
CSc 115 Software engineering principles 1

Software Engineering Principles
Qualities of Software

Reading Assignment
Chapters 1-2

CSc 115 Software engineering principles 2

Design Goals and Principles

• Design goals
Robustness
Adaptability
Reusability

• Design principles
Abstraction
Encapsulation
Modularity

CSc 115 Software engineering principles 3

Software qualities

• Software engineering is concerned with software qualities
• Qualities (a.k.a. “ilities”) are goals in the practice of software engineering

• External qualities
visible to the user
reliability, efficiency, usability

• Internal qualities
the concern of developers
they help developers achieve external qualities
verifiability, maintainability, extensibility, evolvability, adaptability

• Product qualities
concern the developed artifacts
maintainability, understandability, performance

• Process qualities
deal with the development activity
products are developed through process
maintainability, productivity, timeliness

CSc 115 Software engineering principles 4

Robustness

• Handling unexpected input (i.e., string instead of number, entering 
zero and subsequently dividing by zero)

• Checking input for range and accuracy (e.g., Therac-25)
• Preventing operator mistakes due to alarm overloads (e.g., nuclear 

power plants)
• Redundancy checks (e.g., Mars lander had imperial and metrics 

system data mixed together in the same calculation)
• Reaching memory and array limits and other boundaries (e.g., 

expand and shrink data structures, java.util.Vector)
• One strategy to make programs robust is to use the exception 

mechanism to deal with unexpected data and situations
• Robustness, reliability and correctness work together and must be 

designed into the program from the beginning



CSc 115 Software engineering principles 2

CSc 115 Software engineering principles 5

Adaptability

• The programs we are writing today might last for 30 years
• For programs to stay useful, they must adapt over time
• Different parts of the program evolve at different times and at a 

different pace
Database
User interface

• Programs are expected to run on many platforms
Windows
Mac
Unix/Linux
Solaris
Network-centric
Web-centric

• Laws of software evolution

CSc 115 Software engineering principles 6

Laws of software evolution

• First Law of Lehman [Leh80]:
“Software which is used in a real-world environment must 
change or become less and less useful in that environment.”

• Second Law of Lehman [Leh80]:
“As an evolving program changes, its structure becomes more 
complex, unless active efforts are made to avoid this 
phenomenon.”

• Third Law of Lehman [Leh80]:
“Program evolution is self-regulating process. System 
attributes such as size, time between releases, and the number 
of reported errors are approximately invariant for each system 
release.”

CSc 115 Software engineering principles 7

Laws of software evolution …

• Fourth Law of Lehman [Leh80]:
“Over a program’s lifetime, its rate of development is 
approximately constant and independent of the resources 
devoted to system development.”

• Fifth Law of Lehman [Leh80]:
“Over the lifetime of a system, the incremental system change 
in each release is approximately constant.”

• What can we say about the complexity of the software systems 
developed over the past 40 years?

Constant?
Increase?

CSc 115 Software engineering principles 8

Software qualities …

• Correctness
Ideal quality
Established wrt. Requirements specification
absolute

• Reliability
Statistical quality
Probability that software will operate as expected over a give 
period of time
Relative

• Robustness
Reasonable behaviour in unforseen circumstances
Subjective
A specified requirement is an issue of correctness

• Usability
Ability of end-users to easily use software
Extremely subjective



CSc 115 Software engineering principles 3

CSc 115 Software engineering principles 9

Software qualities …

• Understandability
Ability of developers to understand produced artifacts easily
Internal product quality
Subjective

• Verifiabilty
Ease of establishing desired properties
Performed by formal analysis or testing
Internal quality

• Performance
Equated with efficiency
assessable by measurement, analysis, and simulation

• Evolvability
ability to add or modify functionality
addresses adaptive and perfective maintenance
problem: evolution of implementation is too easy
evolution should start at requirements or design

CSc 115 Software engineering principles 10

Software qualities …

• Reusability
ability to construct new software from existing pieces
must be planned for
occurs at all levels: from people to process, from requirements 
to code

• Interoperability
ability of software (sub)systems to cooperate with others
easily integratable into larger systems
common techniques include APIs, plug-in protocols, etc.

• Scalability
ability of a software system to grow in size while maintaining its 
properties and qualities
assumes maintainability and evolvability
goal of component-based development

CSc 115 Software engineering principles 11

Software qualities …

• Heterogeneity
ability to compose a system from pieces developed in multiple 
programming languages, on multiple platforms, by multiple 
developers, etc.
necessitated by reuse
goal of component-based development

• Portability
ability to execute in new environments with minimal effort
may be planned for by isolating environment-dependent 
components
necessitated by the emergence of highly-distributed systems 
an aspect of heterogeneity

• Maintainability
the ease with which a software system or component can be 
modified to correct faults, improve performance, or other 
attributes, or adapt to a changed environment
Addresses corrective, adaptive, and perfective maintenance

CSc 115 Software engineering principles 12

Design Goals and Principles

• Design goals
Robustness
Adaptability
Reusability

• Design principles
Abstraction
Encapsulation
Modularity



CSc 115 Software engineering principles 4

CSc 115 Software engineering principles 13

Design principles: Abstraction

• To emphasize the important aspects and deemphasize immaterial 
aspects

• For example, a program is a string of bits, characters, tokens, 
syntax tree, classes, logical units, subsystems, application

• Levels of abstraction
Application

• Concepts, business rules, policies
Function

• Logical and functional specifications,
non-functional requirements

Structure
• Data and control flow, dependency graphs
• Structure and subsystem charts
• Software architectures

Implementation
• AST’s, symbol tables, source text

CSc 115 Software engineering principles 14

Design Principles: Encapsulation

• Packaging code and data that belong together
• Information hiding

Information hiding allows details to be hidden from those 
who do not need to see them.
Different components of a software system should not 
reveal the internal details of their respective 
implementations
Gives programmers freedom on how to implement the details 
of a system
Rule of thumb: 

• usually we hide the internal data/state associated with 
an object

• usually we hide the implementation details of an object’s 
methods

• Localize change

CSc 115 Software engineering principles 15

Design principles: modularity

• An organizing structure in which different components of a 
software system are divided into separate functional units

• Separation of concerns
• The architecture of a house can be viewed as several interacting

units
Electrical, heating and cooling, plumbing, structural subsystem

• The elements of susbsystems can be readily replaced if certain 
standards are followed

Facilitates reuse and understanding
• Subsystems are organized into hierarchies of subsystems

Part-of hierarchies (i.e., packages, classes, fields, methods, 
statements, local variables)
Is-a hierarchies (i.e., inheritance)


