
CSc 115 Object-oriented design 1

Object-oriented Design

Reading Assignment
Chapters 1-2

CSc 115 Object-oriented design 2

Designing Software

• How do we solve a large problem?
break it down into smaller ones

• Top-down design
• Divide and conquer
• Separation of concerns
• Stepwise refinement

if some of the problems have already been solved, identify
existing components that can be reused
when the problems are small enough, solve them directly

• How do we divide a problem?
By identifying functionality
By identifying classes (data and code)
By identifying reusable components
By separating concerns

CSc 115 Object-oriented design 3

What is good design?

• Objective
Identifying classes (i.e., fields and methods)

• Software engineering principles
Encapsulation

• Package data and access functions
• Abstract data types (ADTs)
• Localize changes

High cohesion among the members of a class
• Lots of dependencies among the methods and fields of a class

Low coupling among classes
• Classes communicate by calling each others’ methods

Small interfaces
• Keep parameters lists short (i.e., 0 to 3 parameters)
• For longer lists, pack the list into a class/object

Information hiding
• Keep the fields as private, protected, or package as possible
• Provide get() and set() functions for private, protected, and

package fields

CSc 115 Object-oriented design 4

Design techniques

• Identifying responsibilities and behaviours
Divide the work among different actors, each with a different
responsibility (i.e., verb)
Striving for independence; define the work for each class to be as
independent from each other as possible; each class should have some
autonomy
Define the behaviour (i.e., methods) of class so that it is easily
understood by other classes; the set of methods of a class constitutes
the protocol of a class

• CRC
Responsibility-collaborator cards
Index cards
Left: responsibilities of the component
Right: collaborators of the component

• UML
Unified Modeling Language
Industry standard

• Goodrich & Tamassia, p. 42-43

CSc 115 Object-oriented design 2

CSc 115 Object-oriented design 5

CRC cards

CSc 115 Object-oriented design 6

A Simple Object-Oriented Design Technique
• Start with a statement of the problem to be solved.

Circle or colour all the important-looking nouns
• they become candidates for classes and fields

Underline or colour all the important-looking verbs
• they become candidates for methods

Put them together into coherent classes
• write a short description for each class

Identify relationships among the classes
If classes share characteristics, extract them into
superclasses (i.e., generalization)

• If your descriptions or relationships use vocabulary not yet
identified, iterate through the process.

CSc 115 Object-oriented design 7

Design Quiz

The registrar’s office is upgrading its course registration system to be

written in Java. Students can enroll in courses being offered, but

each course has an enrollment limit: once this is reached, all further

registrants are placed on a waiting list. Students can also withdraw

from a course they are enrolled in.

CSc 115 Object-oriented design 8

Design Quiz

The registrar’s office is upgrading its course registration system to

be written in Java. Students can enroll in courses being offered, but

each course has an enrollment limit: once this is reached, all further

registrants are placed on a waiting list. Students can also withdraw

from a course they are enrolled in.

Nouns - candidate classes, object, fields

Verb – candidate methods

CSc 115 Object-oriented design 3

CSc 115 Object-oriented design 9

Registrar’s Office

• Classes
Student
StudentList
Course
CourseList
Registrar

• Fields
Student

• id
• first
• last

StudentList
• noStudents
• sl

Course
• id
• limit
• rl
• wl

CourseList
• noCourses
• cl

Registrar
• cl
• sl

CSc 115 Object-oriented design 10

Registrar’s Office

• Classes
Student
StudentList
Course
CourseList
Registrar

• Methods
Student

• Student()
• getId()
• getFirst()
• getLast()

StudentList
• StudentList()
• getNoStudents()
• add(Student)
• remove(Student)
• getSL()

Course
• Course()
• ful()
• add(Student)
• remove(Student)
• getId()
• getLimit()
• getRL()
• getWL()

CourseList
• CourseList()
• getNoCourses()
• getCL()
• add(Course)
• remove(Course)

Registrar
• Registrar()
• getCL()
• getSL()
• add(Course)
• remove(Course)
• add(Student)
• remove(Student)

CSc 115 Object-oriented design 11

Strategies for Unit Testing

• Unit testing
The practice of testing a single method or class, separately
from the overall program in which it is used

• Important things to test for
API of a class (methods, parameters)
Proper initialization of fields
Boundary conditions (e.g., array bounds, off by one)
Error conditions
Execution paths (statement coverage)

• Using println() and toString() for debugging purposes
Design this ability in from the start like other requirements
Write/override the toString() method for each class
You can then print before-after pictures in your test code

• Code inspection and code walk-throughs

CSc 115 Object-oriented design 12

Bottom-Up Testing

• Why is bottom-up testing a useful approach?
the smaller the piece of code being tested, the easier it is to
locate and fix bugs
if the code being tested has dependencies, those dependencies
are also tested
so start at the bottom, with the smallest possible modules and
fewest dependencies

• Classes are tested from the bottom to the top of the class
hierarchy

• If a group of modules forms a dependency cycle, test the cluster
as a whole—so avoid creating dependency cycles!

Bottom-Up Testing Order Principle:
Whenever possible, before testing a given method X, test
all methods that X calls or that prepare data that X uses.

CSc 115 Object-oriented design 4

CSc 115 Object-oriented design 13

Top-Down Testing

• Why would you want to do this?
when working in a team, layers are often implemented in parallel
A component may depend on others that aren’t available yet
Don’t wait for others before starting testing; use stubs

• How to do it?
stub out any dependencies of your component: fake realistic
results with a minimum of effort
the stub might:

• return a very small number of hard-coded items
• only be able to deal with your specific test data

• Stubbing out components can also be useful in breaking dependency
cycles, allowing the co-dependent components to be tested
individually

CSc 115 Object-oriented design 14

Integration, Acceptance and Regression Testing

• When unit testing is complete, you must test the interactions of
the classes with integration testing

• When the project is complete, you often have to run a final
acceptance test before the customer officially accepts your work

• Once a system is released into service, it enters the maintenance
phase of its lifecycle

in this phase, more bugs are discovered and fixed, and new
features added
as things change, you want to do regression testing to make
sure that the changes don’t break previously working code
it’s useful to have a suite of test drivers that can automatically
run all unit and integration tests, and report on the results
note: it’s very common for fixes or upgrades to interfere with
seemingly unrelated code

CSc 115 Object-oriented design 15

Assertions

• An assertion is the statement of a fact that should be true at a
given point in the execution of a program

assertions can be written as comments, to document the code:
count--;
// assert: count >= 0

they can be written as code, to verify assumptions at runtime:
count--;
if (!(count >= 0)) throw new AssertionFailure();

• An assertion at the beginning of a method is called a precondition
it will often validate the method’s arguments

• An assertion at the end of a method is called a postcondition
it will often validate the method’s work and/or result

• When assertions are stated using a formal logical language, it’s
sometimes possible to prove a program’s correctness; this is called
verification

CSc 115 Object-oriented design 16

Basic Idea

• The class:
It has attributes that uniquely define an object.

• instance variables
It allows some access to other classes

• through public methods
It allows internal activities

• through private methods and variables

• An object can be anything we imagine it to be:
A computer interpretation of a tangible thing

• car, cartoon drawing, check out line
A collection of data
A single data item

