
CSc 115 Introduction 1

Analysis of Algorithms

Reading Assignment
Chapters 3
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Motivation

• Even though we seem to have an abundance of CPU cycles and 
memory units at our finger tips, program speed and memory use 
matters when processing large amounts of data

• The running time of a program depends
Algorithms and data structures
Programming language
Compiler/interpreter
Operating system
Processor and memory

• In algorithm analysis we are primarily interested figuring out how 
well an algorithm performs with respect to time and space usage 
regardless of all the other influences

• In other words, we fix the environment within which a program 
runs and try to analyze the running time independently of the 
environment

• The goal is to compare the time and space complexity of different 
algorithms for a given input size
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Objectives

• Estimate the running time (function) for a given algorithm
• Appreciate how the running time (function) varies with input size
• Find a measure to compare the quality of algorithms which perform 

the same task
• Appreciate different complexity classes
• Comparing different growth functions
• Measure running time in terms of basic operations
• Plot and compare growth curves
• Understand Big Oh notation
• Compute and compare Big Oh running times
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Basic units

• How shall we assess and quantify the running time of a program?
I/O, read/writes fetches/stores
Comparisons (for sorting and searching)
Assignments
Loops
Program size/amount of memory
Number of calculations
Static versus dynamic memory
Add, sub, mul, div, sin, cos

• Search and sorting algorithms
Comparisons

• Graphics algorithms
sin, cos

• CSc 115/160
Comparisons and assignments
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Running time of an algorithm

• Definition
The running time of an algorithm is a function of the size of the 
input data with units such as comparisons, assignments, 
arithmetic operations, trigonometric operations. The running 
time is denoted by T(n) where n is the size of the input to the 
algorithm.

• Examples of running times
T1(n) = c0n2

T2(n) = c1n3 + c2n2 + c3n + c4
T3(n) = c4nlgn + c4

T4(n) = c52n
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An example

• Example
a = 3*n;
cnt = 1;
while (a > 0) {

a = a - 1;
cnt = cnt + 1;

}
• Basic units

Assignments
Comparisions

• Analysis
T(n) = 2 + while loop

= 2 + x(units in loop) + 1    (x = # of iterations)
= 2 + x(3) + 1
= 2 +3(3n) + 1
= 3 + 9n
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Linear search

int linearSearch(int[] a, int x) {
int k = 0;
while (k<a.length) {

if (a[k] == x) return k;
k = k + 1;

}
}
• Linear search over unsorted array of 

integers
• Units: comparisons, assignments, no 

other operations
• Size of the problems

n = a.length (size of array)
• Worst-case running time

x is not found or found at the last 
position

T(n) = initialize + while loop
= 1 + while loop
= 1 + x(3) + 1     (x = n)
= 1 + 3n + 1
= 2 + 3n    linear function

T(n) = c1n + c2    linear algorithm

Worst case: T(n) ~ n
Best case: T(n) ~ 1
Expected case: T(n) = n/2
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Binary search

int binarySearch(int[] a, int x) {
int l = 0;
int r = a.length -1;
while (l<=r) {

int m = (l+r)/2;
if (a[m] == x) return m;
else if (x < a[m]) r = m-1;
else l = m+1;

}
return -1;

}
• Binary search over sorted array of 

integers
• Units: comparisons, assignments
• Size of the problems

n = a.length (size of array)
• Phone book look up
• Worst case: not found

T(n) = initialize + while loop
= 2 + while loop
= 2 + x(5) + 1     (x = log n)
= 2 + 5log n + 1
= 3 + 5log n

T(n) = c1log n + c2 

Logarithmic function

Worst case: T(n) ~ log n
Best case: T(n) ~ 1
Expected case: T(n) = log n
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Measurement Example

Running times of a program
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Methodology Requirements

• We want a methodology for analyzing the running times of 
algorithms that

Takes into account all possible inputs

Allows us to evaluate the relative efficiency of any two 
algorithms in a way this is independent from the hardware and 
software environment

Can be performed by studying a high-level description of the 
algorithm without actually implementing it or running 
experiments on it
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Another linear algorithm: finding maximum

• High-level description of an algorithm
• Pseudo code

Algorithm arrayMax(A,n):
Input: An array A storing n >= 1 integers
Output: The maximum element in A.

currentMax <-- A[0]
for i <-- 1 to n - 1 do
if currentMax A[ i ] then currentMax <-- A[ i ]

return currentMax

• Worst case: T(n) ~ n
• Best case: T(n) ~ 1
• Expected case: T(n) = n/2
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Asymptotic time complexity

• Fundamental measure for the performance of an algorithm
• Study asymptotic growth rates
• Asymptotic

Not interested in constants
Not interested in small inputs
Pure growth rate of the function
It essentially removes the “noise” from the running time

• Three sets of functions
• Big Omega Ω(g)

Functions that grow at least as fast a g
• Big Theta Θ(g)

Functions that grow at the same rate as g
• Big Oh O(g)

Functions that grow no faster than g
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• Definition
Let f(n) and g(n) be functions mapping nonnegative integers to 
real numbers. We say that f(n) is O(g(n)) if there is a real 
constant c > 0 and an integer constant n0 ≥ 1 such that f(n) ≤
c·g(n) for every integer n ≥ n0.

• We say
f(n) is order g(n)
f(n) is Big-Oh of g(n)

• Visually, this says that the f(n) curve must eventually fit under the 
c·g(n) curve.

Formal Definition of Big-O Notation

CSc 115 Analysis of Algorithms 14

Big-O Notation

• We simplify the function by:
ignoring all constant coefficients
ignoring all but the dominant term

• the dominant term is the one that grows fastest when n
grows

O(1)42
O(n log10n )7n log10n + 2n – 12
O(log2n)42log2n
O(10n)10n –5n + 3n

O(3n)3n + n2

O(n4)0.0001n4 + 10000n2

O(n2)0.3n2 + 20n + 512
O(f(n ))f(n )
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Complexity Classes

• When determining the Big-Oh time of a problem, we try to:
make the bound as tight as possible
make the function as simple as possible

• In practice, this leads to only a handful of important Big-Oh 
expressions

O(log log n )log log n

O(2n), O(3n), …Exponential
O(n3)Cubic
O(n2)Quadratic

O(n log n )n log n
O(n )Linear

O(log n )Logarithmic

O(1)Constant
O-notationComplexity ClassFrom

 least to m
ost com

plex
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Famous algorithms

O(2n), O(3n), …Optimal graph coloring

O(n3)Matrix multiplication

O(n2)Bubble sort, insertion sort

O(n log n )Sorting, Heapsort

O(n )Linear search, list and tree traversals

O(log n )Binary search, tree search

O(1)Hash search

Big O-notationAlgorithm
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Running Time Examples

• An algorithm takes f(n) microseconds (µs) to run

2.1×10315639 yrs5.7×10294 yrs3.7×1063 yrs65.5 msec4 µs2n

36559 yrs17.9 min16.8 s4.1 ms8 µsn 3

1.8 wks1.05 s65.5 ms256 µs4 µsn 2
21 s10.2 ms2.05 ms64 µs2 µsn log2n

1.05 s1.02 ms256 µs16 µs2 µsn
20 µs10 µs8 µs4 µs1 µslog2n

1 µs1 µs1 µs1 µs1 µs1

1048576
(220)

1024
(210)

256
(28)

16
(24)

2
(21)

n
f(n)

1 yr = 31557600 s1 min = 60 s1 ms = 10-3 s
1 wk = 604800 s1 s = one second1 µs = 10-6 s

Estimated lifetime of 
the sun:  only 5×109 yrs!
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Big-O Caveats

• Comparisons based on Big-O notation apply only to large problem 
sizes

“large” is an arbitrary term
for “small” problem sizes, consider the specific circumstances 
the algorithm will be running in

• those constant coefficients we so casually discarded start 
to matter

run experiments on your platform, with your data, to determine 
the best algorithm (measurement and tuning )

• Carefully check whether your data fits the average case
otherwise, the worst case time could be important
in real-time situations, the worst case time might be crucial
sometimes you can easily mould the data to fit an algorithm’s 
best case


