
CSc 115 Introduction 1

Object-Oriented Programming

Reading Assignment
Chapters 1-2

CSc 115 Introduction 0-2

Object-based vs. object-oriented programming

• So far, we did mostly object-based programming
Classes, objects, instantiating objects, this
calling methods
has-a and part-of relationships (i.e., fields)

• Object-oriented programming = object-based +
Subclass, extends, superclass, super(), protected
Assignment of subclass object to superclass var, casting
Inheritance or is-a hierarchies
Abstract classes and methods
Polymorphism (i.e., calling generic methods)
Method overriding in a subclass (i.e., method in a subclass
with the same name)
Inheritance hierarchies are used to express commonality,
abstraction and facilitate reuse

CSc 115 Introduction 0-3

Inheritance, Is-a, Class Hierarchy

Shape

Rectangle

Oval FreeformShapePolygon

Triangle

Square

java.lang.Object

Circle

CSc 115 Introduction 0-4

Data Modeling: Inheritance Quiz

• Arrange the classes below into an inheritance hierarchy

Organism

java.lang.Object

Animal

Plant

Herbivore Carnivore

TyrannosaurusRex

CherryTomato

Cow
TomatoHuman

HawkElephant

CSc 115 Introduction 2

CSc 115 Introduction 0-5

Data Modeling: Inheritance Quiz

• Arrange the classes below into an inheritance hierarchy

Organism

java.lang.Object

Animal

Plant

Herbivore Carnivore

TyrannosaurusRex

CherryTomato

Cow
TomatoHuman

HawkElephant

CSc 115 Introduction 0-6

Data Modeling: Inheritance Quiz

• Arrange the classes below into an inheritance hierarchy

Organism

java.lang.Object

Animal Plant

Herbivore Carnivore Tomato

TyrannosaurusRex CherryTomatoCow HumanHawkElephant

CSc 115 Introduction 0-7

Inheritance Relationship

• Subclass
extends a superclass definition with new fields or methods
inherits the fields and methods of the superclass
modifies the meaning of the superclass
forms an is-a relationship with its superclass

• Genealogical terminology
the parent of a class is its superclass
the children of a class are its immediate subclasses
the ancestors of a class are its parents, and their parents…
the descendants of a class are its children, and their children…

• Since each class has only one parent, this is single inheritance
• Interfaces can be used to simulate multiple inheritance
• The classes form an inheritance or is-a hierarchy
• In Java, the Object class is the root of this hierarchy

CSc 115 Introduction 0-8

Inheriting and Extending

• A subclass inherits both data (fields) and behavior (methods)
inherited members can be accessed as if they were present in
the subclass itself
Subclasses have access to the public, protected and package
members of its superclasses
Subclass methods and other methods of other classes in the
same package have access to protected members
constructors and private members are not inherited

• Overriding a superclass method
A subclass can redefine a superclass method by using the same
signature

• Overloading of a method
A method in the same class or a subclass with the same name
but different signature

CSc 115 Introduction 3

CSc 115 Introduction 0-9

Overriding and Overloading

extendsdifferentinstance or static field

extendsdifferentsamestatic method

extendsanydifferentinstance or static method

hidessameinstance or static field

hidessamesamestatic method

overloadsdifferentsameinstance method

overridessamesameinstance method

EffectArgument types
and return type

NameSubclass member kind

CSc 115 Introduction 0-10

Two kinds of method overriding

• Replacement
A method completely replaces the method of the superclass
that is overridden (e.g., a toString() routine in every subclass).

• Refinement
The superclass method is not replaced but rather refined, that
is, code is added to the superclass method. This is accomplished
by first calling the superclass method (e.g., super.abc())
All subclass constructors use the refinement method. This is
called constructor chaining. Each subclass constructor begins
its execution by first calling its superclass constructor (i.e.,
super())

CSc 115 Introduction 0-11

Inheritance Quiz

• For each class, state the effect of each member, that is,
overrides, overloads, hides, or extends

class A {
protected String name;
public static int getCount() {return 1;}
public String toString() {return name;}
private void doStuff() { … }
public Object getStuff() { … }

}

class B extends A {
public StringBuffer name = new StringBuffer(toString());
public static int getCount() {return 2;}
public String toString(String suffix) {

name.append(suffix); return name.toString();
}
public void doStuff() { … }
protected String getStuff() { … }

}

CSc 115 Introduction 0-12

Type Polymorphism

• a method declared in a superclass is overridden
• you have an instance of the subclass that has the override, but it's

held in a variable with the type of the superclass
• Which actual method implementation will be called?

class Oval extends Shape {
public String toString() {

return "Oval";
}

}

class Shape {
public String toString() {

return "Shape";
}

}

public static void main(String[] args) {
Shape shape = new Shape();
Oval oval = new Oval();
shape.toString(); // prints Shape
oval.toString(); // prints Oval
shape = oval;
shape.toString(); // prints Oval
}

CSc 115 Introduction 4

CSc 115 Introduction 0-13

Subtyping and Substitutability

• Whenever an instance of a class is expected, you can always
substitute an instance of one of its descendants

Shape s = new Rectangle(); // ok
Circle c = new Circle(); // ok
s = c; //ok
s = doMagic(c); //ok

• But you cannot substitute an instance of one of its ancestors, or of
an unrelated class

Rectangle r = new Polygon(); //run-time error
r = new Circle(); //run-time error
r = doMagic(r); //run-time error

Shape doMagic(Shape s) {
…
return new Square();

}

CSc 115 Introduction 0-14

Overriding Details

• Constructors
are not inherited
in a subclass, every constructor must call a superclass
constructor as its first operation

• called constructor chaining
• super(); is usually called first in every subclass

constructor
• Regular methods

Overridden methods can completely replace the super class’s
method or can refine the method by calling
super.method(arguments) within the subclass method

• static methods
Should not be overridden

• abstract methods
Must be overridden unless the subclass is also abstract

CSc 115 Introduction 0-15

super, this

• This and super are references
• The keyword super refers to the parent class within which super

appears
• The keyword this refers to the object of the class within which

this appears

CSc 115 Introduction 0-16

Abstract classes and methods

• An abstract class may contain abstract methods
• An abstract method is a method with no body (i.e., simply a

semicolon after the parameter list)
• An abstract method constitutes a protocol or contract, that is,

regular or non-abstract subclasses are required to implement the
abstract methods of superclasses

• Thus, if a superclass has an abstract method, it guarantees that all
subclasses (event future subclasses) implement this method

• For example, an abstract toString() method in a class forces all its
subclasses to implement a toString() method

CSc 115 Introduction 5

CSc 115 Introduction 0-17

Classic shape inheritance hierarchy

Shape

Circle Rectangle

Square

CSc 115 Introduction 0-18

Class Shape

public abstract class Shape {

// forces all subclasses to implement a method area()
public abstract double area();
public abstract double circumference();

// toString() can be overriden by subclasses;
// toString() could also be declared abstract;
// if a subclass does not implement a toString()
// method, then it will output "Shape"
public String toString() { return "Shape"; }

}

CSc 115 Introduction 0-19

Class Circle

//this class has no toString() method
public class Circle extends Shape {

protected int r;

public Circle(int r) { super(); this.r = r; }

public double area() { return r*r*Math.PI; }

public double circumference() { return (r+r)*Math.PI; }
}

CSc 115 Introduction 0-20

Class Rectangle

public class Rectangle extends Shape {
protected int width;
protected int height;

public Rectangle(int width, int height) {
super(); this.width = width; this.height = height;

}
public double area() { return width*height; }
public double circumference() {

return width+width + height + height;
}

// override the toString() method of Shape
public String toString() { return "Rectangle"; }

}

CSc 115 Introduction 6

CSc 115 Introduction 0-21

Class Square

public class Square extends Rectangle {

public Square(int side) { super(side, side); }

public double area() { return width*width; }

public String toString() { return "Square"; }

}

CSc 115 Introduction 0-22

Class Geometry

public class Geometry {

public static void main(String[] args) {
Shape[] s = new Shape[10];
// an object of a subclass can be treated as an object of its superclass
s[0] = new Circle(5); s[1] = new Circle(10); s[2] = new Circle(20);
s[3] = new Circle(30); s[4] = new Rectangle(10,20);
s[5] = new Rectangle(5, 10); s[6] = new Rectangle(3, 4);
s[7] = new Square(10); s[8] = new Square(20); s[9] = new Square(5);
for (int k=0; k<s.length; k++) {

// polymorphism, dynamic method binding
System.out.println(k + " " + s[k].toString() + " a=" +
(int)(s[k].area()) + " c=" + (int)(s[k].circumference()));

}
}

}

CSc 115 Introduction 0-23

Output produced by main() in class Geometry

0 Shape a=78 c=31
1 Shape a=314 c=62
2 Shape a=1256 c=125
3 Shape a=2827 c=188
4 Rectangle a=200 c=60
5 Rectangle a=50 c=30
6 Rectangle a=12 c=14
7 Square a=100 c=40
8 Square a=400 c=80
9 Square a=25 c=20

CSc 115 Introduction 0-24

Casting

• What if you want to substitute an instance of what looks like an
ancestor, but you know is really a descendant?

Shape s = new Rectangle();
Rectangle r = (Rectangle) s;
Polygon p = (Polygon) s;

• You must explicitly state that the instance is actually of a
substitutable type

this is called casting (or, more specifically, downcasting)
this can fail at compile-time if what you state is completely
impossible:

Square q = (Square) new Circle(); // error

usually, your statement is checked at runtime; if it's wrong, a
ClassCastException is thrown

CSc 115 Introduction 7

CSc 115 Introduction 0-25

Casting Quiz

• Insert appropriate casts where needed, mark invalid statements:

class Holder {
private Object o;
Holder() {}
void set(Object o) {

this.o = o;
}
Object get() {

return o;
}

}

Shape shape;
Polygon poly;
Oval oval;

oval = new Oval();
shape = oval;
poly = oval;
poly = shape;
shape = new Square();
poly = shape;

Holder h = new Holder();
h.set(poly);
shape = h.get();
oval = h.get();
h.set(h.get());

CSc 115 Introduction 0-26

Casting Quiz

• Insert appropriate casts where needed, mark invalid statements:

class Holder {
private Object o;
Holder() {}
void set(Object o) {

this.o = o;
}
Object get() {

return o;
}

}

Shape shape;
Polygon poly;
Oval oval;

oval = new Oval(); // ok
shape = oval; // ok
poly = oval; // error
poly = shape; // error
shape = new Square(); // ok
poly = (Polygon) shape; //cast

Holder h = new Holder();
h.set(poly);
shape = (Shape) h.get();
oval = h.get(); // error
h.set(h.get());

CSc 115 Introduction 0-27

UVic inheritance hierarchy

UVicPerson

AdministratorProfessorInstructor

FacultyStaff

StudentEmployeeAlumni

CSc 115 Introduction 0-28

Class UVicPerson

public abstract class UVicPerson {
protected java.lang.String first;
protected java.lang.String last;
protected long id;

public UVicPerson(String last, String first) {
this.last = last; this.first = first;
this.id = (long)(Math.random()*1000000);

}

public String toString() {
return "" + last + ", " + first + ", " + id;

}
}

CSc 115 Introduction 8

CSc 115 Introduction 0-29

Class Employee

public abstract class Employee extends UVicPerson {
protected double salary;
public Employee(String last, String first) {

super(last, first);
}
public Employee(String last, String first, double salary) {

super(last, first);
this.salary = salary;

}
public String toString() {

return "" +
super.toString() + ", " +
(int)salary;

}
public abstract void work();

}

CSc 115 Introduction 0-30

Classes Faculty and Staff

public abstract class Faculty extends Employee {
public Faculty(String last, String first) {

super(last, first);
}
public Faculty(String last, String first, double salary) {

super(last, first, salary);
}

}

public class Staff extends Employee {
public Staff(String last, String first) {

super(last, first);
}
public Staff(String last, String first, double salary) {

super(last, first, (double)(Math.random()*100000));
}
public void work() { System.out.println("I admin"); }

}

CSc 115 Introduction 0-31

Classes Administrator and Professor

public class Administrator extends Faculty {
public Administrator(String last, String first) {

super(last, first);
}
public void work() {

System.out.println("I admin");
}

}

public class Professor extends Faculty {
public Professor(String last, String first) {

super(last, first);
salary = (double)(Math.random()*100000);

}
public Professor(String last, String first, double salary) {

super(last, first, salary);
}
public void work() {

System.out.println("I research, teach and admin");
}

}

CSc 115 Introduction 0-32

Class Instructor

public class Instructor extends Faculty {
public Instructor(String last, String first) {

super(last, first);
salary = (double)(Math.random()*100000);

}
public Instructor(String last, String first, double salary) {

super(last, first, salary);
}
public void work() { System.out.println("I teach and admin"); }

}

CSc 115 Introduction 9

CSc 115 Introduction 0-33

Classes Student and Alumni

public class Student extends UVicPerson {
public Student(String last, String first) {

super(last, first);
}

}

public class Alumni extends UVicPerson {
public Alumni(String last, String first) {

super(last, first);
}

}

CSc 115 Introduction 0-34

Class UVicCommunity

public class UVicCommunity {

public static void main(String[] args) {
UVicPerson[] p = new UVicPerson[100];
p[0] = new Student(“Smith", “John"); p[1] = new Student(“Carlson", "Brian");
p[2] = new Student(“Gannon", “David"); p[3] = new Student("Cuche", "Didier");
p[4] = new Alumni(“Gosling", “Richard"); p[5] = new Alumni("Parnas", “Gene");
p[6] = new Professor("Muller", "Hausi"); p[7] = new Professor("Stege", "Ulrike");
p[8] = new Professor("Ellis", "John"); p[9] = new Instructor("Bultena", "Bette");
for (int k=0; k<10; k++) {

// polymorphism, generically process
// all objects of a class hierarchy
System.out.println(p[k].toString());
// determining the actual type of the object
if (p[k] instanceof Employee) {

// dynamic method binding
((Employee)p[k]).work(); // cast from Shape to Employee

}
}

}
}

CSc 115 Introduction 0-35

Output produced by main() in class UVicCommunity

Smith, John, 511250
Carlson, Brian, 2446
Gannon, David, 205344
Cuche, Didier, 945873
Gosling, Richard, 569145
Parnas, Gene, 662656
Muller, Hausi, 985427, 83142
I research, teach and admin
Stege, Ulrike, 192916, 44089
I research, teach and admin
Ellis, John, 475706, 15197
I research, teach and admin
Bultena, Bette, 437523, 87410
I teach and admin

CSc 115 Introduction 0-36

Exceptions

• Exceptions provide a convenient way to handle abnormal conditions
you can throw an exception to indicate a problem
you can catch an exception to deal with the problem
you can finally do something, whether an exception happened or
not

• Thrown exceptions bypass the normal method call-return
mechanism

a method that throws an exception does not return a value
a thrown exception may propagate out through multiple layers
of called methods

• Exceptions are
thrown by either the Java VM (Virtual Machine) or the program
caught by the program — if the VM catches one, it’s a crash!

CSc 115 Introduction 10

CSc 115 Introduction 0-37

How to Throw Exceptions

• Use the throw statement, with an exception object as argument
• You almost always want to create a new instance of the exception
• Unless the exception is caught in the same method or is unchecked,

your method must declare that it might throw this exception

Path findPath(Maze maze) throws NoPathFoundException {
/* … try to find a path here … */
/* if we realize there is no solution: */
throw new NoPathFoundException(“Maze exception”);

}

• Exceptions propagate through methods, so must the warnings:
void playMazeGame() throws NoPathFoundException {

Maze maze = buildMaze();
Path path = findPath(maze);
maze.show(path);

}

CSc 115 Introduction 0-38

Exceptions Hierarchy

• An exception is just an object, but:
all exception classes must derive from Throwable
problems at the virtual machine level are Errors, and should
almost never be caught
all user (and many system) exception classes derive from
Exception

unchecked exception classes derive from RuntimeException

Throwable

Error Exception

RuntimeException

unchecked

unchecked

CSc 115 Introduction 0-39

How to Catch Exceptions

• Use the try-catch-finally statement

try {
• put code that may throw exceptions here
• also any code that needs results from code above

} catch (AnExceptionClass e) {
• deal with errors of kind AnExceptionClass here
• the parameter e will contain the exception object

} catch (AnotherExceptionClass e) {
• deal with errors of another kind
• the first catch clause whose parameter type is the actual

exception class or an ancestor of it is chosen
} finally {

• put code here that you want to execute after the try block
whether an exception was thrown or not (and whether it
was caught or not)

}

CSc 115 Introduction 0-40

Example of a Catch

• Here we’ll be catching an exception generated by the virtual
machine:

boolean find(int[] a, int b) {
System.out.println(“Entering find method”);
try {

int i=0;
while(true) if (a[i++] == b) return true;

} catch (ArrayIndexOutOfBoundsException e) {
return false;

} finally {
System.out.println(“Exiting find method”);

}

}

CSc 115 Introduction 11

CSc 115 Introduction 0-41

Interfaces

Communication between objects
Examples:

• Graphical User Interface (GUI)
• Computer Human Interface (CHI)
• Application Programming Interface (API)

For the Abstract Data Type an interface contains:
1. A Class definition
2. A collection of Methods for this Class
3. Clearly-defined input and output objects for each Method.

The Java Interface Definition:
A collection of methods with no bodies
ALL methods are “abstract”

An Abstract Class
Has at least one “abstract” method.

