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Swing

• The Java Foundation Classes is a collection of APIs for developing 
graphical user interfaces

• They include the following:
? Abstract Window Toolkit (AWT)
? 2D API
? Swing Components
? Accessibility API

• AWT was the original Java toolkit for developing user interfaces
? Only provides a single pen size for graphical operations
? Lacks many components you would expect
? They don’t scale very well…. Heavy weight components

• 2D API provides other graphical rendering capabilities
• Swing is a set of mostly lightweight components build on top of the 

AWT
• Swing can take on the look and feel of components on different 

platforms
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Lightweight Components

• Can be any shape and be transparent!
• They must be rendered in a heavyweight component – frames, 

applets, windows and dialogs
• Swing has over 250 classes – mixture of components and classes 

and over 40 components
• Swing components have class names that begin with the letter ‘J’
? E.g. JTextArea (hint for Ass#4!)

• Swing has many advanced components such as internal frames, 
tabbed panes, toolbars, color chooser, table, trees, dialog boxes…
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Advanced swing components
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Advanced swing components
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Pluggable look and feel

• Default look and feel can be set at runtime
? Look – appearance of the components
? Feel – interaction style of the widgets
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Model View Controller Architecture

• Designed for applications that need to provide multiple views of the 
same data

• Models: maintain data and provide data accessor methods
• Views: paint a visual representation of some or all of a model’s data
• Controllers: handle events
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Controllers in Java

• AWT and Swing listeners are basically MVC controllers
• Swing events are handled by event listeners that register with an 

event source
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Observer design pattern

• Listeners are an example of the Observer design pattern
? where a single object can notify many observers when the 

observed object is modified 
? the observer knows very little about the objects, other than 

how and when to notify them
• The MVC architecture makes use of the observer pattern to notify

views when the model changes
• Events are handled by controllers that typically make changes to

the model and one or more views depending on the type of events
• A Model maintains a list of views that have registered with the 

model for change notification
• When a change occurs, the model updates the view but the view 

generally has to get extra details from the model to update itself
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Advantages of MVC

? Can have multiple views and controllers plugged into a single 
model 

? A model’s views can be updated if the model changes but if the 
views change the model doesn’t necessarily have to change

? We can also have updates to views cause updates in other views 
(as will be the case in Ass#4)

? Provides a way to build abstractions and encapsulate them in 
classes!

• MVC encapsulates three general abstractions that are 
present in most graphical applications:  views, models and 
controllers

• Thus leading to more flexible and reusable application 
components
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Swing Components, Models and Events

• Swing Components typically maintain a reference to their model and 
provide “model pass-through methods” to access the model

• For example, for Jslider.java provides a method call getMinimum() 
which internally calls getModel().getMinimum()

• When a property changes for a component, a property change event
should be automatically fired by the model

• But who’s listening?
• When the model changes, the component will be automatically 

notified and will forward the event to other listeners that have
registered with the component 
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Why is MVC so important?

• There are many applications where it is advantageous to have 
multiple views… for example, we may have both a graph view and a
table view for some data that should be kept consistent when the
data is changed
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A closer look at the APIs for some Swing Components

• JComponent:
? Ancestor class for all Swing lightweight components
? Provides functionality that is essential and substantial
? It can contain other AWT and Swing components

• JPanel:
? Can be used for rendering both text and graphics
? Can also be used as a generic container
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A closer look at the APIs for some Swing Components -- 2

• JTree:
? Displays hierarchical data using the well known paradigm of 

folders and leaf items
? Trees are composed of nodes (either folders or leaves)
? Tree nodes have a user object associated with each nodes
? Other related classes include:

• DefaultMutableTreeNode – a mutable node with one parent 
and possibly many children and a user object

• Treepath – a path from one node to another node, often 
used to communicate selections

? They can have a simple model – DefaultTreeModel (only really 
keeps track of the root node)
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Swing examples….

• Goal:  “Make simple things easy, and difficult things possible”

1)  Button1.java 2)  Button2.java
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Events

• Clean separation of the interface (i.e. the graphical components) 
from the implementation (the code that you want to run when an 
event happens to a component)

• Each swing component can report all the events that might happen
to it (e.g. mouse over, click etc)
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Listeners

• We register our interest in the button press event by calling the 
Jbutton’s addActionListener() method

• The addActionListener method expects an object of type 
ActionListener

• An object of type ActionListener implements the ActionListener 
interface which means it must provide an implementation for the 
actionPerformed() method

• This method will be called when the button is pressed (this type of 
behaviour is often called a “callback”)
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Anonymous inner classes

• We can have inner classes created as you need them without giving 
them a name

• They are used frequently in the Java tutorial examples

Button3.java
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More advanced example

• Introduce:  Swing trees, scroll panes, selecting nodes
• Review:  2D arrays, static variables

BTree.java
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Student Exercise

• Bonus Mark!
• Pair up with a partner – read through the example handed out and 

document each couple of lines with what is going on – if you don’t 
understand some of it – raise your hand

• Once you have progressed through all of the code, describe how 
and where you would add a button which clears the text screen 
when it is pushed

TreeDemo.java
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Assignment #4

• Assignment 4 tips…..    A look at the Dynamic Tree code examples I 
posted


