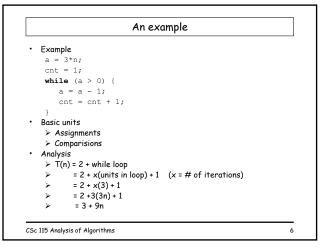
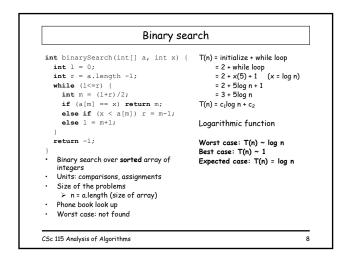
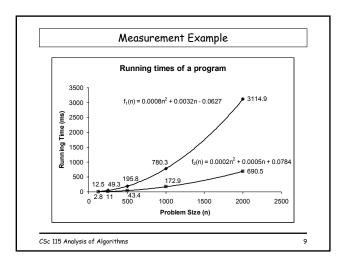
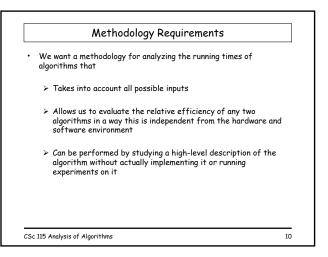
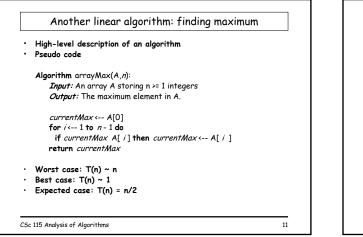

Analysis of Algorithms

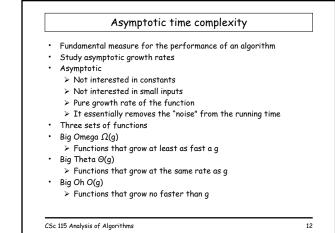

Reading Assignment Chapters 3

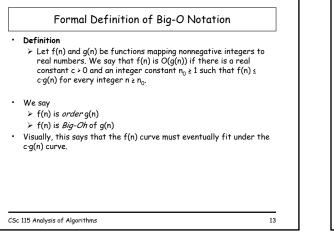

4



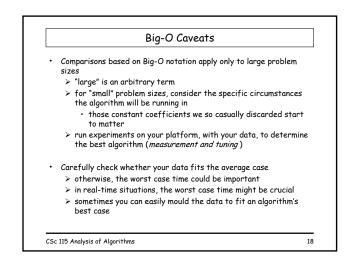





<pre>nt linearSearch(int[] a, int x) {</pre>	T(n) = initialize + while loop
<pre>int k = 0;</pre>	= 1 + while loop
<pre>while (k<a.length) pre="" {<=""></a.length)></pre>	= 1 + x(3) + 1 (x = n)
<pre>if (a[k] == x) return k;</pre>	= 1 + 3n + 1
k = k + 1;	= 2 + 3n linear function
}	T(n) = c1n + c2 linear algorithm
Linear search over unsorted array of integers Units: comparisons, assignments, no other operations Size of the problems > n = a.length (size of array) Worst-case running time > x is not found or found at the last position	Worst case: T(n) ~ n Best case: T(n) ~ 1 Expected case: T(n) = n/2



Big-O	Notation	
simplify the function by: ignoring all constant coeffic	cients	
ignoring all but the <i>dominar</i>		
 the dominant term is the grows 	ne one that grows fastest	when <i>n</i>
f(<i>n</i>)	O(f(n))	
0.3 <i>n</i> ² + 20 <i>n</i> + 512	O(n ²)	
0.0001 <i>n</i> ⁴ + 10000 <i>n</i> ²	$O(n^4)$	
$\frac{0.0001n^4 + 10000n^2}{3^n + n^2}$	O(n ⁴) O(3 ⁿ)	
$3^{n} + n^{2}$	O(3 ⁿ)	
$\frac{3^n + n^2}{10^n - 5^n + 3^n}$	O(3 ⁿ) O(10 ⁿ)	


Complexity Classes				
	 make the bound make the function 	nd as tig ction as	g-Oh time of a problem, ht as possible simple as possible only a handful of impor	, , , , , , , , , , , , , , , , , , ,
		_	Complexity Class	O-notation
	Fro	Constant	O(1)	
		From least	log log <i>n</i>	O(log log n)
		ast	Logarithmic	O(log <i>n</i>)
	4	Linear	O(n)	
most complex	n log n	O(n log n)		
	Quadratic	O(n ²)		
		omp	Cubic	O(n ³)
		lex	Exponential	O(2 ⁿ), O(3 ⁿ),

15

CSc 115 Analysis of Algorithms

Algorithm	Big O-notation		
Hash search	O(1)		
Binary search, tree search	O(log <i>n</i>)		
Linear search, list and tree traversals	<i>O</i> (<i>n</i>)		
Sorting, Heapsort	$O(n \log n)$		
Bubble sort, insertion sort	O(n²)		
Matrix multiplication	O(n³)		
Optimal graph coloring	O(2 ⁿ), O(3 ⁿ),		

		Running	g Time E>	amples		
• An alg	orithm t	akes f(n) m	icroseconds	(µs) to run		
n f(n)	2 (2 ¹)	16 (2 ⁴)	256 (2 ⁸)	1024 (2 ¹⁰)		1048576 (2 ²⁰)
1	1 <i>µ</i> s	1 <i>µ</i> s	1 µs	1	μs	1 µs
log ₂ n	1 <i>µ</i> s	4 <i>µ</i> s	8 <i>µ</i> s	10)µs	20 <i>µ</i> s
n	2 <i>µ</i> s	16 <i>µ</i> s	256 <i>µ</i> s	1.02	ms	1.05 s
n log ₂ n	2 <i>µ</i> s	64 <i>µ</i> s	2.05 ms	10.2	ms	21 s
n ²	4 <i>μ</i> s	256 <i>µ</i> s	65.5 ms	1.0	5 s	1.8 wks
n ³	8 <i>µ</i> s	4.1 ms	16.8 s	17.9 min 5.7×10 ²⁹⁴ yrs		36559 yrs
2″	4 <i>µ</i> s	65.5 msec	3.7×1063 yrs			2.1×10315639 yrs
			V			fetime of 5×10 ⁹ yrs!
1 µs = 10 ⁻⁶ s 1 s = one second 1 wk = 604800 s						
	1 m	s = 10 ⁻³ s	1 min = 6	60 s	1 yı	r = 31557600 s

