
An Introduction to 
Model View Controllers and Swing

Reading Assignment: 
Java APIs and tutorials:  

http://java.sun.com



Csc 115 Swing and MVC 2

Swing

• The Java Foundation Classes is a collection of APIs for developing 
graphical user interfaces

• They include the following:
? Abstract Window Toolkit (AWT)
? 2D API
? Swing Components
? Accessibility API

• AWT was the original Java toolkit for developing user interfaces
? Only provides a single pen size for graphical operations
? Lacks many components you would expect
? They don’t scale very well…. Heavy weight components

• 2D API provides other graphical rendering capabilities
• Swing is a set of mostly lightweight components build on top of the 

AWT
• Swing can take on the look and feel of components on different 

platforms



Csc 115 Swing and MVC 3

Lightweight Components

• Can be any shape and be transparent!
• They must be rendered in a heavyweight component – frames, 

applets, windows and dialogs
• Swing has over 250 classes – mixture of components and classes 

and over 40 components
• Swing components have class names that begin with the letter ‘J’
? E.g. JTextArea (hint for Ass#4!)

• Swing has many advanced components such as internal frames, 
tabbed panes, toolbars, color chooser, table, trees, dialog boxes…



Csc 115 Swing and MVC 4

Advanced swing components



Csc 115 Swing and MVC 5

Advanced swing components



Csc 115 Swing and MVC 6

Pluggable look and feel

• Default look and feel can be set at runtime
? Look – appearance of the components
? Feel – interaction style of the widgets



Csc 115 Swing and MVC 7

Model View Controller Architecture

• Designed for applications that need to provide multiple views of the 
same data

• Models: maintain data and provide data accessor methods
• Views: paint a visual representation of some or all of a model’s data
• Controllers: handle events



Csc 115 Swing and MVC 8

Controllers in Java

• AWT and Swing listeners are basically MVC controllers
• Swing events are handled by event listeners that register with an 

event source



Csc 115 Swing and MVC 9

Observer design pattern

• Listeners are an example of the Observer design pattern
? where a single object can notify many observers when the 

observed object is modified 
? the observer knows very little about the objects, other than 

how and when to notify them
• The MVC architecture makes use of the observer pattern to notify

views when the model changes
• Events are handled by controllers that typically make changes to

the model and one or more views depending on the type of events
• A Model maintains a list of views that have registered with the 

model for change notification
• When a change occurs, the model updates the view but the view 

generally has to get extra details from the model to update itself



Csc 115 Swing and MVC 10

Advantages of MVC

? Can have multiple views and controllers plugged into a single 
model 

? A model’s views can be updated if the model changes but if the 
views change the model doesn’t necessarily have to change

? We can also have updates to views cause updates in other views 
(as will be the case in Ass#4)

? Provides a way to build abstractions and encapsulate them in 
classes!

• MVC encapsulates three general abstractions that are 
present in most graphical applications:  views, models and 
controllers

• Thus leading to more flexible and reusable application 
components



Csc 115 Swing and MVC 11

Swing Components, Models and Events

• Swing Components typically maintain a reference to their model and 
provide “model pass-through methods” to access the model

• For example, for Jslider.java provides a method call getMinimum() 
which internally calls getModel().getMinimum()

• When a property changes for a component, a property change event
should be automatically fired by the model

• But who’s listening?
• When the model changes, the component will be automatically 

notified and will forward the event to other listeners that have
registered with the component 



Csc 115 Swing and MVC 12

Why is MVC so important?

• There are many applications where it is advantageous to have 
multiple views… for example, we may have both a graph view and a
table view for some data that should be kept consistent when the
data is changed



Csc 115 Swing and MVC 13

A closer look at the APIs for some Swing Components

• JComponent:
? Ancestor class for all Swing lightweight components
? Provides functionality that is essential and substantial
? It can contain other AWT and Swing components

• JPanel:
? Can be used for rendering both text and graphics
? Can also be used as a generic container



Csc 115 Swing and MVC 14

A closer look at the APIs for some Swing Components -- 2

• JTree:
? Displays hierarchical data using the well known paradigm of 

folders and leaf items
? Trees are composed of nodes (either folders or leaves)
? Tree nodes have a user object associated with each nodes
? Other related classes include:

• DefaultMutableTreeNode – a mutable node with one parent 
and possibly many children and a user object

• Treepath – a path from one node to another node, often 
used to communicate selections

? They can have a simple model – DefaultTreeModel (only really 
keeps track of the root node)



Csc 115 Swing and MVC 15

Swing examples….

• Goal:  “Make simple things easy, and difficult things possible”

1)  Button1.java 2)  Button2.java



Csc 115 Swing and MVC 16

Events

• Clean separation of the interface (i.e. the graphical components) 
from the implementation (the code that you want to run when an 
event happens to a component)

• Each swing component can report all the events that might happen
to it (e.g. mouse over, click etc)



Csc 115 Swing and MVC 17

Listeners

• We register our interest in the button press event by calling the 
Jbutton’s addActionListener() method

• The addActionListener method expects an object of type 
ActionListener

• An object of type ActionListener implements the ActionListener 
interface which means it must provide an implementation for the 
actionPerformed() method

• This method will be called when the button is pressed (this type of 
behaviour is often called a “callback”)



Csc 115 Swing and MVC 18

Anonymous inner classes

• We can have inner classes created as you need them without giving 
them a name

• They are used frequently in the Java tutorial examples

Button3.java



Csc 115 Swing and MVC 19

More advanced example

• Introduce:  Swing trees, scroll panes, selecting nodes
• Review:  2D arrays, static variables

BTree.java



Csc 115 Swing and MVC 20

Student Exercise

• Bonus Mark!
• Pair up with a partner – read through the example handed out and 

document each couple of lines with what is going on – if you don’t 
understand some of it – raise your hand

• Once you have progressed through all of the code, describe how 
and where you would add a button which clears the text screen 
when it is pushed

TreeDemo.java



Csc 115 Swing and MVC 21

Assignment #4

• Assignment 4 tips…..    A look at the Dynamic Tree code examples I 
posted


