Object-Oriented Programming

Reading Assignment
Chapters 1-2

Object-based vs. object-oriented programming

* So far, we did mostly object-based programming
» Classes, objects, instantiating objects, this
> calling methods
> has-a and part-of relationships (i.e., fields)
* Object-oriented programming = object-based +
> Subclass, extends, superclass, super(), protected
> Assignment of subclass object to superclass var, casting
> Inheritance or is-a hierarchies
> Abstract classes and methods
> Polymorphism (i.e., calling generic methods)
» Method overriding in a subclass (i.e., method in a subclass
with the same name)

» Inheritance hierarchies are used to express commonality,
abstraction and facilitate reuse

v

CSc 115 Introduction 0-2

Inheritance, Is-a, Class Hierarchy

Jjava.lang.Object

N

Polygon FreeformShape

‘ Tr‘iangle‘ ‘ Recfungle‘ ‘ Circle‘

CSc 115 Introduction 0-3

‘ Data Modeling: Inheritance Quiz

* Arrange the classes below into an inheritance hierarchy

java.lang.Object

(o)
omato

CherryTomato

€Sc 115 Introduction 0-4

Data Modeling: Inheritance Quiz

Arrange the classes below into an inheritance hierarchy

java.lang.Object

CherryTomato

CSc 115 Introduction 0-5

Data Modeling: Inheritance Quiz

* Arrange the classes below info an inheritance hierarchy

Jjava.lang.Object

Herbivore Carnivore Tomato

‘ Elephant ‘ ‘ TyrannosaurusRex ‘ ‘ Hawk ‘ ‘ Human ‘ ‘ CherryTomato ‘
CSc 115 Introduction 0-6

Inheritance Relationship

Subclass
» extends a superclass definition with new fields or methods
> inherits the fields and methods of the superclass
» modifies the meaning of the superclass
» forms an /s-a relationship with its superclass

Genealogical terminology
> the parent of a class is its superclass
> the children of a class are its immediate subclasses
» the ancestors of a class are its parents, and their parents...
» the descendants of a class are its children, and their children...

Since each class has only one parent, this is single inheritance
Interfaces can be used to simulate mu/tiple inheritance

The classes form an /inheritance or is-a hierarchy

In Java, the Object class is the root of this hierarchy

CSc 115 Introduction 0-7

Inheriting and Extending

* A subclass inherits both data (fields) and behavior (methods)
» inherited members can be accessed as if they were present in
the subclass itself
Subclasses have access to the public, protected and package
members of its superclasses
Subclass methods and other methods of other classes in the
same package have access to protected members
constructors and private members are not inherited
* Overriding a superclass method
» A subclass can redefine a superclass method by using the same
signature
* Overloading of a method
» A method in the same class or a subclass with the same name
but different signature

v

\%

\%

\%

€Sc 115 Introduction 0-8

Overriding and Overloading

Two kinds of method overriding

Subclass member kind Name Argument types Effect * Replacement
and refurn fype > A method completely replaces the method of the superclass
that is overridden (e.g., a toString() routine in every subclass).
instance method same same overrides * Refinement
> The superclass method is not replaced but rather refined, that
instance method same different overloads is, code is added to the superclass method. This is accomplished
by first calling the superclass method (e.g., super.abc())
static method same same hides > All subclass constructors use the refinement method. This is
called constructor chaining. Each subclass constructor begins
static method same different extends its execution by first calling its superclass constructor (i.e.,
super())
instance or static method different any extends
instance or static field same hides
instance or static field different extends
CSc 115 Introduction 0-9 CSc 115 Introduction 0-10
Inheritance Quiz Type Polymorphism
* For each class, state the effect of each member, that is, * amethod declared in a superclass is overridden
overrides, overloads, hides, or extends * you have an instance of the subclass that has the override, but it's
held in a variable with the type of the superclass
class A {
protected String name; * Which actual method implementation will be called?
public static int getCount() {return 1;}
public String toString() {return name;} classbil.map:t(. tostri classbtl)w_ralstxﬂ_:end: z:a?e (
private void doStuff() { .. } pul 1: rtrslg 0" Armg() { PU 1: rigg 13 ring() {
public Object getStuff() { .. }) return “Shape”;) return TOvalli
}
} }
class B extends A { i j j i i
public StringBuffer name = new StringBuffer (toString()):; public static void main(String[] args) {
public static int getCount() {return 2;} Shape shape = new Shape();
public String toString(String suffix) { Oval oval = new Oval();
name.append (suffix) ; return name.toString(); shape.toString(); // prints Shape
} oval.toString(); // prints Oval
public void doStuff() { .. } shape = oval; .
protected String getStuff() { .. } shape.toString(); // prints Oval
} }
CSc 115 Introduction 0-11 CSc 115 Introduction 0-12

Subtyping and Substitutability

* Whenever an instance of a class is expected, you can a/ways
substitute an instance of one of its descendants

Shape s = new Rectangle(); // ok Shape doMagic (Shape s) {

Circle ¢ = new Circle(); // ok
s =c; //ok

s = doMagic(c); //ok !

return new Square();

Overriding Details

+ Constructors
» are not inherited
» inasubclass, every constructor must call a superclass
constructor as its first operation
+ called constructor chaining
+ super(): is usually called first in every subclass
constructor

* Regular methods

* But you cannot substitute an instance of one of its ancestors, or of > Overridden methods can completely replace the super class's
an unrelated class method or can refine the method by calling
super.method(arguments) within the subclass method
Rectangle r = new Polygon(); //run-time error . STaﬁc methods .
r = new Circle(); //run-time error > Should not be overridden
r = doMagic(r); //run-time error * abstract methods
> Must be overridden unless the subclass is also abstract
CSc 115 Introduction 0-13 CSc 115 Introduction 0-14
super, this Abstract classes and methods
* This and super are references * Anabstract class may contain abstract methods
* The keyword super refers to the parent class within which super * Anabstract method is a method with no body (i.e., simply a
appears semicolon after the parameter list)
* The keyword this refers to the object of the class within which * Anabstract method constitutes a protocol or contract, that is,
this appears regular or non-abstract subclasses are required to implement the
abstract methods of superclasses
* Thus, if a superclass has an abstract method, it guarantees that all
subclasses (event future subclasses) implement this method
*+ For example, an abstract toString() method in a class forces all its
subclasses to implement a toString() method
CSc 115 Introduction 0-15 CSc 115 Introduction 0-16

Classic shape inheritance hierarchy

Shape

N

Circle Rectangle

Square

CSc 115 Introduction

Class Shape

public abstract class Shape {

// forces all subclasses to implement a method area()
public abstract double area():
public abstract double circumference();

// toString() can be overriden by subclasses;
// toString() could also be declared abstract;
// if a subclass does not implement a toString()
// method, then it will output "Shape"

public String toString() { return "Shape"; }

CSc 115 Introduction 0-18

Class Circle

//this class has no toString() method
public class Circle extends Shape {
protected int r;
public Circle(int r) { super(); this.r = r; }

public double area() { return r*r*Math.PI; }

public double circumference() { return (r+r)*Math.PI; }

CSc 115 Infroduction

0-19

Class Rectangle

public class Rectangle extends Shape {
protected int width;
protected int height:

public Rectangle(int width, int height) {
super(); this.width = width; this.height = height;

public double area() { return width*height; }
public double circumference() {

return width+width + height + height;
}

// override the toString() method of Shape
public String toString() { return "Rectangle"; }

€Sc 115 Introduction 0-20

Class Square

public class Square extends Rectangle {
public Square(int side) { super(side, side); }
public double area() { return width*width; }

public String toString() { return "Square"; }

Class Geometry

public class Geometry {

public static void main(String[] args) {

Shape[] s = new Shape[10];

// an object of a subclass can be treated as an object of its superclass

s[0] = new Circle(5): s[1] = new Circle(10); s[2] = new Circle(20);

s[3] = new Circle(30); s[4] = new Rectangle(10,20);

s[5] = new Rectangle(5, 10); s[6] = new Rectangle(3, 4);

s[7]= new Square(10); s[8] = new Square(20); s[9] = new Square(5);

for (int k=0; kes.length; k++) {
// polymorphism, dynamic method binding
System.out.printin(k + " " + s[k].toString() +

(int)(s[kl.area()) + " c=" + (int)(s[k].circumference()));

"ast s

}
}
CSc 115 Introduction 0-21 CSc 115 Introduction 0-22
Output produced by main() in class Geometry Casting
0 Shqpe a=78 ¢c=31 * What if you want to substitute an instance of what /ooks like an
1sh 314 c=62 ancestor, but you know is really a descendant?
ape a=314 c=
2 Shape a=1256 c=125 Shape s = new Rectangle() ;
3 Shape a=2827 c=188 Rectangle r = (Rectangle) s;
4 Rectangle a=200 c=60 Folygon = (Folygem) *
5 Rectangle a=50 ¢=30 * You must explicitly state that the instance is actually of a
_ _ substitutable type
6 ReCTangle a=12 c=14 > this is called casting (or, more specifically, downcasting)
7 Square a=100 c=40 > this can fail at compile-time if what you state is completely
8 Square a=400 c=80 impossible:
-2 -2 Square q = (Square) new Circle(); // error
9 Square a=25 ¢=20 > usually, your statement is checked at runtime; if it's wrong, a
ClassCastException is thrown
CSc 115 Introduction 0-23 CSc 115 Introduction 0-24

Casting Quiz

+ Insert appropriate casts where needed, mark invalid statements:

Shape shape;
Polygon poly;

class Holder {
private Object o;

Casting Quiz

+ Insert appropriate casts where needed, mark invalid statements:

Shape shape;
Polygon poly;

class Holder {

private Object o;

Oval oval; Holder() {} Oval oval; Holder() {}
void set(Object o) { void set(Object o) {
oval = new Oval(); this.o = o; oval = new Oval(); // ok this.o = o;
hape = 1) ! hape = 1; // ok :
shape = ova.; Object get() { shape = ova.; o Object get() {
poly = oval; return o; poly = oval; // error return o;
poly = shape; } poly = shape; // error }
shape = new Square(); } shape = new Square(); // ok|}
poly = shape; poly = (Polygon) shape; //cast
Holder h = new Holder(); Holder h = new Holder();
h.set(poly) h.set(poly)
shape = h.get(); shape = (Shape) h.get();
oval = h.get(); oval = h.get(); // error
h.set(h.get()); h.set(h.get());
CSc 115 Introduction 0-25 CSc 115 Introduction 0-26
UVic inheritance hierarchy Class UVicPerson
public abstract class UVicPerson {
UVicPerson protected java.lang.String first;
protected java.lang.String last;
/ I \ protected long id;
Alumni Employee Student public UVicPerson(String last, String first) {
this.last = last; this.first = first;
/I this.id = (long)(Math.random()*1000000);
}
Staff Faculty
public String toString() {
/I\ return " + last + " " + first + ", " + id;
e }
Instructor Professor |Administrator] }
CSc 115 Introduction 0-27 CSc 115 Introduction 0-28

Class Employee

public abstract class Employee extends UVicPerson {
protected double salary:
public Employee(String last, String first) {
super(last, first);

public Employee(String last, String first, double salary) {
super(last, first);
this.salary = salary;
}
public String toString() {
return"" +
super.toString() + ", " +
(int)salary;

public abstract void work();

Classes Faculty and Staff

public abstract class Faculty extends Employee {
public Faculty(String last, String first) {
super(last, first);

}
public Faculty(String last, String first, double salary) {
super(last, first, salary):

}
public class Staff extends Employee {
public Staff(String last, String first) {

super(last, first);

public Staff(String last, String first, double salary) {
super(last, first, (double)(Math.random()*100000));

public void work() { System.out.printIn("I admin"); }

} }
CSc 115 Introduction 0-29 CSc 115 Introduction 0-30
Classes Administrator and Professor Class Instructor
public class Administrator extends Faculty { i
public Administrator(String last, String first) { public CIFSS Instructor ex_fends FGCUITY { .
super(last, first); public Instructor(String last, String first) {
} ; .
public void work() { super(last, first);
System.out.printin("I admin"); salary = (double)(Math.random()*100000);
) }
public Instructor(String last, String first, double salary) {
public class Professor extends Faculty { . .
public Professor(String last, String first) { super(last, first, salary).
super(last, first); }
lary = (double)(Math.random()*100000);
salary = (double)(Math.random(y) public void work() { System.out.printin("I teach and admin"); }
public Professor(String last, String first, double salary) { }
super(last, first, salary):
public void work() {
System.out.printIn("I research, teach and admin");
}
CSc 115 Introduction 0-31 CSc 115 Introduction 0-32

Classes Student and Alumni

public class Student extends UVicPerson {
public Student(String last, String first) {
super(last, first);

}

public class Alumni extends UVicPerson {
public Alumni(String last, String first) {
super(last, first);

}

CSc 115 Introduction 0-33

Class UVicCommunity

public class UVicCommunity {

public static void main(String[] args) {
UVicPerson[] p = new UVicPerson[100];
plO] = new Student(*Smith", "John"); p[1] = new Student("Carlson", "Brian");
p[2] = new Student("Gannon", "David"); p[3] = new Student("Cuche", "Didier");
p[4] = new Alumni("Gosling", "Richard"); p[5] = new Alumni("Parnas", "Gene");
p[6] = new Professor("Muller", "Hausi"); p[7] = new Professor("Stege", "Ulrike");
p[8] = new Professor("Ellis", "John"); p[9] = new Instructor("Bultena", "Bette");
for (int k=0; k<10; k++) {
// polymorphism, generically process
// all objects of a class hierarchy
System.out.printin(p[k].toString()):
// determining the actual type of the object
if (p[k] instanceof Employee) {
// dynamic method binding
((Employee)p[k]).work(); // cast from Shape to Employee

CSc 115 Introduction 0-34

Output produced by main() in class UVicCommunity

Smith, John, 511250

Carlson, Brian, 2446

Gannon, David, 205344
Cuche, Didier, 945873
Gosling, Richard, 569145
Parnas, Gene, 662656

Muller, Hausi, 985427, 83142
I research, teach and admin
Stege, Ulrike, 192916, 44089
I research, teach and admin
Ellis, John, 475706, 15197

I research, teach and admin
Bultena, Bette, 437523, 87410
I teach and admin

CSc 115 Introduction 0-35

Exceptions

* Exceptions provide a convenient way to handle abnormal conditions
> you can throw an exception to indicate a problem
» you can catch_an exception to deal with the problem

» you can finally do something, whether an exception happened or
not

* Thrown exceptions bypass the normal method call-return
mechanism
» amethod that throws an exception does hot return a value
> a thrown exception may propagate out through multiple layers
of called methods

* Exceptions are
» thrown by either the Java VM (Virtual Machine) or the program
» caught by the program — if the VM catches one, it's a crash!

€Sc 115 Introduction 0-36

How to Throw Exceptions

* Use the throw statement, with an exception object as argument
* You almost always want to create a new instance of the exception

* Unless the exception is caught in the same method or is unchecked,
your method must declare that it might throw this exception

Path findPath (Maze maze) throws NoPathFoundException {
/* .. try to find a path here .. */
/* if we realize there is no solution: */
throw new NoPathFoundException (“Maze exception”) ;

}
° °
* Exceptions propagate through methods, so must the warnings: b
void playMazeGame () throws NoPathFoundException { b .’
Maze maze = buildMaze() ;
Path path = findPath (maze) ;
maze.show (path) ;
} o
L)
CSc 115 Introduction 0-37

Exceptions Hierarchy

* Anexception is just an object, but:
> all exception classes must derive from Throwable

» problems at the virtual machine level are Exrrors, and should
almost never be caught

> all user (and many system) exception classes derive from
Exception

» unchecked exception classes derive from RuntimeException

wmchecked 73 L
-

=

‘ Error ‘ ‘ Exception ‘
% JAN

CSc 115 Introduction 0-38

How to Catch Exceptions ‘

* Use the try-catch-finally statement —'
try { m
* put code that may throw exceptions here —
+ also any code that needs results from code above ’ -
} catch (AnExceptionClass e) {
+ deal with errors of kind AnExceptionClass here
+ the parameter e will contain the exception object
} catch (AnotherExceptionClass e) {
+ deal with errors of another kind
+ the first catch clause whose parameter type is the actual
exception class or an ancestor of it is chosen
} finally {
+ put code here that you want to execute after the try block
whether an exception was thrown or not (and whether it
was caught or not)

}

CSc 115 Introduction 0-39

Example of a Catch

* Here we'll be catching an exception generated by the virtual
machine:

boolean find(int[] a, int b) {
System.out.println(“Entering f£ind method”) ;
try {
int i=0;
while(true) if (a[i++] == b) return true;
} catch (ArrayIndexOutOfBoundsException e) {
return false;
} finally {
System.out.println (“Exiting find method”) ;

€Sc 115 Introduction 0-40

Interfaces

Communication between objects
> Examples:
+ Graphical User Interface (GUI)
+ Computer Human Interface (CHI)
+ Application Programming Interface (API)
For the Abstract Data Type an interface contains:
1. A Class definition
2. A collection of Methods for this Class
3. Clearly-defined input and output objects for each Method.
The Java Interface Definition:
> A collection of methods with no bodies
» ALL methods are “abstract”
An Abstract Class
> Has at least one “abstract” method.

CSc 115 Introduction 0-41

