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• Mental imagery and software visualization
• Price et al’s taxonomy on software visualization
• Cognitive questions in software visualization
• A cognitive framework for software exploration
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When you are designing a (or understanding an 
existing) program, describe how you go about doing such 

a task?
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Mental imagery and software visualization

• Some quotes:
– "The first step in programming is imagining - I like to imagine the 

structures that are being maintained, the structures that represent 
the reality I want to code ... The code for the most part writes itself, 
but it's the data structures I maintain that are the key. They come 
first and I keep them in my mind throughout the entire process."
(Charles Simonyi, page 15) 

– "You have to simulate in your mind how the program's going to 
work, and you have to have a complete grasp of how the various 
pieces of the program work together." (Bill Gates, page 73) 

– "One of the earliest things is to visualize this structure in my head, 
a dynamic structure, so I can think about how things fit together 
and how they work ... and once I have the structure fairly strong 
and clear in my mind, I move it around and move around inside it, 
examining it and tweaking it ... " 

• 2 key elements:
– Structure of information
– How it works
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Price’s taxonomy on software visualization

• Scope
• Content
• Form 
• Method
• Interaction
• Effectiveness
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Scope

What is the range of programs that the SV system 
may task as input for visualization

• Two main concerns:
– Generality

• Hardware
• Operating system
• Language (Concurrency)
• Applications

– Scalability
• Program
• Data sets
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Content

What subset of information about the software is visualized by 
the SV system?

• Program
– Code (control flow)
– Data (data flow)

• Algorithm
– Instructions (control flow)
– Data (data flow)

• Fidelity and Completeness
– Invasiveness

• Data Gathering time
– Temporal control mappings
– Generation time
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Form

What are the characteristics of the output of the system (the 
visualization)?

• Medium
• Presentation style

– Graphical vocabulary
– Animation
– Sound

• Granularity
– Elision

• Multiple views
• Program synchronization
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Method

How is the visualization specified?
• Visualization specification style

– Intelligence
– Tailorability (customization language)

• Connection technique
– Code ignorance allowance
– System code coupling



CSc 586a/SENG 480a – Software Visualization

Interaction

How does the user of the SV system interact with and 
control it?

• Style
• Navigation

– Elision control
– Temporal control (direction, speed)

• Scripting facilities



CSc 586a/SENG 480a – Software Visualization

Effectiveness

How well does the system communicate information 
to the user?

• Purpose
• Appropriateness and clarity
• Empirical evaluation
• Production use
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Cognitive questions in software visualization

• Isn’t enough to mimic paper based tasks….
• “Even simple tools may improve software 

visualization – if they are the right ones”
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Cognitive questions in software visualization:

1.  What is visualization useful for?
– Presenting large data sets
– Demonstrating the virtual machine
– Changing the perspective
– Display-based reasoning
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Cognitive questions cont.

2. Does visualization mean pictures?
3. Is SV a way into `the expert mind' or a way out of our usual 

world view?
4. Why are experts often resistant to other people's visualisations?
5. Are visualizations trying to provide a representation that is more 

abstract, or more concrete?
6. What model are we representing?
7. What kind of tasks are we supporting? 
8. What do we know about perception, anyway?
9. What if there aren't enough dimensions?
10. Are representations good for everyone? What is the importance 

of individual skill and variation?
11. When are two representations better than one? …
14. Can I take a version to bed?
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Cognitive Design Elements to Support the Construction of Cognitive Design Elements to Support the Construction of 
a Mental Model during Software Visualizationa Mental Model during Software Visualization
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A Cognitive Framework of 
Design Elements

to guide tool design

Evaluate tool usefulness
and usability

Software Visualization research overview

What tools do programmers 
need to understand

programs?

How do programmers
understand programs?
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Terminology

• A mental model describes the maintainer’s mental 
representation of the program to be understood

• A cognitive model describes the processes and information 
structures used to form the mental model



CSc 586a/SENG 480a – Software Visualization

Cognitive Models of Program Comprehension

• Bottom-up comprehension
• Top-down comprehension
• Knowledge based understanding model
• Systematic and as-needed strategies
• Integrated meta-model of program comprehension
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Explaining the variation in models

– Maintainer characteristics
• application/program knowledge
• maintainer experience, creativity

– Program characteristics
• application/programming domain
• size, complexity, quality, documentation

– Task characteristics
• adaptive, perfective, corrective, reuse
• CASE tool, time constraints
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Program comprehension

– Source code is often the only source of information for 
understanding programs

– Reverse engineering describes the extraction of high-
level design information from source code

– Tilley et al. WPC’96
• Data gathering
• Knowledge organization
• Information exploration
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Software visualization tools

• algorithm animations 
• visual debuggers
• dynamic visualizations
• pretty printers
• exploring static software structures
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A Hierarchy of Cognitive Design Issues for Software Exploration

• Software information often has web-like structures
• Several hypertext browsers for source code
• Comprehension of a hyperdocument involves the 

“construction of a mental model that represents 
the objects and semantic relations in a text”
– Increase coherence (local and global)
– Reduce cognitive overhead
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A Cognitive Framework for Describing and Evaluating 
Software Exploration Tools
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Cognitive design elements to support bottom-up comprehension

Integrated
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Navigation
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… source code listings, graphs, slicers, multiply linked views graph composition, filtering

Top-down
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Cognitive design elements to support top-down comprehension
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… layered annotations, design patterns, overview, maps, structure charts, nested graphs
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Cognitive design elements to support the integrated meta-model
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… multiple views, 3D graphics, synchronized views, hooked line diagrams, hyperlinks
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Integrated
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Integrated
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Design elements to provide orientation cues

… highlighting, colour, fisheye-views, histories, overview windows, trails, hyperlinks
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Integrated

Bottom-up

Top-down
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program 
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Orientation 
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…visibility, feedback, natural mappings, graph layouts, 3D graphs, animation

Design elements to improve user-interface adjustment
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Challenges – software visualization tools

• Many software exploration tools have not been adopted in 
industry 

• Large software systems generate large graphs
• Insufficient support for switching between systematic 

browsing and opportunistic approaches, and for switching 
between bottom-up and top-down comprehension strategies

• Source code is often too far removed from                       
the graphical views 

• Multiple windows are confusing and difficult to manage
• Usefulness versus usability 
• Lots of tools, not obvious which problems they are trying to 

solve…
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SHriMP Views
• Simple Hierarchical Multi-Perspective Views
• Prototype interface for exploring software 

structures and browsing code
• Makes better use of limited screen area
• Integrates code browsing using hypertext 

(HTML objects) embedded in the graph
• Sophisticated animation and zooming (Jazz)
• Uses nested graphs (containment)
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Visualizing Java programs in SHriMP

• Possible sources (layers) of information for the 
Java domain:

• Analysis, metrics
• Documentation
• Source code
• Architecture
• Requirements
• Version control and management….
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Integrating multiple information views 

• We use an architecture to provide 
placeholders for different views

• Which architectural view you 
choose depends on the 
stakeholder and the purpose of 
the visualization

• Various views are accessible at 
any level of granularity (method, 
class, package etc)

• Hypertext and zooming features 
support navigation

• Component design supports 
adding new “views”

Source Code

Classes

Package

Javadoc
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SHriMP Demo –
Visualizing a Java Program
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Zoom in/out 
(default action is configurable)

Interchangeable views
for package nodes

Interchangeable views
for class nodes

Interchangeable views 
for operation nodes Semantic zoom 

(e.g. following hyperlinks)

Switching between 
interchangeable 
views using the hotbox

Operations for switching views:

Nested Interchangeable 
Views for 

Java Visualization
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Empirical evaluations of SHriMP

Studying the effectiveness of software 
exploration tools

• Pilot study, Spring 1996
• Second study, Spring 1997
• In progress, Summer 2001 and Summer 2002
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A SNiFF+ view of monopoly
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A Rigi view of monopoly
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A SHriMP view of monopoly
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Overview of the SHriMP-Eclipse plug-in architecture
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SHriMP plugged into the Eclipse platform
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Visualizing CVS information
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Integrating CVS and JDT information
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Current work in software visualization

• Integration with Eclipse
– IBM Websphere Studio Workbench www.eclipse.org
– Eclipse is open framework for building integrated development 

environments

• SHriMP has been customized and retargeted for 
visualizing “flow diagrams”
– Flow diagrams are used in an eBusiness project to model the 

dynamic aspects of a system, such as the main activities and the
movement of information in a business process  

– Flow diagrams can be hierarchically composed

• User studies  -- long way to go….
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