Software Visualization

Margaret-Anne Storey
Dept. of Computer Science, UVic

CSc 586a/SENG 480a — Software Visualization

 Mental imagery and software visualization

e Priceet a’staxonomy on software visualization
o Cognitive questions in software visualization

« A cognitive framework for software exploration

CSc 586a/SENG 480a — Software Visualization

When you are designing a (or understanding an
existing) program, describe how you go about doing such
a task?

CSc 586a/SENG 480a — Software Visualization

Mental imagery and software visualization

e SOome quotes:

— "Thefirst step in programming isimagining - | like to imagine the
structures that are being maintained, the structures that represent
the reality | want to code ... The code for the most part writes itself,
but it's the data structures | maintain that are the key. They come
first and | keegp themin my mind throughout the entire process."
(Charles Smonyi, page 15)

— "You have to simulate in your mind how the program's going to
work, and you have to have a complete grasp of how the various
pieces of the program work together." (Bill Gates, page 73)

— "One of the earliest thingsis to visualize this structure in my head,
a dynamic structure, so | can think about how things fit together
and how they work ... and once | have the structure fairly strong
and clear in my mind, | move it around and move around inside it,
examining it and tweaking it ... "

o 2key eements:
— Structure of information
— How it works

CSc 586a/SENG 480a — Software Visualization

Price’s taxonomy on software visualization

e Scope

e Content

e Form
 Method

e |nteraction

o Effectiveness

CSc 586a/SENG 480a — Software Visualization

What is the range of programs that the SV system
may task as input for visualization

 TwO man concerns:

— Generdlity
e Hardware
» Operating system
 Language (Concurrency)
« Applications

— Scalability
e Program
e Data sets

CSc 586a/SENG 480a — Software Visualization

What subset of information about the software is visualized by
the SV system?
* Program
— Code (control flow)
— Data (data flow)

e Algorithm
— Instructions (control flow)
— Data (data flow)

e Fidelity and Completeness
— Invasiveness

o Data Gathering time
— Temporal control mappings
— Generation time

CSc 586a/SENG 480a — Software Visualization

Form

What are the characteristics of the output of the system (the
visualization)?

 Medium

Presentation style

— Graphical vocabulary

— Animation

— Sound

Granularity
— Elision
Multiple views
Program synchronization

CSc 586a/SENG 480a — Software Visualization

How is the visualization specified?
 Visualization specification style

— Intelligence

— Tallorability (customization language)
« Connection technique

— Code ignorance allowance
— System code coupling

CSc 586a/SENG 480a — Software Visualization

Interaction

How does the user of the SV system interact with and
control it?

e Style
e Navigation
— Elision control
— Temporal control (direction, speed)

o Scripting facilities

CSc 586a/SENG 480a — Software Visualization

Effectiveness

How well does the system communicate information
to the user?

e Purpose

e Appropriateness and clarity
 Empirical evaluation

e Production use

CSc 586a/SENG 480a — Software Visualization

Cognitive questions In software visualization

* |sn’t enough to mimic paper based tasks....

e “Even simple tools may improve software
visualization — if they are the right ones’

CSc 586a/SENG 480a — Software Visualization

Cognitive questions In software visualization:

1. What isvisualization useful for?
— Presenting large data sets
— Demonstrating the virtual machine
— Changing the perspective
— Display-based reasoning

CSc 586a/SENG 480a — Software Visualization

Cognitive questions cont.

2. Does visualization mean pictures?

3. IsSV away into the expert mind' or away out of our usual
world view?

4. Why are experts often resistant to other people's visualisations?

5. Arevisualizations trying to provide a representation that is more
abstract, or more concrete?

6. What model are we representing?

7. What kind of tasks are we supporting?

8. What do we know about perception, anyway?
9. What if there aren't enough dimensions?

10. Are representations good for everyone? \What is the importance
of individual skill and variation?

11. When are two representations better than one? ...
14. Can | take aversion to bed?

CSc 586a/SENG 480a — Software Visualization

Cognitive Design Elements to Support the Construction of
a Mental Model during Software Visualization

CSc 586a/SENG 480a — Software Visualization

Software Visualization research overview

How do programmers
understand programs?

What tools do programmers
need to understand
programs?
A Cognitive Framework of

Design Elements Evaluate tool usefulness

to guide tool design | and usability
\» SHAMP Y 7

CSc 586a/SENG 480a — Software Visualization

Terminology

A mental modal describes the maintainer’ s mental
representation of the program to be understood

» A cognitive model describes the processes and information
structures used to form the mental model

CSc 586a/SENG 480a — Software Visualization

Cognitive Models of Program Comprehension

e Bottom-up comprehension

e Top-down comprehension

» Knowledge based understanding model
o Systematic and as-needed strategies

* Integrated meta-model of program comprehension

CSc 586a/SENG 480a — Software Visualization

Explaining the variation in models

— Maintainer characteristics

e application/program knowledge

e maintainer experience, creativity
— Program characteristics

e application/programming domain

» Size, complexity, quality, documentation
— Task characteristics

» adaptive, perfective, corrective, reuse

e CASE tool, time constraints

CSc 586a/SENG 480a — Software Visualization

Program comprehension

— Source code is often the only source of information for
understanding programs

— Reverse engineering describes the extraction of high-
level design information from source code
— Tilley et al. WPC' 96
« Datagathering
« Knowledge organization
e |nformation exploration

CSc 586a/SENG 480a — Software Visualization

Software visualization tools

 algorithm animations

 visual debuggers

e dynamic visualizations

* pretty printers

« exploring static software structures

CSc 586a/SENG 480a — Software Visualization

A Hierarchy of Cognitive Design Issues for Software Exploration

o Software information often has web-like structures
o Severa hypertext browsers for source code

« Comprehension of a hyperdocument involvesthe
* construction of a mental model that represents
the objects and semantic relations in a text”

— Increase coherence (local and global)
— Reduce cognitive overhead

CSc 586a/SENG 480a — Software Visualization

Cognitive
Design

Elements

CSc 586a/SENG 480a — Software Visualization

Enhance
program

comprehension

overhead

Reduce

Bottom-up ‘

Top-down

| ntegr ated

Navigation

cognitive

Orientation cues ‘

User interface

Cognitive design elements to support bottom-up comprehension

Cognitive
Design
Elements

Enhance
program
compr ehension

Reduce cognitive
over head

T

Bottom-up

| ndicate syntactic/
semantic relationships

Top-down

Reduce effects of
delocalized plans

| ntegrated

Navigation

Orientation cues

User interface

Provide abstraction
mechanisms

CSc 586a/SENG 480a — Software Visualization

Cognitive design elements to support top-down comprehension

Cognitive
Design
Elements

Enhance
program
compr ehension

Reduce cognitive
over head

T

Bottom-up

Top-down

Support hypothesis-
driven comprehension

| ntegrated

Navigation

Orientation cues

User interface

Provide overviews
at various levels of
abstraction

CSc 586a/SENG 480a — Software Visualization

Cognitive
Design
Elements

Cognitive design elements to support the integrated meta-model

Enhance
program
compr ehension

Reduce cognitive
over head

T

Bottom-up

Top-down

Support the
construction

of multiple mental
models

| ntegrated

Navigation

Orientation cues

User interface

Cross-reference
mental models

CSc 586a/SENG 480a — Software Visualization

Design elements to support navigation

Enhance
program
comprehension

Cognitive
Design
Elements

Reduce
cognitive
over head

Bottom-up

Top-down

Integrated

Navigation '<

Orientation

cues

User interface

Provide directional
navigation

Support arbitrary
navigation

CSc 586a/SENG 480a — Software Visualization

Design elements to provide orientation cues

Bottom-up
Enhance
program 4> Top-down
comprehension \

Integrated

Cognitive

Elanents Navigation
| ndicate the current focus
Reduce .)
cognitive Orientation Display path to the focus
over head CUES
| ndicate options for
reaching new locations I

User interface

CSc 586a/SENG 480a — Software Visualization

Design elements to improve user-interface adjustment

Enhance /
program S
comprehension \

Cognitive
Design
Elements

Reduce
cognitive
over head

Bottom-up

Top-down

Integrated

Navigation

Orientation
cues

‘ User interface F

Reduce additional effort for
user -inter face adjustment

Provide effective
presentation styles

CSc 586a/SENG 480a — Software Visualization

Challenges — software visualization tools

« Many software exploration tools have not been adopted in
Industry

o Large software systems generate large graphs

 |nsufficient support for switching between systematic
browsing and opportunistic approaches, and for switching
between bottom-up and top-down comprehension strategies

» Source code Is often too far removed from

the graphical views
« Multiple windows are confusing and difficult to manage
o Usefulness versus usability

 Lotsof tools, not obvious which problems they are trying to
solve...

CSc 586a/SENG 480a — Software Visualization

SHriMP Views

Simple Hierarchical M ulti-Perspective Views
Prototype interface for exploring software

structures and browsing code
Makes better use of limited screen area

| ntegrates code browsing using hypertext
(HTML objects) embedded in the graph

Sophisticated animation and zooming (Jazz)

Uses nested graphs (containment)

=

Lo

i)

=0

CSc 586a/SENG 480a — Software Visualization

Visualizing Java programs in SHriMP

» Possible sources (layers) of information for the
Java domain:
« Analysis, metrics
e Documentation
 Source code
 Architecture
* Requirements
 Version control and management....

CSc 586a/SENG 480a — Software Visualization

Integrating multiple information views

Root \ - Sour ce Code
e Weusean architecture to provide |osemes .
placeholders for different views I S '
« Which architectural view you T e
choose depends on the Jo >
stakeholder and the purpose of e
the visualization = 2

 Variousviews are accessible at

any level of granularity (method,
class, package etc) oot
* Hypertext and zooming features e |
support navigation o '
o Component design supports e i
adding new “views’ T
7 Javadoc

CSc 586a/SENG 480a — Software Visualization

SHriMP Demo —
Visualizing a Java Program

CSc 586a/SENG 480a — Software Visualization

Interchangeable views
for package nodes

________ | Nested | nterchangeable
Viewsfor
Java Visualization

1

1

1

1

1

1

1

1

! Interchangeable views
! for class nodes
l -
1

1

1

1

1

Operationsfor switching views:

__¥» Zoom in/out
(default action is configurable)

Interchangeable views
for operation nodes/,

Y

|

|

|

|

|

:

! —-- Semantic zoom
y (e.g. following hyperlinks)

<«—» Switching between
interchangeable
views using the hotbox

Empirical evaluations of SHriMP

Studying the effectiveness of software
exploration tools

o Pilot study, Spring 1996

e Second study, Spring 1997

 Inprogress, Summer 2001 and Summer 2002

CSc 586a/SENG 480a — Software Visualization

A SNIFF+ view of monopoly

rll Project Editor: monopoly.proj L rll Source Editor: monopoly.proj — monop.c L
B8 File Project Target Info File Types Custom | = File Edit Positioning Target Info Class Debug History |
Source Files of monopoly.proj . : static char scesid[] = "B{(#)monop.c 5.7 (Berkeley) &/1/00"; = All Classes _'l

all —'| [Private [T Writable #endif /* not lint */ getplayers (f)
Filter I Shared Read Qnly . . init_monops (f)
i L L o # include monop. def init_players (f)

FoIT 3 .

| misc.c nonopoly. proj it nain (£
@ mon . dat nonopoly. proj * This program Implements s monopoly game
| monop.c monopoly. proj *
By monop . def monopoly. proj main (ac, av)
B monop . ext nonopoly. proj reg int ECJ
B monop.h monopoly. proj tey char awlls o
3 monopoly.proj monopoly. proj
ki moxg.c nonopoly. proj |y srandfgetpid()) :

Updatel if f{ac » 1)

— if (lrest f{aw[1]}}

|| Frozen | Lockers | History , restore();

J_‘Ll Cross Referencer: monopoly.proj i
Z: Info Class Href Graph History | (1 :
language Ansi C/C+H+ _nlDepth I 1 Roct Symbol ;

areg [2) = | | getplayers lucky_mes / sizeof (char *);
d=p [7] | calloc (ud) |T
__ q cfree (ud) |
L 120) - - < o %shn', cur_p-rname layer + 1
1 (5] ¥ref Filter . - S !
il - b->loc]. name) ;
rw v num_play [8] Filter li_-rypesi.
f get in .
== [~ Function Bodies *‘_”lml ', comlist)); 4
a MAX_PL [~ class (ch
printf [4] _|All Overloaded || = constructor (ed) | f— | J
Yariable accass [T inst var {iv) nop.c — fproject/rigi/projfexperiment/monopaoly fsrc
[~ Read (0 [~ method (r;
; i e : =
FF ey f o {td pLaY (<1 plc st) [3]] [Write (w) I function [Retriever: monopoly.proj
st ple_st (8] [~ wariable { 6 Info Class Filter File Types History
e v pley 8]
111 ¥ [[2]] — Clags—— | [T const (<ol | “patches
calloc macre
_| Companents (H r Retrieve | |laetp!
playvers lgnore Case Whaole Word
getchar | Interfacs (PR) [~ enum Fen _I |19 - L
v v name_1ist (5] [~ enum ite Filter [
= typedef (f
w iv ple_st: name [2] ||: tZSnplate menap. ¢ getplayers () ;
 struct o ¢ getplayers()
= union Gun
W dataty
d cfree [2] [~ undefine
pr—
 _|Frozen Hodes: 21 Matches: o Refers—To | Referred—Byl cl _|Frozen Matches: 2 Lines: 2

CSc 586a/SENG 480a — Software Visualization

A Rigi view of monopoly

Fe| Rig| Workbe ok I Genernl - 2 Mo palyirageam <cAcTIv> T
Eile Edit Mevigate Sclect Fjter Sgale Layoul [eport Window Uemo [X]
1] OVErviEW -3 Mo lyProgrom T

J'I TataSructires Plavaraidhsls CommandSiohals 1-'—'-'5!}'?‘!_'[12#-:13:5

Il Moge “Confrel” (10511 12) selected

J"ll monop.c i J_‘Ll Children — 7 Control rl] Children — 12 Setup
File Edit Search Preferences Shell Macro Windows Help
* This rocutine gets the names of the players A1 .
S
getplayers() { _ monope Il init_players init_monops
i reg char *5Sp;
req int i, 3J;
char buf[257]; -
main v getplayers
blew_it:] | =
for (;;) | = = = = = i o ..
if {(num play=get_int {"How many players? ")) <=0 || I | Mode "monop.c (10488061 | Mode "getplayers” (1048756) 54
g play > MaH FL)]
printf("Sorry. Number must range from 1 to 9%n" =il Select by Name K
else
; break; Search Name: |getplayers
cur_p = play = (PLAY *) calloc(num play, sizeof (PLAY)); :
for (i = 0; i < num play; i++) { _| Search Entire Graph
oVer:
printf({"Player %d’s name: ", i + 1); Select | Done
for (sp = buf; (*sp= getchar()) = "\n*; sptt) 7] 1
F-J. =M

CSc 586a/SENG 480a — Software Visualization

A SHriMP view of monopoly

CSc 586a/SENG 480a — Software Visualization

Overview of the SHriM P-Eclipse plug-in architecture

Creole Plug-in
Creole
Core
Code
Corewyw Flug-in
Eclipse F'1I' _ \\;
: ug-in Fmp
(ncl JOT, Bridoge Core
CY3) Code Code
F 3 ¥

References
——& #ia Core

Plugs-in Code

Ala Plug-in

CSc 586a/SENG 480a — Software Visualization

SHriMP plugged into the Eclipse platform

£ Java - Eclipse Platform

File Edit

Source Refactor Mavigate Search Project

Fun Window Help

=&l x|

EREEEYEREE

| [lov af & & o¥ || 7 [] % -

EXEIEIEEE

&

x

Edit Mode Mawvigate Layout Tools

P B

& i

Display Mode: " Mavination ¢ Filtered ¢ Search Results

E

SHriMP Hierarchical Wiew JOutIine

x

1RpOTrt Ca Uvic.C=r.=hrinp.
SER

*

* Jeff Hichaud

* @date July 27, 2000

* .

public class
s#% Default parser name. %
private fimal String DEFA
private Hashtable nodeTohr

pr:i.vate !JDD:_'.EEID Set}{aligla

Filmstrip File Mavigate Tools

R = A A e == N S
[[Node

Add<mLDataAdapter.java

| M Interface

|[¥ method

DisplayAlIl Hide All |

EI'Z1=1LEN

oragenear .

Lnida
Rewvert:

EI=1=TELN

Thi= adapter handles adding the content= of an EML document to the dz—l

ERAMER Y e = implements AddDatalistener

oragenes

= DOMParser

Cpen Declaration
Open Type Hierarchy
Open Super Implementation

I Highlight: In SHMP Hierarchical iew

Mavigate To In SHEAMP Main Yiew
Show in Package Explorer

Cut

Copy
Paste

Format
Source
Refactor
Lacal History

Search

| v calls

|[# accesses

DisplayAIIl Hide All |
4

.‘ Inspeck
=/ Display
-r]: R bo Line

Saye

[T A T P S R U S

Hierarchy:lcantains

j Lahels:lﬁbwe Mode (fixed) LI Navigatiun:lhﬂagniﬂt 'l

|Writable

CSc 586a/SENG 480a — Software Visualization

|Insert

|36 31

EEsd

Ti57 PM

Visualizing CVS information

LE YHSIUIL LD 2 A
- tbribiste: Sane - F Chprse 9% Plosgm] i Wersion 1.5 3
par Warsion 1A 3
st Version 1.4 3

Legent FI:-ur\er-_J

arer
e it

|7 ririarn
5 dhinen
F'I‘HHT
W
i)

e =y

By

Owes

I
Pl 2 207 S, 2B I 1 T

e

I ——————————————
[0 x|

B Rt b [= |

ToolTip: |date » |

Color: fdate o | ii

“Color Schemes

CSc 586a/SENG 480a — Software Visualization

Integrating CVS and JDT information

ca.uvic.csr.shrimp.DataBean.RigiDataBean

ca.wic.csr.shrimp.adapter

- _ ’ _ ea wviccsrshrimp_gui ShrimpViev
ca.uvic.csr.shrimp. Di ShrimpDi p_g! P

ca.wvic.csr.shrimp. TelBean. Shimp TclBean

ca.uvic.csr.shrimp. ueréontrols e csr_shrimp TelHean

ca.uvic.csr.shrimp.adapter. FilmStrip
ca.uvie_csr.shiimp.Sele ctorBean

ca.uvic¢ sr.shrimp.DataBean. ProtegeDstaBean

ca.uvic.esr.shrimp. adapter.tools
ca.uvic.esr. shrimp.gui FilmStrip L
]

cauvic.csr.shnmp. adapter cauvic.csr.shnmp. TclBean.ShnmpTcBean

(W] Bl ‘I 0
L] 1 O et | f o
IR JI iljn; 1 0 & i .

-
-
=

.........

CSc 586a/SENG 480a — Software Visualization

Current work In software visualization

 |ntegration with Eclipse
— IBM Websphere Studio Workbench www.eclipse.org
— Eclipseis open framework for building integrated devel opment
environments
o SHriMP has been customized and retargeted for
visualizing “flow diagrams”
— Flow diagrams are used in an eBusiness project to model the

dynamic aspects of a system, such as the main activities and the
movement of information in a business process

— Flow diagrams can be hierarchically composed
e User studies -- long way to go....

CSc 586a/SENG 480a — Software Visualization

References

 Mental imagery in Program Design and Visual
Programming, by M. Petre and A. Blackwell,
http://www.cl.cam.ac.uk/~afb21/publications/| JIHCS.html

* Priceet d’s principled taxonomy of software visualization:
http://www.dgp.toronto.edu/peopl e/RM B/papers/p20.pdf

« Cognitive questions in software visualization:
http://www.cl.cam.ac.uk/~afb21/publications/book-
chapter.html

* A Cognitive Framework by Storey et al.:
http://www.cs.uvic.ca/l~mstorey/papers|ss.pdf

CSc 586a/SENG 480a — Software Visualization

