
Techniques for Reducing the Complexity of Object-Oriented Execution Traces *

* This research is sponsored by NSERC

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge
University of Ottawa

SITE, 800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

{ahamou, tcl}@site.uottawa.ca

Abstract

Understanding the behavior of object-oriented systems

is almost impossible by merely performing static analysis
of the source code. Dynamic analysis approaches are
better suited for this purpose. Run time information is
typically represented in the form of execution traces that
contain object interactions. However, traces can be very
large and hard to comprehend. Visualization tools need
to implement efficient filtering techniques to remove
unnecessary data and present only information that adds
value to the comprehension process. This paper
addresses this issue by presenting different filtering
techniques. These techniques are based on removing
utility methods and the use of object-oriented concepts
such as polymorphism and inheritance to hide low-level
implementation details. We also experiment with 12
execution traces of an object-oriented system called
WEKA and study the gain attained by these filtering
techniques

Keywords:

Reverse engineering, program comprehension, dynamic
analysis, object-oriented systems, and software
visualization.

1. Introduction
Understanding object-oriented systems is a challenging

task. Such systems are designed with the idea of
interactions between objects in mind and in order to fully
understand them we need to analyze these interactions
rather than merely performing static analysis of the source
code.

Information about the execution of an object-oriented
system is typically represented in the form of traces of
object interactions. Figure 1 shows an example of a very
simple trace of method calls where specific objects are
substituted by their class type – the term trace of class
interactions would be more appropriate in this case. An

alternative representation consists of labeling the edges
with the messages and nodes with object identifiers or
class names.

However, traces can be very large and hard to
understand. This is due to the fact that important
interactions are mixed with low-level implementation
details. To overcome the size explosion problem, many
visualization tools and techniques [1, 2, 4, 5] proceed by
detecting repeated sequences of object interactions as
distinct patterns of execution, which are then rendered in a
way that helps a software analyst notice them easily and
explore their content.

Screen.init()

Shape.Shape()

Shape.update()

Shape.draw()

Shape.refresh()

Figure 1. Trace of method calls. Objects are
substituted with their class type

In this paper we present a set of techniques that aim at
filtering the trace by removing unnecessary data with
respect to program comprehension. We call this process:
Trace Compression. For example, utility methods can be
removed safely if the goal of the maintenance activity is to
understand the overall design of the system, which in turn,
can be very useful for design recovery.

Our approach consists of three main steps. First, we
preprocess the trace by removing repeated interactions
due to loops. Then we detect different types of utilities
and remove them. Finally, we use object-oriented
concepts, namely, polymorphism and inheritance to hide
low-level implementation details.

We also present an experiment that we conducted on
12 execution traces of an object-oriented system called
WEKA to estimate the compression gain attained by these
techniques.

 The rest of this paper is organized as follows; the next
section discusses the size problem of the traces. In section
3, we present the compression techniques. In Section 4,
we describe the experiment and discuss the results.

2. The Size Problem
Although traces can be very large, a closer analysis of

their content shows that they contain many redundancies.
From the comprehension perspective, a software engineer
needs to understand a repeated sequence of calls only
once and reuse this knowledge whenever it occurs.
Therefore, a more accurate way of reasoning about the
size problem of a trace should be based on analyzing
distinct subtrees of calls instead of the number of lines.
We refer to each distinct subtree as a comprehension unit.

Figure 2a. shows a trace T (the class and method
names are represented with one letter to avoid cluttering)
that contains 9 calls but only 6 comprehension units as
shown in Figure 2b.

Figure 2. a. The trace T has 9 calls. b. an acyclic
graph that represents the compact form of T and

shows 6 comprehension units. Note that the crossing
line represents the order of calls

In order to reduce the trace overhead problem, we need
to find ways to group different subtrees as instances of the
same comprehension units. The compression techniques1
presented in this paper aim at accomplishing this.

There are different ways for measuring the
compression gain. In this paper, we use a compression
ratio and we define it as follows:

- Let T1 be the original trace such as T has CU1
comprehension units.

- Let T2 be the resulting trace after compressing T1 and
CU2 is the number of comprehension units of T2

- The compression ratio R is:

R = 1 – CU2/CU1

1 We are not talking about data compression in the conventional

sense (which results in unintelligible output), but rather,
compression of the visible output so that it can be more easily
understood.

This means that the higher the ratio the better the
compression we get.

3. Trace Compression Techniques
3.1 Trace preprocessing

The first step consists of preprocessing the trace by
removing contiguous repetitions of method calls or
sequences of method calls that are due to loops. However,
consider the trace of Figure 3, the two sequences rooted at
B are not identical but can be considered similar from the
comprehension point of view if the number of repetitions
of C of the first subtree is ignored.

Figure 3. The subtrees rooted at B can be considered
the same if number of repetitions is ignored

Therefore, we expand the preprocessing stage to
consider two contiguous subtrees as the same even though
the number of contiguous repetitions of their nodes is not
exactly identical. This will result in a better compression
ratio without a considerable loss of the trace content.
Other matching criteria such as the ones presented by
DePauw et al. [3] can also be used

3.2 Removing utilities:
The following are some criteria that can be used to rate

the extent to which a method is a utility.

Constructors and destructors:

Constructors and destructors are used simply to create
and delete objects, rather than to implement the core
system operations. Therefore, it may be best to ignore
them while trying to understand the behavior of a specific
scenario. However, if the maintenance task involves such
things as performance analysis or detecting memory leaks,
then preserving constructors and destructors would be
important.

Accessing methods:

Accessing methods are methods that return or modify
directly the values of member variables. Accessing
methods are used as a means to reinforce information
hiding. Although, software engineers tend to follow the
same naming convention for accessing methods, which
consists of prefixing them with “get/set” followed with the
name of the variable, it might be necessary to perform
data flow analysis of the class that defines them to
automatically detect them.

A

B

B

D

C

C

C

D

B

C D

E

F

A

b.

A

E

F

D

B

C

B

C

 D

a.

Utility classes:

It is a common practice for software developers to
create utility classes that can be used by other classes of
the system. If those classes are already known by the
software maintainer then she or he can remove them from
the trace. There may also be a need to automatically
detect such classes. For this purpose, the class
dependency graph can be of assistance. Utility classes
correspond usually to the graph nodes with a very large
number of incoming edges and a very small number of
outgoing edges [8].

3.3 Techniques based on OO concepts:
Polymorphic methods:

T. Lethbridge and R. Laganière define polymorphism
as “a property of object-oriented software by which an
abstract operation may be performed in different ways,
typically in different classes” [7]. The methods that
implement the operation need to have the same name
although they might have different signatures.
Polymorphism is typically implemented using method
overloading and inheritance.

Although the semantics of these methods should be the
same, the execution trees that derive from them can be
significantly different due to the way they are
implemented. However, it is unlikely that the software
maintainer will need to look inside the encapsulation to
see the implementation details if only an abstract view of
the design is needed, which leads to an opportunity to
remove these details (since they merely implement an
abstract operation). Removing such details can result in a
significant compression. This concept applies to interfaces
as well since an interface is considered as a pure abstract
class.

4. Experiment
4.1 Description and settings

We experimented with an object-oriented system
called WEKA version 3.0.6 [9]. WEKA is a tool that
implements several data mining and machine learning
algorithms including classification algorithms, association
rules generators and clustering techniques. In addition to
that, WEKA implements several filters that transform the
input datasets in different ways such as adding or
removing attributes, removing instances from the dataset
and so on. WEKA is implemented in Java and contains
around 160 classes and over 1680 methods. For more
information about WEKA, please refer to [9].

We used our own instrumentation tool that is based on
BIT [6] to add probes at each entry and exit point of the
system public methods. Constructors are considered as
regular methods. However, private methods are not
instrumented to reduce the amount of processing time.

Traces are generated as the system runs and saved in a
text file. Although WEKA comes with a GUI version,
every WEKA algorithm and feature can be executed from
the command line. We favored the command line
approach over the GUI to avoid encumbering the traces
with GUI components. A trace file contains the following
information: Thread name; full class name (e.g.
weak.core.Instance); method name and a nesting level that
maintains the order of calls

We noticed that all WEKA algorithms use only one
thread. Therefore, the thread name information is useless
for this experiment. However, in case of a multi-threaded
system, one needs to break the trace into different threads
and apply the compression techniques to each of them.

Table 1. The traces used in this experiment

Trace Algorithm or Filter Description
1 Cobweb Clustering algorithm
2 IBk Classification algorithm
3 OneR Classification algorithm
4 Decision Table Classification algorithm
5 J48 (C4.5) Classification algorithm
6 Apriori Association algorithm
7 Attribute Filter Filter
8 Add Attribute Filter
9 Merge Two Values Filter
10 Instance Filter
11 Swap Attribute Values Filter
12 Split Dataset Filter

The main objective of this experiment is to estimate
the gain attained by the compression techniques. We
chose to analyze 12 execution traces of WEKA. Table 1.
describes the algorithms and filters that correspond to
each trace.

4.2 Experiment Design
The compression techniques presented in this paper

can be combined in different ways. Each combination will
eventually result in a different compression ratio. We
narrow down all the possible results to the following:

- Initial information about the trace such as the number
of lines, the number of comprehension units, etc.

- The gain attained after preprocessing the trace.

- The gain attained after removing constructors from the
preprocessed trace

- The gain attained after removing accessing methods
from the preprocessed trace. For this purpose, we
noticed by inspecting the source code that WEKA
follows the “set/get” naming style.

- The gain attained after removing utility classes from
the preprocessed trace. For this purpose, we analyzed
WEKA documentation to discover eventual utility
classes. We found that WEKA contains a class called

Utils where many utility methods such as
doubleToString, eq, etc are defined

- The gain attained after removing the details of
polymorphic methods from the preprocessed trace. In
this paper, we focus on overriding only. Overloaded
methods that are defined in the same class are
considered identical since we do not take into account
the arguments list. However, methods that are
overloaded in different classes are not considered in
this paper for simplicity reasons.

- Finally, we also combine these techniques together to
show the gain attained after removing all utilities
(constructors, accessing methods…) and removing
details of polymorphic methods from the resulting
trace. However, this is not the only approach to
combining. Future research can focus on other
possibilities.

Table 2. summarizes the variables used to describe the
results in a more precise way:

4.3 Results and discussion

Table 3 shows general information about the traces.
Although some traces contain over 100 000 lines (e.g.
Trace 6), we notice that they do not contain a lot of
distinct methods (e.g. only 65 methods in trace 6). The
number of comprehension units is also low. This means
that there are many repetitions in the trace that are either
due to loops or the presence of the same sequences of
calls all over the trace. The preprocessing stage reduces
considerably the size of most of the traces although
Traces 4, 5 and 6 are still considerably large. We also
notice that Trace 5 has a very large number of
comprehension units, which might imply that it is the most
complex trace. It is also interesting to see that ignoring
repetitions when removing contiguous repetitions of
sequences of calls results in a higher reduction of the
number of comprehension units for large traces compared
to small traces. For example, Trace 10 and 12 still keep
the same number of comprehension units although the
number of lines is considerably smaller after the
preprocessing stage.

Table 4. shows the results of removing utilities and the
call hierarchies that are derived from polymorphic calls.
We notice that removing the constructors for large traces
(Traces 1 to 6) results in a higher reduction compared to
removing accessing methods. This is due to the fact that
most of these methods were already removed during the
preprocessing stage. Another reason is that, these traces
use a large number of objects. On the other hand, small
traces do not use a lot of objects and removing
constructors might not be that important, which explains
why removing accessing methods still gives a slightly

better compression ratio. Removing the methods of the
class Utils seems to give almost the same result for all the
traces.

Table 2. Variables used to represent the results

Variable Description
Ninit The number of calls of the initial trace
CUinit The number of comprehension units of the

initial trace
Classes The number of distinct classes of the system

that the initial trace contains
Methods The number of distinct methods of the system

that the initial trace contains
Nprep The number of calls of after preprocessing the

initial trace. Let us call the resulting trace Tprep
CUprep The number of comprehension units of Tprep
Rprep Compression ratio = 1 - CUprep / CUinit
Nconst The size of the resulting trace after removing

constructors from Tprep (preprocessed trace)
CUconst The number of its comprehension units
Rconst = 1 – CUconst / CUprep
Naccess The size of the resulting trace after removing

accessing methods from Tprep
CUaccess The number of its comprehension units
Racces = 1 – CUaccess / CUprep
Nutil The size of the resulting trace after removing

the methods of the class Utils from Tprep
CUutil The number of its comprehension units
Rutil = 1 – CUutil / CUprep
Npoly The size of the resulting trace after removing

the details of polymorphic methods
CUpoly The number of its comprehension units
Rpoly = 1 – CUpoly / CUprep
Poly_Meth Number of polymorphic methods
Ncum-utils The size of the resulting trace (let us call it

Tutil) after removing all utilities (constructors,
accessing methods…).

CUcum-utils The number of its comprehension units
Rcum-utils = 1 – CUcum-utils / CUprep
Ncum-poly The size of the resulting trace after removing

polymorphic calls details from Tutil
CUcum-poly The number of its comprehension units
Rcum-poly = 1 – CUcum-poly / CUprep

On the other hand, removing the details of
polymorphic methods reduces considerably the size of
Trace 1 but reduces its comprehension units by only
45.77% as shown in Table 4. The analysis of Trace 1
showed that the method buildClusterer() is the main cause
behind this high reduction. WEKA implements two
clustering algorithms and both of them consist of classes
that override the method buildClusterer(). Building
clusters might involve going through the dataset several
times to find relationships between them. This usually
generates very large hierarchies of calls, which explains
the significant reduction when these details are hidden.

Table3: General information about the trace and the results of preprocessing them

Trace Classes Methods Ninit CUinit Nprep CUprep Rprep

1 10 63 193121 108 6015 79 27%

2 12 92 37882 185 3719 113 39%

3 10 89 27554 223 4557 124 44%

4 19 150 154185 305 29576 224 27%

5 23 152 95118 469 25933 306 35%

6 9 65 156792 317 19810 127 60%

7 11 76 1902 83 281 83 0%

8 10 71 2534 80 351 80 0%

9 10 73 2245 84 752 83 1%

10 10 68 1248 73 247 73 0%

11 10 73 2256 83 374 82 1%

12 10 71 1398 79 289 79 0%

Similarly, Traces 3 and 5 represent two classification

algorithms represented by two classes that override the
buildClassifier() method. This method also generates
large hierarchies of method calls. The results presented
here go along with the idea of abstracting out the trace to

extract high-level interactions. For example, a software
engineer might only want to know that, at this point of
time, a classifier or a clusterer is being built without
having to go into the details.

Table 4: Removing utilities and details of polymorphic methods from the preprocessed traces

T Nconst CUconst Rconst Naccess CUaccess Raccess Nutil CUutil Rutil Npoly CUpoly Rpoly Poly.
Meth

1 5305 67 15.19% 6009 75 5.06% 6008 73 7.59% 289 46 41.77% 4

2 3329 91 19.47% 3409 99 12.39% 3599 104 7.96% 1973 95 15.93% 2

3 3898 106 14.52% 4260 115 7.26% 4449 116 6.45% 1253 80 35.48% 3

4 27039 183 18.30% 28068 186 16.96% 27759 213 4.91% 20916 158 29.46% 5

5 21408 275 10.13% 25124 290 5.23% 24297 286 6.54% 1633 99 67.65% 5

6 18880 113 11.02% 19610 116 8.66% 19771 119 6.30% 19810 127 0.00% 0

7 228 70 15.66% 252 65 21.69% 267 79 4.82% 227 68 18.07% 3

8 299 68 15.00% 329 68 15.00% 332 75 6.25% 285 65 18.75% 3

9 674 70 15.66% 718 68 18.07% 721 78 6.02% 626 66 20.48% 3

10 208 61 16.44% 219 52 28.77% 232 69 5.48% 192 61 16.44% 3

11 316 69 15.85% 350 68 17.07% 355 77 6.10% 274 66 19.51% 3

12 242 67 15.19% 262 63 20.25% 271 74 6.33% 245 72 8.86% 3

Trace 4 represents an algorithm that creates a decision

table and generates classifiers out of it. Although some
polymorphic methods were found, the number of lines is
still very large; this might be due to the complexity of this
algorithm.

It is interesting to notice that the number of overridden
methods that appear in the traces as indicated by the
variable Poly_Meth is low. Trace 6, for example, does
not contain any polymorphic method. In fact, Trace 6
corresponds to the only association algorithm that is
implemented in WEKA, called Apriori. The class Apriori

is created to build association rules which are an
important part of this algorithm. However, this class does
not have a superclass, which explains why polymorphism
was not used here. This result is very interesting because
it shows the limitations of using polymorphism (based on
overriding) to hide details and requires investigating other
means for hiding these details. Perhaps, a more general
definition of utility methods can lead the way.

Finally, Table 5 shows the cumulative results of
removing utility methods and removing polymorphic
methods from the resulting trace. The table shows higher

compression ratios in terms of the number of
comprehension units and very high reduction of the
number of lines. The compression ratio of all the traces
has increased expect for Trace 6 because it does not have
polymorphic methods. Different combination of these

techniques will lead to different compression ratios.
However, future work needs to involve the users in order
to discover which combinations suit them the best.

Table 5: Cumulative results

T Ncum-utils CUcum-utils Rcum-utils Ncum-poly CUcum-poly Rcum-poly
1 5296 59 25.32% 202 30 62.03%
2 2925 71 37.17% 1320 61 46.02%
3 3514 92 25.81% 734 52 58.06%
4 23770 138 38.39% 17048 96 57.14%
5 19047 247 19.28% 1006 68 77.78%
6 18645 96 24.41% 18645 96 24.41%
7 190 48 42.17% 173 44 46.99%
8 264 53 33.75% 227 45 43.75%
9 615 52 37.35% 540 44 46.99%
10 173 38 47.95% 132 32 56.16%
11 279 52 36.59% 216 44 46.34%
12 205 48 39.24% 180 44 44.30%

Conclusions and future directions
Dynamic analysis is very useful for understanding the

behavior of object-oriented systems. The analysis of
traces of object interactions can bridge the gap between
low level implementation details and high level domain
concepts, if effective filtering techniques exist.
Interactions between objects are typically depicted in
traces of method calls. In this paper, we presented many
techniques that can help hide implementation details and
reveal only important interactions. The experiment
showed several results that can be used by tool builders to
improve their tools. First, we showed that the number of
calls in the trace is not the major factor of complexity.
Traces can be very large but have few comprehension
units. Another interesting result is that traces always need
to be preprocessed. Although, using these compression
techniques separately might result in a good compression
ratio, they work best when combined.

Future work should focus on several areas such as
considering a broader definition of utility methods. We
also need to experiment with many other software systems
to understand how to combine the compression techniques
in order to extract the most important interactions that
many software designers agree about.

References
[1] W. De Pauw, D. Kimelman, and J. Vlissides, “Modeling

Object-Oriented Program Execution”, In Proc. 8th
European Conference on Object-Oriented Programming,
Bologna, Italy, 1994, pp. 163-182.,

[2] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides,
“Visualizing the Behavior of Object-Oriented Systems”, In
Proc. 9th Conference on Object-Oriented Programming
Systems, Languages, an Applications, Portland, Oregon,
USA, Oct. 1994, pp. 326-337

[3] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented Visualization.", In
Proc. of the 4th USENIX Conference on Object-Oriented
Technologies and Systems, COOTS, 1998, pp. 219-234

[4] D. Jerding, S. Rugaber, "Using Visualization for
Architecture Localization and Extraction." In Proc. 4’th
Working Conference on Reverse Engineering, Amsterdam,
Netherlands, Oct. 1997

[5] D. Jerding, J. Stasko, T. Ball, “Visualizing Interactions in
Program Executions”, In Proc. of the International
Conference on Software Engineering (ICSE), 1997, pp.
360-370

[6] H. B. Lee, B. G. Zorn, “BIT: A tool for Instrumenting Java
Bytecodes”, USENIX Symposium on Internet Technologies
and Systems, Monterey, California, 1997, pp. 73-82

[7] T. C. Lethbridge, R. Laganière, Object-Oriented Software
Engineering: Practical Software Development using UML
and Java, McGraw Hill, 2001

[8] H. A. Müller, M. A. Orgun, S. Tilley, J. Uhl, “A Reverse
Engineering Approach To Subsystem Structure
Identification”, Journal of Software Maintenance:
Research and Practice, Vol 5, No 4, December 1993, pp.
181-204

[9] I. H. Witten, E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 1999

