Priority Queues
Heaps and Heapsort

Reading Assighment
Chapter 7

Priority Queue

* A priority queue stores a collection of prioritized elements
* Applications
911 event queues
Airport landing patterns
Priority check in at the airport
Triage in a hospital
Plane sweep algorithms
* Operations
» insert(), deleteMin()
» deleteMin () or deleteMax () but not both
» Note that member () , search() or £ind() are not supported
* Implementation strategies
» Linear lists or sequences
» Heaps
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Priority Queue Interface

public interface PriorityQueue {
void insert (Object x);
Object deleteMin(); // or deleteMax() instead
Object getMin(); // gets min but does not delete it
int size();
boolean isEmpty();

Instead of Object, the priority queue interface might also store
elements or associations

*  To compare elements a Comparator class can be used
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Integer Priority Queue Interface

* Assume an integer Priority Queue interface IntPQ to simplify the
discussion and presentation

public interface IntPQ {
void insert (int x);
int deleteMin(); // or deleteMax() instead
int getMin(); // gets min but does not delete it
int size();
boolean isEmpty();
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Priority Queue Sort

Time Complexity of PQ Operations

* The priority queue operations allow for a simple sorting algorithm

void pgSort (int a[]) {
IntPQ pg = new IntPQ();
for (int k=0; k<a.length; k++) { // first loop
pd.insert(al[k]);

k = 0;
while (!pg.empty() { // second loop
alk] = pg.deleteMin();

* How can we implement the Priority Queue operations efficiently?
* Running time analysis of pgSort () assuming n input values
* First loop
» Tg(n) = n* T(insert)
* Second loop
» Tg(n) = n* T(deleteMin)
* Total
> Toe(n) = Ty(n) + Ty(n) = n * T(insert) + n* T(deleteMin) =
> qu(n) = n* {T(insert) + T(deleteMin)}

* Linked list implementation
» Linked list is sorted at insert time

ktts » T(insert) = e O(n)
} » T(delete) = € O(1)
) > Ty(n) e O(n?) + O(n) e O(n?) ® ®
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Heap Encoding Heap Encoding ‘

* Array representation
* Assume complete binary free
> All levels are full except possibly the last level
» No holes
» Heap shape property
* Heap encoding
» Process the binary tree in level order and enter the elements in
an array starting with array index 1 (zero is not used)
0 1 2 3 4 5 6 7 8 9 10
[ [albf[ecld[e[f[gf[n]ilil

> Parent of a[k] is at a[k/2]
> Left child of a[k] is at a[2k]
> Right child of a[k] is at a[2k+1]
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* Parent of a[5] is at a[5/2] = a[2]
» Parent of "e" is "b"

* Left child of a[3] is at a[2*3] = a[6]
> Left child of “c" is "f"

* Right child of a[3] is at a[2*3+1] = a[7]
> Right child of “¢" is "g"

0 1 2 3 4 5 6 7 8 9 10
[ [afblcldf[e[f[aln]illi
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Heap Properties

*  Shape property
> All levels in a heap are complete except possibly the last level.
*  Order property

> A heap is a binary tree in which the nodes are labelled with
elements of a set such that all elements in the left and right
subtrees of a node labelled x are greater than or equal to x.
* A Heap is a partially ordered tree

Heap order

property

Heap shape
property
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DeleteMin

* The smallest element is the root node
* Remove and return root node which is constant time O(1)
* Re- establish shape property
» Move last element in the tree to the root
» Except for the root node, order is fine too
* Re-establish order property

» Push the root element, which is out of order, down by swapping
elements until order property is established
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Pushdown — Bubbling down

*  Push element 9 down until Heap order property is re-established
* Keep on swapping with the smallest child
* At most log n swap operations (i.e., # of levels)
*  Thus, the time complexity of pushdown () is of O(log n)
The time complexity of deleteMin () is also of O(log n)
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Insert — Bubbling up

* Insert the element at the first open array position

* Shape property is trivially established

*  Push the element up the tree until the order property is re-
established by swapping with the parent

* At most log n swap operations (i.e., # of levels)

*  Thus, the time complexity of insert () is of O(log n)
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Interface Priority Queue

public interface PriorityQueue {
Object deleteMin();
Object getMin();
void insert (int key, String data);
boolean isEmpty();
int size();
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Class Priority Queue

public class PQ implements PriorityQueue {
private int size;
private Node[] heap;
private final static int defaultPQSize = 30;
private final static int rootIndex = 1;

public PQ() {
this (defaultPQSize) ;

}

public PQ(int pgSize) {
size = 07

heap = new Node[pgSize];
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Insert Implementation DeleteMin Implementation
public void insert (int key, String data) { public Object deleteMin() {
size++; if (size == 0) {
return null;
Node p = new Node (key, data); } else {
heap[size] = p; Node p = heaplrootIndex];
if (size > 1) pushup(); if (size == 1) {
} heap[rootIndex] = null;
size-—;
} else { // size > 1
heap[rootIndex] = heaplsize];
heap([size] = null;
size--;
pushdown () ;
}
return p;
}
}
CSc 115 Priority Queues 15

CSc 115 Priority Queues




Integer Heap Interface

public interface IntHeap {

void insert (int x);

int deleteMin(); // or deleteMax() instead
int getMin(); // gets min but does not delete it
int size();

boolean isEmpty();

Heapsort

void heapSort (int a[]) {
IntHeap heap = new IntHeap();
for (int k=0; k<a.length; k++) {
heap.insert(a[k]);

}

k = 0;

while (!heap.empty() {
a[k] = heap.deleteMin() ;
k++;

* insert() and deleteMin () each take O(log n) time
* The running time of Heapsort is T, ((n)=nlogn+nlogn=2nlogn
* Hence the time complexity of Heapsort is of O(n log n)
* Fundamental result of Computer Science
» Sorting takes O(n log n) time
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Summary Assignment 5
*  PriorityQueue *  Priority Queue using heap
» insert(), deleteMin() (or deleteMax()) * Hashtable
> Applications
» Implementation strategies: list or heap
PriorityQueue Sort
» Using linear list data structure O(n2)
* Heap
» Encoding of a binary tree in an array
> Shape and order property
* deleteMin()
> Remove min (root); bubble down by swapping
* insert()
> Insert at the end of array: bubble up by swapping
*  Heapsort
> Using heap data structure O(nh log n)
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Searchable Priority Queue ‘ Searchable Priority Queue Example

* Heap User access O(log n) * Hashtable user access O(1) *  Priority queue i
> insert() > insert() 12| Hausi
> deleteMin() > search() 0) 32 Befte

1 2 3 4 5 6 7 8 9 10 @ @ 17 | Peggy
Associated | Search

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | value key @ D0 O 22 | Carmen

7 Daniel

@m 0 Jens

Heap 9 Ulrike

Allocated 0 1 2 3 4 5 6 7 8 9 10 17 | Dale

Nodes [ JToJre[7J12[e2][17] 9 [32]17] | TR
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