
CSc 115 Introduction 1

Tree Data Structures

Reading Assignment
Chapters 6, 9.1

CSc 115 Tree Data Structures 2

Applications

• A tree imposes a hierarchical structure on a collection of items. 
These items are represented as nodes and relationships among the
nodes and edges.

• Examples
? Pedigree
? History of a tournament
? Syntax of expressions, syntax trees, programs
? Organization charts

• The number of children per node define tree types
? binary, ternary, quaternary, and n-ary trees

• Other important tree structures types we will look at
? Search trees, B-trees
? Heaps
? 2-3 trees, AVL-trees
? Red-black trees, And-Or trees
? Fibonacci heaps

CSc 115 Tree Data Structures 3

Definitions

• A tree is a recursive data structure.
• A finite rooted tree T is defined as a finite set of nodes such that 

there is a distinguished node, called the root of the tree, and 
remaining nodes are partitioned into m >= 0 disjoint
subtrees T1, T2, …Tm.

• Nodes with no subtrees are called leaf or external nodes; the 
remaining nodes are called interior or internal nodes.

• A forest is a set of trees.

T1

root

T2 Tm

CSc 115 Tree Data Structures 4

Anatomy
R

S T

X

Y Z

VU W

Level 0

Level 1

Level 2

Level 3

Siblings of W

Subtree rooted at S
Leaf or external
Internal nodes

Ancestors of X
Descendants of S
Parent of Y
Children of X
Root

a node

an edge

CSc 115 Tree Data Structures 5

Anatomy
R

S T

X

Y Z

VU W

Level 0

Level 1

Level 2

Level 3

U, VSiblings of W

S, X, Y, ZSubtree rooted at S
Y, Z, U, V, WLeaves or external

R, S, X, TInternal nodes

S, RAncestors of X
X, Y, ZDescendants of S

XParent of Y
Y, ZChildren of X
RRoot

a node

an edge

CSc 115 Tree Data Structures 6

Depth of a Node

• Let v be a node of a tree T.
? Non-recursive definition of depth

• The depth of v is the number of ancestors of v, excluding v 
itself.

? Recursive definition of depth
• If v is the root, then the depth of v is zero.
• Otherwise, the depth of v is one plus the depth of its 

parent.
? Thus, the depth of root is zero.



CSc 115 Introduction 2

CSc 115 Tree Data Structures 7

Height of a Tree

• Let v be a node of a tree T.
? Recursive definition of the height of a node

• If v is an external node, then the height of v is zero.
• Otherwise, the height of v is one plus the max. height of a 

child of v
• The height of a Tree is the height of the root of T.

? Note:  The height of tree T is equal to the maximum of all the 
depths of its nodes.

CSc 115 Tree Data Structures 8

Binary trees

• A binary tree is an ordered tree in which every node has at most
two children (i.e., 0, 1, or 2 children).

• Recursive definition
? A binary tree is empty, or consists of a node, or a node and a 

left subtree, or a node and a left subtree and a right subtree.

node

Left
subtree

node node

Left
subtree

Right
subtree

CSc 115 Tree Data Structures 9

Properties of Binary Trees

• The set of all nodes of a tree T at the same depth d is called the 
level d of T.

• In a binary tree,
? Level 0 has 1 node
? Level 1 has at most 2 nodes
? Level 2 has at most 4 nodes
? Level 3 has at most 8 nodes
? Level 4 has at most 16 nodes
? …
? Level d has at most 2d nodes
? A proper binary tree T is one where all the levels are full

CSc 115 Tree Data Structures 10

Properties of Binary Trees

• Let T be a binary tree with n nodes, and let h denote the height of 
T. Then T has the following properties:
? The number of leaf or external nodes in T is at least h+1 and at

most 2h

? The number of internal nodes in T is at least h and at most 2h-1
? The total number of nodes in T is at least 2h + 1 and at most 

2h+1 – 1
? The height of T is at least lg(n+1) -1 and at most (n-1)/2, that 

is, log(n+1)-1 <= (n-1)/2
? The number of leaf nodes in T is one more than the number of 

internal nodes.
• A list is a degenerate binary tree.
• N-ary trees can always be converted to a binary tree.

CSc 115 Tree Data Structures 11

Data Structures for Tree Representation

• Heap encoding using arrays (see Chapter 7, discussed later)
• Linked dynamic data structure using references (pointers)

right
left
data

right
left
data

right
left
dataroot

root

right
left
data

parent

right
left
data

parent

right
left
data

parent

null
null

9

null
left
12

right
left
7root

null
null
17

CSc 115 Tree Data Structures 12

Binary Tree Node Class

public class Node {

private Node parent;
private Object data;
private Node left;
private Node right;

public Node() {
this(null, null, null, null);

}
public Node(Object data) {

this(data, null, null, null);
}
public Node(Object data,

Node parent,
Node left,
Node right) {

this.data = data;
this.parent = parent;
this.left = left;
this.right = right;

}

public Object getData() { return data; }
public Node getLeft() { return left; }
public Node getParent() { return parent; }
public Node getRight() { return right; }
public boolean isLeaf() {

return left==null && right==null; }
public void setData(Object data) { 

this.data = data; }
public void setLeft(Node left) {

this.left = left; }
public void setParent(Node parent) { 

this.parent = parent; }
public void setRight(Node right) { 

this.right = right; }
public String toString() { return data; }

}



CSc 115 Introduction 3

CSc 115 Tree Data Structures 13

Tree Traversals for Binary Trees

• Preorder (depth-first)
1. V
2. L
3. R

• Inorder (symmetric)
1. L
2. V
3. R

• Postorder (bottom-up)
1. L
2. R
3. V

• Level order (breadth-first)
1. V
2. l
3. r
4. L
5. R

V

L R

V

L R

l r

CSc 115 Tree Data Structures 14

Euler Tour

• Euler tour
1. V
2. L
3. V
4. R
5. V

• Euler tour integrates three 
traversals
? Preorder
? Inorder
? Postorder

CSc 115 Tree Data Structures 15

Example Tree Traversals

• Preorder
? 9, 11, 7, 2, 3, 5, 10, 4, 5, 8, 1, 0

• Inorder
? 2, 7, 3, 11, 5, 9, 4, 5, 10, 1, 8, 0

• Postorder
? 2, 3, 7, 5, 11, 5, 4, , 0, 8, 10, 9

• Levelorder
? 9, 11, 10, 7, 5, 4, 8, 2, 3, 5, 1, 0

• Euler tour
? 9, 11, 7, 2, 2, 2, 7, 3, 3, 3, 7, 

11, 5, 5, 5, 11, 9, 10, 4, 4, 5, 5, 
5, 4, 10, 8, 1, 1, 1, 8, 0, 0, 0, 8, 
10, 9

9

8

1 0

7

2 3

11 10

4

5

5

CSc 115 Tree Data Structures 16

Tree Traversals for n-ary Trees

• Preorder (depth-first)
1. v
2. T1, T2, …, Tm

• Inorder (symmetric)
1. T1
2. v
3. T2, T3, …, Tm

• Postorder (bottom-up)
1. T1, T2, …, Tm
2. v

• Level order (breadth-first)
1. v
2. v1, v2, …, vm
3. T1, T2, …, Tm

T1

v

T2 Tm

T1

v

T2 Tm

v1 v2 vm

CSc 115 Tree Data Structures 17

Pre-, In-, Postorder Binary Tree Traversal Algorithms

void preorder(Node t) {
if (t != null) {

processNode(t);
preorder(t.getLeft());
preorder(t.getRight());

}
}
void inorder(Node t) {

if (t != null) {
inorder(t.getLeft());
processNode(t);
inorder(t.getRight());

}
}

void postorder(Node t) {
if (t != null) {

postorder(t.getLeft());
postorder(t.getRight());
processNode(t);

}
}

CSc 115 Tree Data Structures 18

Levelorder Binary Tree Traversal Algorithm

void levelorder(Node t) {
Queue q = new Queue();
q.enqueue(t);
while (!q.empty()) {

t = q.dequeue();
processNode(t);
Node left = t.getLeft();
if (left != null)

q.enqueue(left);
Node right = t.getRight();
if (right != null)

q.enqueue(right);
}

}



CSc 115 Introduction 4

CSc 115 Tree Data Structures 19

Non-recursive Preorder Traversal Algorithm

void nrpreorder(Node t) {
Stack s = new Stack();
s.push(t);
while (!s.empty()) {

t = s.pop();
processNode(t);
Node right = t.getRight();
if (right != null)

s.push(right);
Node left = t.getLeft();
if (left != null)

s.push(left);

}
}

CSc 115 Tree Data Structures 20

Time Complexity of Tree Traversals

• The running times of tree traversals are easy to analyze
• Assuming a node takes O(1) to process
• Thus, we spend a constant amount of time at each node
• Thus, the overall running time is O(n) for a tree of n nodes

Theorem.
The time complexity of the tree traversals preorder, inorder, 

postorder, levelorder, and Euler Tour is O(n).

CSc 115 Tree Data Structures 21

Binary Tree Interface

public interface BinaryTree {
void add(Object s); 
void remove(Object s);
Node getRoot();
boolean isEmpty();
void makeEmpty();
Enumeration levelorderIterator();
Enumeration postorderIterator();
Enumeration inorderIterator();
Enumeration preorderIterator();
boolean search(Object s);
int size();
int height();
String toString();

}

CSc 115 Tree Data Structures 22

Abstract Syntax Tree

• Preorder
? +  *  + a  b  17 + sqr x * 3  9

• Inorder
? a + b * 17 + sqr x + 3 * 9

• Height of tree
? 3

• Postorder
? a  b + 17 * x sqr 3  9 * + +

• Levelorder
? +  *  +  +  17 sqr * a  b   x  3  9

• Depth of x
? 3

+

*

3 9

+

a b

* +

sqr

x

17

CSc 115 Tree Data Structures 23

Implementing Tree Iterators

• One approach to implementing a tree traversal iterator is to 
flatten the tree

• Store references to the tree nodes in proper order (i.e., preorder, 
inorder, postorder, or levelorder) in an array, which is an instance 
variable of the iterator initialized at iterator instantiation time

• The iterator then provides these array elements in order

• Preorder array
? 9, 11, 7, 2, 3, 5, 10, 4, 5, 8, 1, 0

• Inorder array
? 2, 7, 3, 11, 5, 9, 4, 5, 10, 1, 8, 0

• Postorder array
? 2, 3, 7, 5, 11, 5, 4, , 0, 8, 10, 9

• Levelorder array
? 9, 11, 10, 7, 5, 4, 8, 2, 3, 5, 1, 0

9

8

1 0

7

2 3

11 10

4

5

5

CSc 115 Tree Data Structures 24

Inner Class Preorder Iterator

private class PreorderIterator
implements Enumeration {

private int curNode;
private int curSize;
private Node[] pre;

public PreorderIterator() {
pre = new Node[size];
curNode = 0;
curSize = size;
preorder(root);
curNode = 0;

}

private void preorder(Node t) {
if (t != null) {

pre[curNode] = t;
curNode++;
preorder(t.getLeft());
preorder(t.getRight());

}
}
public boolean hasMoreElements() {

return curNode < curSize;
}
public Object nextElement() {

int c = curNode;
curNode++;
return pre[c];

}

} // private class



CSc 115 Introduction 5

CSc 115 Tree Data Structures 25

Binary Search Trees

• Binary search tree property (BSTP)
? A binary search tree is a binary tree in which the nodes are 

labelled with elements of a set such that all elements in the 
left subtree of a node labelled x are less than or equal to x and 
all the elements in the right subtree are greater than x.

• A binary search tree is a completely ordered tree.

x

= x > x

10

18

15 20

5

3 6

6 14

11

12

7

BSTP

CSc 115 Tree Data Structures 26

Implementing Dictionary Operations

• Dictionary operations
? member(), insert(), delete()

• To implement these operations for the generic type Object, we 
would have to implement a Comparator object

• In the next few slides, we use String instead of Object to simplify 
the member(), insert(), and delete() operations

CSc 115 Tree Data Structures 27

Implementing Dictionary Operations

• Options for supporting the delete() operation
? Delete element, reorganize the tree until binary search tree 

property is re-established
• If the node to be deleted has only one subtree, move that 

subtree into its place
• If the node to be deleted has two subtrees, then move the 

node with the smallest or largest value in the subtree into 
the position of the deleted node

? Mark nodes as deleted, but keep nodes in the tree for 
searching purposes

• Add a boolean field deleted in the Node class
• All routines must take deleted field into account

CSc 115 Tree Data Structures 28

Search for a Node in a Binary Search Tree

boolean searchTree(Node t, String x) {
if (t == null) {

return false;
} else if (!t.getDeleted() &&

x.compareTo(t.getData()) == 0) {
return true;

} else if (x.compareTo(t.getData()) <= 0) {
Node left = t.getLeft();
if (left == null) return false;
else return searchTree(left, x);

} else {
Node right = t.getRight();
if (right == null) return false;
else return searchTree(right, x);

}
}

CSc 115 Tree Data Structures 29

Mark a Node in Binary Search Tree as Deleted

void delete(Node t, String x) {
if (t == null) {

return;
} else if (x.equals(t.getData())) {

t.setDeleted(true);
size--;

} else if (x.compareTo(t.getData()) <= 0) {
delete(t.getLeft(), x);

} else {
delete(t.getRight(), x);

}
}

CSc 115 Tree Data Structures 30

Insert a Node into Binary Search Tree

void insert(Node t, Node x) {
if (t == null) {

return;
} else if (t.getDeleted() &&
x.getData().compareTo(t.getData()) == 0) {

t.setDeleted(false);
} else if (x.getData().compareTo(t.getData()) <= 0) {

Node left = t.getLeft();
if (left == null) {

t.setLeft(x);
x.setParent(t);

} else insert(left, x);
} else {

Node right = t.getRight();
if (right == null) {

t.setRight(x);
x.setParent(x);

} else insert(right, x);
}

}



CSc 115 Introduction 6

CSc 115 Tree Data Structures 31

Inorder Traversal of Binary Search Trees

• Consider the following sequence of integers
? 1, 2, 3, 4, 5, 6, 7

• In which order do these integers have to be inserted into a binary 
search tree to produce the following trees?

• Execute inorder traversal on all of these binary search trees. What 
is the output? ?

4

2

1 3

6

5 7

7

5

1 6

3

2 4

7

5

4 6

2

1 3

4

1

3

2

5

7

6

CSc 115 Tree Data Structures 32

Balanced Binary Search Trees

• In a balanced binary search tree, the levels are full except the last 
one

• A list is a binary tree
? member, insert(), and delete() operations take O(n) time 

in such a degenerate binary tree
• To guarantee O(log n) access times, the tree must be kept balanced
• There are many types of balanced binary search trees

? AVL trees
? 2-3 trees
? Multi-way trees
? Red-black trees
? B-trees

• The time complexity of member, insert(), and delete()
operations in a balanced binary search tree is O(log n)

CSc 115 Tree Data Structures 33

Summary

• Tree applications
? Abstract syntax trees

• Definitions and anatomy
• Trees, binary trees, n-ary trees, recursive data structures
• Traversals

? Preorder, inorder, postorder
? Levelorder, Euler tour
? Recursive and iterative algorithms

• Representation
? Linked data structures
? Heap (next section)

• Iterator
? Flatten tree

• Binary search trees
? Binary search tree property
? Balanced binary search trees


