must begin with a letter
¾ may contain additional letters and digits
¾ all characters are significant
¾ case sensitive
¾ must not conflict with a reserved word

CSc 115 Object-based programming 30

Identifier Quiz

goto

始まった

Rect$1

_12
NO_VALUE
Double
longint
long
MEDIUM
salary%
4you
sum

Valid?Identifier

CSc 115 Object-based programming 31

Identifier Quiz (Solutions)

Reserved wordgoto

√始まった

√ $ is consideredRect$1

√ - _ is considered a char_12
√NO_VALUE
√Double
√longint
reservedlong
√MEDIUM
No - No special chars allowedsalary%
No - Must begin with letter4you
√sum
Valid?Identifier

CSc 115 Object-based programming 32

Naming conventions

• Variables, fields, parameters
¾ Mixed case, start with lower case

• k
• inputMode

• Classes, constructors
¾ Mixed case, start with upper case

• Person
• Clock

• Constants
¾ All upper case
¾ PI, MAXNUMBER, LASTINDEX

• Methods
¾ Mixed case, start with lower case, parenthesis

• getAge()
• setUserID()

• Packages
¾ All lower case

• awt
• swingx
• project

CSc 115 Object-based programming 9

CSc 115 Object-based programming 33

Operators and Expressions

• Operators can be unary, binary or ternary

• Operators are left-associative, except for assignment operators
42 – 17 – 5 Î (42 – 17) – 5
a = b = 42 Î a = (b = 42)

¾ assignment operators return the value assigned

• Operators have precedence
a.length > 5 + 42 / 7

Î (a.length) > (5 + (42 / 7))
x < 5 && y != 6 ? 42 : 0

Î ((x < 5) && (y != 6)) ? 42 : 0

¾ See table on page 22 in Goodrich and Tamassia.
¾ when in doubt, don’t skimp on parentheses!

CSc 115 Object-based programming 34

Operator Quiz

int x = 42, y = 20, z = 1; int[] a = {19, 4, 7};

-223y % 6

7.07-1(y %= 7) == 0 ? –1 : x / ((double) y)
584x = y /= 5

false7truea.length > 3 && a[3] == 7
191512a[0] – a[2]
742a[z++]

211.53 / 2d

222120++y
222120y++

211.53 / 2
35141y * 2 – x / 7 + 1

Which Result is correct?Expression

CSc 115 Object-based programming 35

Operator Quiz

int x = 42, y = 20, z = 1; int[] a = {19, 4, 7};

-223y % 6

7.07-1(y %= 7) == 0 ? –1 : x / ((double) y)
584x = y /= 5

false7truea.length > 3 && a[3] == 7
191512a[0] – a[2]
742a[z++]

211.53 / 2d

222120++y
222120y++

211.53 / 2
35141y * 2 – x / 7 + 1

Which Result s correct?Expression

CSc 115 Object-based programming 36

Control Flow — If

if (condition) {
statements_1;

} else {
statements_2;

}

• the condition must be a boolean expression
• if it is true, the first block is executed
• otherwise, the second block is executed, if present
• execution then resumes after the end of the if statement

CSc 115 Object-based programming 10

CSc 115 Object-based programming 37

Control Flow — Switch

switch (expression) {
case constant_1:

statements_1;
break;

case constant_2:
statements_2;
break;

// …
default:

statements_default;
}

• the expression must be of
type char, byte, short or
int

• each case label must be a
unique constant

• code is executed starting at
the case label whose constant
matches the value of the
expression

• if no constant matches, the
default block is executed

• code is executed until a break
statement (or the end of the
switch) is reached

CSc 115 Object-based programming 38

Switch Quiz

int n = (int) (Math.random()*7)+2;
boolean isPrime;
switch (n) {

case 2: isPrime = true; break;
case 3: isPrime = true; break;
case 4: isPrime = false;
break;
case 5: isPrime = true; break;
case 6: isPrime = false;
break;
case 7: isPrime = true; break;
case 8: isPrime = false;
break;

}
System.out.println(n + ” is ” +

(isPrime ? ”” : ”not ”) +
”prime”);

int n = (int) (Math.random()*7)+2;
boolean isPrime;
switch (n) {

}
System.out.println(n + ” is ” +

(isPrime ? ”” : ”not ”) +
”prime”);

A switch that determines if a number between 2 and 8 is prime.

CSc 115 Object-based programming 39

Switch Quiz

int n = (int) (Math.random()*7)+2;
boolean isPrime;
switch (n) {

case 2: isPrime = true; break;
case 3: isPrime = true; break;
case 4: isPrime = false;
break;
case 5: isPrime = true; break;
case 6: isPrime = false;
break;
case 7: isPrime = true; break;
case 8: isPrime = false;
break;

}
System.out.println(n + ” is ” +

(isPrime ? ”” : ”not ”) +
”prime”);

int n = (int) (Math.random()*7)+2;
boolean isPrime;
switch (n) {
case 2:
case 3:
case 5:
case 7: isPrime = true; break;
case 4:
case 6:
case 8: isPrime = false;
break;

}
System.out.println(n + ” is ” +

(isPrime ? ”” : ”not ”) +
”prime”);

A switch that determines if a number between 2 and 8 is prime.

CSc 115 Object-based programming 40

Control Flow — While

while (condition) {
statements;

}

• the condition must be a boolean expression
• if it is true, the statements are executed, then the condition is

evaluated again
• if it is false, execution resumes after the end of the while

statement

do {
statements;

} while (condition);

• as above, but the statements are executed at least once

CSc 115 Object-based programming 11

CSc 115 Object-based programming 41

Control Flow — For

for (initialization ; condition ; increment) {
statements;

}

• is equivalent to
initialization;
while (condition) {

statements;
increment;

}

• often used for iterating over the elements of an array
• the initialization statements can contain a variable declaration:

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

CSc 115 Object-based programming 42

Control Flow — Break and Continue

• allow you to change the flow of a for, while, or a do while loop
¾ break will immediately exit the loop
¾ continue will skip ahead to evaluating the loop’s condition

• Example
¾ Given an array of “sock pair objects” (i.e., a pair can have 1, 2

socks of the same color)
¾ return the first index of a pair of socks (i.e., two socks) that

matches a given color

int findPairOfSocks(Color c, Socks[] a) {
for (int i = 0; i < a.length; i++) {

if (a[i].isOneSockLost()) continue;
if (a[i].matchesColor(c)) break;

}
return i < a.length ? i : -1;

}

if not a pair,
keep looking

if match,
stop looking

if no match,
return -1

CSc 115 Object-based programming 43

Control Flow Quiz

• What is the difference between a while statement and a do
while statement?

• How can you translate a for loop into a while loop?

CSc 115 Object-based programming 44

Control Flow Quiz

• What is the difference between a while statement and a do
while statement?
¾ The block in the do while statement is executed at least

once.
¾ The block in the while statement is potentially never

executed.

• How can you translate a for loop into a while loop?
for (init; terminationCondition;
incrementalStep) {

statements;
}

init;
while (terminationCondition) {

statements;
incrementalStep;

}

CSc 115 Object-based programming 12

CSc 115 Object-based programming 45

Packages

• Large software systems have many more classes than lines of code
per class. Thus, organizing classes is as important as programming
individual classes.

• Java offers the notion of a package to aggregate related classes.
• Classes are assigned to a package using a package directive before

the class declaration:
package packagename;

package assignment3;

• Package names are usually in all lower case.
• Using the import directive, packages can be imported (i.e., made

available) to classes.
import packagename.*;

import assignment3.*;

CSc 115 Object-based programming 46

Input and output

• Java provides a rich set of classes for performing i/o
• Java provides classes for simple text i/o using a console window

import java.io.*;

• Java also provides i/o using a Graphical User Interface (GUI)
import java.awt.*; // for drawing

import javax.swing.*; // for widgets

CSc 115 Object-based programming 47

Simple text I/O

• Output to the console:
¾ Very useful for debugging logical errors in your program.
¾ System.out is a static object of type PrintStream

• Print(), and println() methods take the following
arguments:

– Any object (provided it has a toString()) method
– Any string or concatenated strings
– Any base type (automatically cast to String)

• Input from the console
¾ must import java.io.*;
¾ System.in is an object of type InputStream (abstract class)

• inputs bytes only (crude)
¾ InputStreamReader translates bytes to characters.

• API recommends wrapping an InputStreamReader within a
BufferedReader

• See page 35 of text

CSc 115 Object-based programming 48

Simple text I/O

import java.io.*;

BufferedReader inp;

String line;

inp = new BufferedReader(new InputStreamReader(System.in));

System.out.print(“Type a double: “);

System.out.flush();

if ((line = inp.readLine()) != null) {

double d = Double.valueOf(line).doubleValue();

System.out.print(“Type an int: “);

System.out.flush();

if ((line = inp.readLine()) != null) {

int k = Integer.valueOf(line).intValue();

double sum = d + k;

System.out.println(“Sum is “ + sum);

