
CSc 586a/SENG 480a – Software Visualization

Software Visualization

Margaret-Anne Storey
Dept. of Computer Science, UVic

CSc 586a/SENG 480a – Software Visualization

Outline

• Mental imagery and software visualization
• Price et al’s taxonomy on software visualization
• Cognitive questions in software visualization
• A cognitive framework for software exploration

CSc 586a/SENG 480a – Software Visualization

When you are designing a (or understanding an
existing) program, describe how you go about doing such

a task?

CSc 586a/SENG 480a – Software Visualization

Mental imagery and software visualization

• Some quotes:
– "The first step in programming is imagining - I like to imagine the

structures that are being maintained, the structures that represent
the reality I want to code ... The code for the most part writes itself,
but it's the data structures I maintain that are the key. They come
first and I keep them in my mind throughout the entire process."
(Charles Simonyi, page 15)

– "You have to simulate in your mind how the program's going to
work, and you have to have a complete grasp of how the various
pieces of the program work together." (Bill Gates, page 73)

– "One of the earliest things is to visualize this structure in my head,
a dynamic structure, so I can think about how things fit together
and how they work ... and once I have the structure fairly strong
and clear in my mind, I move it around and move around inside it,
examining it and tweaking it ... "

• 2 key elements:
– Structure of information
– How it works

CSc 586a/SENG 480a – Software Visualization

Price’s taxonomy on software visualization

• Scope
• Content
• Form
• Method
• Interaction
• Effectiveness

CSc 586a/SENG 480a – Software Visualization

Scope

What is the range of programs that the SV system
may task as input for visualization

• Two main concerns:
– Generality

• Hardware
• Operating system
• Language (Concurrency)
• Applications

– Scalability
• Program
• Data sets

CSc 586a/SENG 480a – Software Visualization

Content

What subset of information about the software is visualized by
the SV system?

• Program
– Code (control flow)
– Data (data flow)

• Algorithm
– Instructions (control flow)
– Data (data flow)

• Fidelity and Completeness
– Invasiveness

• Data Gathering time
– Temporal control mappings
– Generation time

CSc 586a/SENG 480a – Software Visualization

Form

What are the characteristics of the output of the system (the
visualization)?

• Medium
• Presentation style

– Graphical vocabulary
– Animation
– Sound

• Granularity
– Elision

• Multiple views
• Program synchronization

CSc 586a/SENG 480a – Software Visualization

Method

How is the visualization specified?
• Visualization specification style

– Intelligence
– Tailorability (customization language)

• Connection technique
– Code ignorance allowance
– System code coupling

CSc 586a/SENG 480a – Software Visualization

Interaction

How does the user of the SV system interact with and
control it?

• Style
• Navigation

– Elision control
– Temporal control (direction, speed)

• Scripting facilities

CSc 586a/SENG 480a – Software Visualization

Effectiveness

How well does the system communicate information
to the user?

• Purpose
• Appropriateness and clarity
• Empirical evaluation
• Production use

CSc 586a/SENG 480a – Software Visualization

Cognitive questions in software visualization

• Isn’t enough to mimic paper based tasks….
• “Even simple tools may improve software

visualization – if they are the right ones”

CSc 586a/SENG 480a – Software Visualization

Cognitive questions in software visualization:

1. What is visualization useful for?
– Presenting large data sets
– Demonstrating the virtual machine
– Changing the perspective
– Display-based reasoning

CSc 586a/SENG 480a – Software Visualization

Cognitive questions cont.

2. Does visualization mean pictures?
3. Is SV a way into `the expert mind' or a way out of our usual

world view?
4. Why are experts often resistant to other people's visualisations?
5. Are visualizations trying to provide a representation that is more

abstract, or more concrete?
6. What model are we representing?
7. What kind of tasks are we supporting?
8. What do we know about perception, anyway?
9. What if there aren't enough dimensions?
10. Are representations good for everyone? What is the importance

of individual skill and variation?
11. When are two representations better than one? …
14. Can I take a version to bed?

CSc 586a/SENG 480a – Software Visualization

Cognitive Design Elements to Support the Construction of Cognitive Design Elements to Support the Construction of
a Mental Model during Software Visualizationa Mental Model during Software Visualization

CSc 586a/SENG 480a – Software Visualization

A Cognitive Framework of
Design Elements

to guide tool design

Evaluate tool usefulness
and usability

Software Visualization research overview

What tools do programmers
need to understand

programs?

How do programmers
understand programs?

CSc 586a/SENG 480a – Software Visualization

Terminology

• A mental model describes the maintainer’s mental
representation of the program to be understood

• A cognitive model describes the processes and information
structures used to form the mental model

CSc 586a/SENG 480a – Software Visualization

Cognitive Models of Program Comprehension

• Bottom-up comprehension
• Top-down comprehension
• Knowledge based understanding model
• Systematic and as-needed strategies
• Integrated meta-model of program comprehension

CSc 586a/SENG 480a – Software Visualization

Explaining the variation in models

– Maintainer characteristics
• application/program knowledge
• maintainer experience, creativity

– Program characteristics
• application/programming domain
• size, complexity, quality, documentation

– Task characteristics
• adaptive, perfective, corrective, reuse
• CASE tool, time constraints

CSc 586a/SENG 480a – Software Visualization

Program comprehension

– Source code is often the only source of information for
understanding programs

– Reverse engineering describes the extraction of high-
level design information from source code

– Tilley et al. WPC’96
• Data gathering
• Knowledge organization
• Information exploration

CSc 586a/SENG 480a – Software Visualization

Software visualization tools

• algorithm animations
• visual debuggers
• dynamic visualizations
• pretty printers
• exploring static software structures

CSc 586a/SENG 480a – Software Visualization

A Hierarchy of Cognitive Design Issues for Software Exploration

• Software information often has web-like structures
• Several hypertext browsers for source code
• Comprehension of a hyperdocument involves the

“construction of a mental model that represents
the objects and semantic relations in a text”
– Increase coherence (local and global)
– Reduce cognitive overhead

CSc 586a/SENG 480a – Software Visualization

A Cognitive Framework for Describing and Evaluating
Software Exploration Tools

Supporting
program
comprehension

Bottom-up

Top-down

IntegratedIntegrated

NavigationNavigation

Orientation cuesOrientation cues

User interfaceUser interface

Bottom-upBottom-up

Top-downTop-down

NavigationNavigation

Orientation cuesOrientation cues

User interfaceUser interface

Cognitive
Design
Elements

Cognitive
Design
Elements

Enhance
program
comprehension

Enhance
program
comprehension

Reduce
cognitive
overhead

Reduce
cognitive
overhead

CSc 586a/SENG 480a – Software Visualization

Cognitive design elements to support bottom-up comprehension

Integrated

Bottom-upBottom-up

Navigation

Orientation cues

User interface

Reduce cognitive
overhead

Enhance
program
comprehension

Enhance
program
comprehension

Cognitive
Design
Elements

Reduce effects of
delocalized plans

Indicate syntactic/
semantic relationships

Provide abstraction
mechanisms

Provide abstraction
mechanisms

… source code listings, graphs, slicers, multiply linked views graph composition, filtering

Top-down

CSc 586a/SENG 480a – Software Visualization

Cognitive design elements to support top-down comprehension

Integrated

Bottom-up

Navigation

Orientation cues

User interface

Reduce cognitive
overhead

Support hypothesis-
driven comprehension

Provide overviews
at various levels of
abstraction

Provide overviews
at various levels of
abstraction

Top-downTop-down
Enhance
program
comprehension

Enhance
program
comprehension

Cognitive
Design
Elements

… layered annotations, design patterns, overview, maps, structure charts, nested graphs

CSc 586a/SENG 480a – Software Visualization

Cognitive design elements to support the integrated meta-model

IntegratedIntegrated

Bottom-up

Navigation

Orientation cues

User interface

Reduce cognitive
overhead

Top-down
Enhance
program
comprehension

Enhance
program
comprehension

Cognitive
Design
Elements

Support the
construction
of multiple mental
models

Cross-reference
mental models

Cross-reference
mental models

… multiple views, 3D graphics, synchronized views, hooked line diagrams, hyperlinks

CSc 586a/SENG 480a – Software Visualization

Integrated

Bottom-up

Top-down
Enhance
program
comprehension

Provide directional
navigation

Orientation
cues

NavigationNavigation

User interface

Reduce
cognitive
overhead

Reduce
cognitive
overhead

Cognitive
Design
Elements

Support arbitrary
navigation

Support arbitrary
navigation

… editors, browsers, graphs, subsystem hierarchies, bookmarks, search engines

Design elements to support navigation

CSc 586a/SENG 480a – Software Visualization

Integrated

Bottom-up

Top-down
Enhance
program
comprehension

Display path to the focus

Indicate the current focus

Indicate options for
reaching new locations

Indicate options for
reaching new locations

Orientation
cues

Orientation
cues

Navigation

User interface

Reduce
cognitive
overhead

Reduce
cognitive
overhead

Cognitive
Design
Elements

Design elements to provide orientation cues

… highlighting, colour, fisheye-views, histories, overview windows, trails, hyperlinks

CSc 586a/SENG 480a – Software Visualization

Integrated

Bottom-up

Top-down
Enhance
program
comprehension

Orientation
cues
Orientation
cues

Reduce additional effort for
user-interface adjustment

Provide effective
presentation styles

Provide effective
presentation styles

Navigation

User interfaceUser interface

Reduce
cognitive
overhead

Reduce
cognitive
overhead

Cognitive
Design
Elements

…visibility, feedback, natural mappings, graph layouts, 3D graphs, animation

Design elements to improve user-interface adjustment

CSc 586a/SENG 480a – Software Visualization

Challenges – software visualization tools

• Many software exploration tools have not been adopted in
industry

• Large software systems generate large graphs
• Insufficient support for switching between systematic

browsing and opportunistic approaches, and for switching
between bottom-up and top-down comprehension strategies

• Source code is often too far removed from
the graphical views

• Multiple windows are confusing and difficult to manage
• Usefulness versus usability
• Lots of tools, not obvious which problems they are trying to

solve…

CSc 586a/SENG 480a – Software Visualization

SHriMP Views
• Simple Hierarchical Multi-Perspective Views
• Prototype interface for exploring software

structures and browsing code
• Makes better use of limited screen area
• Integrates code browsing using hypertext

(HTML objects) embedded in the graph
• Sophisticated animation and zooming (Jazz)
• Uses nested graphs (containment)

CSc 586a/SENG 480a – Software Visualization

Visualizing Java programs in SHriMP

• Possible sources (layers) of information for the
Java domain:

• Analysis, metrics
• Documentation
• Source code
• Architecture
• Requirements
• Version control and management….

CSc 586a/SENG 480a – Software Visualization

Integrating multiple information views

• We use an architecture to provide
placeholders for different views

• Which architectural view you
choose depends on the
stakeholder and the purpose of
the visualization

• Various views are accessible at
any level of granularity (method,
class, package etc)

• Hypertext and zooming features
support navigation

• Component design supports
adding new “views”

Source Code

Classes

Package

Javadoc

CSc 586a/SENG 480a – Software Visualization

SHriMP Demo –
Visualizing a Java Program

CSc 586a/SENG 480a – Software Visualization

Zoom in/out
(default action is configurable)

Interchangeable views
for package nodes

Interchangeable views
for class nodes

Interchangeable views
for operation nodes Semantic zoom

(e.g. following hyperlinks)

Switching between
interchangeable
views using the hotbox

Operations for switching views:

Nested Interchangeable
Views for

Java Visualization

CSc 586a/SENG 480a – Software Visualization

Empirical evaluations of SHriMP

Studying the effectiveness of software
exploration tools

• Pilot study, Spring 1996
• Second study, Spring 1997
• In progress, Summer 2001 and Summer 2002

CSc 586a/SENG 480a – Software Visualization

A SNiFF+ view of monopoly

CSc 586a/SENG 480a – Software Visualization

A Rigi view of monopoly

CSc 586a/SENG 480a – Software Visualization

A SHriMP view of monopoly

CSc 586a/SENG 480a – Software Visualization

Overview of the SHriMP-Eclipse plug-in architecture

CSc 586a/SENG 480a – Software Visualization

SHriMP plugged into the Eclipse platform

CSc 586a/SENG 480a – Software Visualization

Visualizing CVS information

CSc 586a/SENG 480a – Software Visualization

Integrating CVS and JDT information

CSc 586a/SENG 480a – Software Visualization

Current work in software visualization

• Integration with Eclipse
– IBM Websphere Studio Workbench www.eclipse.org
– Eclipse is open framework for building integrated development

environments

• SHriMP has been customized and retargeted for
visualizing “flow diagrams”
– Flow diagrams are used in an eBusiness project to model the

dynamic aspects of a system, such as the main activities and the
movement of information in a business process

– Flow diagrams can be hierarchically composed

• User studies -- long way to go….

CSc 586a/SENG 480a – Software Visualization

References

• Mental imagery in Program Design and Visual
Programming, by M. Petre and A. Blackwell,
http://www.cl.cam.ac.uk/~afb21/publications/IJHCS.html

• Price et al’s principled taxonomy of software visualization:
http://www.dgp.toronto.edu/people/RMB/papers/p20.pdf

• Cognitive questions in software visualization:
http://www.cl.cam.ac.uk/~afb21/publications/book-
chapter.html

• A Cognitive Framework by Storey et al:
http://www.cs.uvic.ca/~mstorey/papers/jss.pdf

