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Abstract 
 
Understanding the behavior of object-oriented systems 

is almost impossible by merely performing static analysis 
of the source code. Dynamic analysis approaches are 
better suited for this purpose. Run time information is 
typically represented in the form of execution traces that 
contain object interactions. However, traces can be very 
large and hard to comprehend. Visualization tools need 
to implement efficient filtering techniques to remove 
unnecessary data and present only information that adds 
value to the comprehension process. This paper 
addresses this issue by presenting different filtering 
techniques. These techniques are based on removing 
utility methods and the use of object-oriented concepts 
such as polymorphism and inheritance to hide low-level 
implementation details. We also experiment with 12 
execution traces of an object-oriented system called 
WEKA and study the gain attained by these filtering 
techniques  
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1. Introduction 
Understanding object-oriented systems is a challenging 

task. Such systems are designed with the idea of 
interactions between objects in mind and in order to fully 
understand them we need to analyze these interactions 
rather than merely performing static analysis of the source 
code.  

Information about the execution of an object-oriented 
system is typically represented in the form of traces of 
object interactions. Figure 1 shows an example of a very 
simple trace of method calls where specific objects are 
substituted by their class type – the term trace of class 
interactions would be more appropriate in this case. An 

alternative representation consists of labeling the edges 
with the messages and nodes with object identifiers or 
class names. 

However, traces can be very large and hard to 
understand. This is due to the fact that important 
interactions are mixed with low-level implementation 
details.  To overcome the size explosion problem, many 
visualization tools and techniques [1, 2, 4, 5] proceed by 
detecting repeated sequences of object interactions as 
distinct patterns of execution, which are then rendered in a 
way that helps a software analyst notice them easily and 
explore their content.   
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Figure 1. Trace of method calls. Objects are 
substituted with their class type 

In this paper we present a set of techniques that aim at 
filtering the trace by removing unnecessary data with 
respect to program comprehension. We call this process: 
Trace Compression. For example, utility methods can be 
removed safely if the goal of the maintenance activity is to 
understand the overall design of the system, which in turn, 
can be very useful for design recovery. 

Our approach consists of three main steps. First, we 
preprocess the trace by removing repeated interactions 
due to loops. Then we detect different types of utilities 
and remove them. Finally, we use object-oriented 
concepts, namely, polymorphism and inheritance to hide 
low-level implementation details.  

We also present an experiment that we conducted on 
12 execution traces of an object-oriented system called 
WEKA to estimate the compression gain attained by these 
techniques. 



  The rest of this paper is organized as follows; the next 
section discusses the size problem of the traces. In section 
3, we present the compression techniques. In Section 4, 
we describe the experiment and discuss the results.  

2. The Size Problem  
Although traces can be very large, a closer analysis of 

their content shows that they contain many redundancies. 
From the comprehension perspective, a software engineer 
needs to understand a repeated sequence of calls only 
once and reuse this knowledge whenever it occurs. 
Therefore, a more accurate way of reasoning about the 
size problem of a trace should be based on analyzing 
distinct subtrees of calls instead of the number of lines. 
We refer to each distinct subtree as a comprehension unit.  

Figure 2a. shows a trace T (the class and method 
names are represented with one letter to avoid cluttering) 
that contains 9 calls but only 6 comprehension units as 
shown in Figure 2b.  

 
 
 
 
 
 
 
 
 
 

Figure 2.  a. The trace T has 9 calls. b. an acyclic 
graph that represents the compact form of T and 

shows 6 comprehension units. Note that the crossing 
line represents the order of calls 

In order to reduce the trace overhead problem, we need 
to find ways to group different subtrees as instances of the 
same comprehension units. The compression techniques1 
presented in this paper aim at accomplishing this.  

There are different ways for measuring the 
compression gain. In this paper, we use a compression 
ratio and we define it as follows: 

- Let T1 be the original trace such as T has CU1 
comprehension units. 

- Let T2 be the resulting trace after compressing T1 and 
CU2 is the number of comprehension units of T2 

- The compression ratio R is: 

R = 1 – CU2/CU1 

                                                                 
1 We are not talking about data compression in the conventional 

sense (which results in unintelligible output), but rather, 
compression of the visible output so that it can be more easily 
understood. 

This means that the higher the ratio the better the 
compression we get. 

3. Trace Compression Techniques 
3.1 Trace preprocessing 

The first step consists of preprocessing the trace by 
removing contiguous repetitions of method calls or 
sequences of method calls that are due to loops. However, 
consider the trace of Figure 3, the two sequences rooted at 
B are not identical but can be considered similar from the 
comprehension point of view if the number of repetitions 
of C of the first subtree is ignored.  

 
 
 
 
 
 

Figure 3. The subtrees rooted at B can be considered 
the same if number of repetitions is ignored 

Therefore, we expand the preprocessing stage to 
consider two contiguous subtrees as the same even though 
the number of contiguous repetitions of their nodes is not 
exactly identical. This will result in a better compression 
ratio without a considerable loss of the trace content. 
Other matching criteria such as the ones presented by 
DePauw et al. [3] can also be used 

3.2 Removing utilities: 
The following are some criteria that can be used to rate 

the extent to which a method is a utility. 

Constructors and destructors:  

Constructors and destructors are used simply to create 
and delete objects, rather than to implement the core 
system operations. Therefore, it may be best to ignore 
them while trying to understand the behavior of a specific 
scenario. However, if the maintenance task involves such 
things as performance analysis or detecting memory leaks, 
then preserving constructors and destructors would be 
important.   

Accessing methods:  

Accessing methods are methods that return or modify 
directly the values of member variables. Accessing 
methods are used as a means to reinforce information 
hiding. Although, software engineers tend to follow the 
same naming convention for accessing methods, which 
consists of prefixing them with “get/set” followed with the 
name of the variable, it might be necessary to perform 
data flow analysis of the class that defines them to 
automatically detect them.  
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Utility classes: 

It is a common practice for software developers to 
create utility classes that can be used by other classes of 
the system. If those classes are already known by the 
software maintainer then she or he can remove them from 
the trace. There may also be a need to automatically 
detect such classes. For this purpose, the class 
dependency graph can be of assistance. Utility classes 
correspond usually to the graph nodes with a very large 
number of incoming edges and a very small number of 
outgoing edges [8].  

3.3 Techniques based on OO concepts: 
Polymorphic methods: 

T. Lethbridge and R. Laganière define polymorphism 
as “a property of object-oriented software by which an 
abstract operation may be performed in different ways, 
typically in different classes” [7]. The methods that 
implement the operation need to have the same name 
although they might have different signatures. 
Polymorphism is typically implemented using method 
overloading and inheritance. 

Although the semantics of these methods should be the 
same, the execution trees that derive from them can be 
significantly different due to the way they are 
implemented. However, it is unlikely that the software 
maintainer will need to look inside the encapsulation to 
see the implementation details if only an abstract view of 
the design is needed, which leads to an opportunity to 
remove these details (since they merely implement an 
abstract operation). Removing such details can result in a 
significant compression. This concept applies to interfaces 
as well since an interface is considered as a pure abstract 
class.  

4. Experiment 
4.1 Description and settings 

We experimented with an object-oriented system 
called WEKA version 3.0.6 [9]. WEKA is a tool that 
implements several data mining and machine learning 
algorithms including classification algorithms, association 
rules generators and clustering techniques. In addition to 
that, WEKA implements several filters that transform the 
input datasets in different ways such as adding or 
removing attributes, removing instances from the dataset 
and so on. WEKA is implemented in Java and contains 
around 160 classes and over 1680 methods. For more 
information about WEKA, please refer to [9].  

We used our own instrumentation tool that is based on 
BIT [6] to add probes at each entry and exit point of the 
system public methods. Constructors are considered as 
regular methods. However, private methods are not 
instrumented to reduce the amount of processing time.  

Traces are generated as the system runs and saved in a 
text file. Although WEKA comes with a GUI version, 
every WEKA algorithm and feature can be executed from 
the command line. We favored the command line 
approach over the GUI to avoid encumbering the traces 
with GUI components. A trace file contains the following 
information: Thread name; full class name (e.g. 
weak.core.Instance); method name and a nesting level that 
maintains the order of calls 

We noticed that all WEKA algorithms use only one 
thread. Therefore, the thread name information is useless 
for this experiment. However, in case of a multi-threaded 
system, one needs to break the trace into different threads 
and apply the compression techniques to each of them.  

Table 1. The traces used in this experiment 

Trace Algorithm or Filter Description 
1 Cobweb Clustering algorithm 
2 IBk Classification algorithm 
3 OneR Classification algorithm 
4 Decision Table Classification algorithm 
5 J48 (C4.5) Classification algorithm 
6 Apriori Association algorithm 
7 Attribute Filter Filter 
8 Add Attribute Filter 
9 Merge Two Values Filter 
10 Instance Filter 
11 Swap Attribute Values Filter 
12 Split Dataset Filter 

The main objective of this experiment is to estimate 
the gain attained by the compression techniques. We 
chose to analyze 12 execution traces of WEKA. Table 1. 
describes the algorithms and filters that correspond to 
each trace.  

4.2 Experiment Design 
The compression techniques presented in this paper 

can be combined in different ways. Each combination will 
eventually result in a different compression ratio. We 
narrow down all the possible results to the following:  

- Initial information about the trace such as the number 
of lines, the number of comprehension units, etc. 

- The gain attained after preprocessing the trace. 

- The gain attained after removing constructors from the 
preprocessed trace 

- The gain attained after removing accessing methods 
from the preprocessed trace. For this purpose, we 
noticed by inspecting the source code that WEKA 
follows the “set/get” naming style. 

- The gain attained after removing utility classes from 
the preprocessed trace. For this purpose, we analyzed 
WEKA documentation to discover eventual utility 
classes. We found that WEKA contains a class called 



Utils where many utility methods such as 
doubleToString, eq, etc are defined 

- The gain attained after removing the details of 
polymorphic methods from the preprocessed trace. In 
this paper, we focus on overriding only. Overloaded 
methods that are defined in the same class are 
considered identical since we do not take into account 
the arguments list. However, methods that are 
overloaded in different classes are not considered in 
this paper for simplicity reasons. 

- Finally, we also combine these techniques together to 
show the gain attained after removing all utilities 
(constructors, accessing methods…) and removing 
details of polymorphic methods from the resulting 
trace.  However, this is not the only approach to 
combining. Future research can focus on other 
possibilities. 

Table 2. summarizes the variables used to describe the 
results in a more precise way: 

4.3 Results and discussion 

Table 3 shows general information about the traces. 
Although some traces contain over 100 000 lines (e.g. 
Trace 6), we notice that they do not contain a lot of 
distinct methods (e.g. only 65 methods in trace 6). The 
number of comprehension units is also low. This means 
that there are many repetitions in the trace that are either 
due to loops or the presence of the same sequences of 
calls all over the trace. The preprocessing stage reduces 
considerably the size of most of the traces although 
Traces 4, 5 and 6 are still considerably large. We also 
notice that Trace 5 has a very large number of 
comprehension units, which might imply that it is the most 
complex trace. It is also interesting to see that ignoring 
repetitions when removing contiguous repetitions of 
sequences of calls results in a higher reduction of the 
number of comprehension units for large traces compared 
to small traces. For example, Trace 10 and 12 still keep 
the same number of comprehension units although the 
number of lines is considerably smaller after the 
preprocessing stage.  

Table 4. shows the results of removing utilities and the 
call hierarchies that are derived from polymorphic calls. 
We notice that removing the constructors for large traces 
(Traces 1 to 6) results in a higher reduction compared to 
removing accessing methods. This is due to the fact that 
most of these methods were already removed during the 
preprocessing stage. Another reason is that, these traces 
use a large number of objects.  On the other hand, small 
traces do not use a lot of objects and removing 
constructors might not be that important, which explains 
why removing accessing methods still gives a slightly 

better compression ratio. Removing the methods of the 
class Utils seems to give almost the same result for all the 
traces. 

Table 2. Variables used to represent the results 

Variable Description 
Ninit The number of calls of the initial trace 
CUinit The number of comprehension units of the 

initial trace 
Classes The number of distinct classes of the system 

that the initial trace contains 
Methods The number of distinct methods of the system 

that the initial trace contains 
Nprep The number of calls of after preprocessing the 

initial trace. Let us call the resulting trace Tprep 
CUprep The number of comprehension units of Tprep 
Rprep Compression ratio =  1 - CUprep / CUinit 
Nconst The size of the resulting trace after removing 

constructors from Tprep (preprocessed trace) 
CUconst The number of its comprehension units 
Rconst = 1 – CUconst / CUprep 
Naccess The size of the resulting trace after removing 

accessing methods from Tprep  
CUaccess The number of its comprehension units 
Racces = 1 – CUaccess / CUprep 
Nutil The size of the resulting trace after removing 

the methods of the class Utils from Tprep 
CUutil The number of its comprehension units 
Rutil = 1 – CUutil / CUprep 
Npoly The size of the resulting trace after removing 

the details of polymorphic methods 
CUpoly The number of its comprehension units 
Rpoly = 1 – CUpoly / CUprep 
Poly_Meth Number of polymorphic methods 
Ncum-utils   The size of the resulting trace (let us call it 

Tutil) after removing all utilities (constructors, 
accessing methods…).  

CUcum-utils The number of its comprehension units 
Rcum-utils = 1 – CUcum-utils / CUprep 
Ncum-poly The size of the resulting trace after removing 

polymorphic calls details from Tutil 
CUcum-poly The number of its comprehension units 
Rcum-poly = 1 – CUcum-poly / CUprep 

On the other hand, removing the details of 
polymorphic methods reduces considerably the size of 
Trace 1 but reduces its comprehension units by only 
45.77% as shown in Table 4. The analysis of Trace 1 
showed that the method buildClusterer() is the main cause 
behind this high reduction. WEKA implements two 
clustering algorithms and both of them consist of classes 
that override the method buildClusterer(). Building 
clusters might involve going through the dataset several 
times to find relationships between them. This usually 
generates very large hierarchies of calls, which explains 
the significant reduction when these details are hidden. 



Table3: General information about the trace and the results of preprocessing them 

Trace Classes Methods Ninit CUinit Nprep CUprep Rprep 

1 10 63 193121 108 6015 79 27% 

2 12 92 37882 185 3719 113 39% 

3 10 89 27554 223 4557 124 44% 

4 19 150 154185 305 29576 224 27% 

5 23 152 95118 469 25933 306 35% 

6 9 65 156792 317 19810 127 60% 

7 11 76 1902 83 281 83 0% 

8 10 71 2534 80 351 80 0% 

9 10 73 2245 84 752 83 1% 

10 10 68 1248 73 247 73 0% 

11 10 73 2256 83 374 82 1% 

12 10 71 1398 79 289 79 0% 

 
Similarly, Traces 3 and 5 represent two classification 

algorithms represented by two classes that override the 
buildClassifier() method. This method also generates 
large hierarchies of method calls. The results presented 
here go along with the idea of abstracting out the trace to 

extract high-level interactions. For example, a software 
engineer might only want to know that, at this point of 
time, a classifier or a clusterer is being built without 
having to go into the details.  

Table 4: Removing utilities and details of polymorphic methods from the preprocessed traces 

T Nconst CUconst Rconst Naccess CUaccess Raccess Nutil CUutil Rutil Npoly CUpoly Rpoly Poly. 
Meth 

1 5305 67 15.19% 6009 75 5.06% 6008 73 7.59% 289 46 41.77% 4 

2 3329 91 19.47% 3409 99 12.39% 3599 104 7.96% 1973 95 15.93% 2 

3 3898 106 14.52% 4260 115 7.26% 4449 116 6.45% 1253 80 35.48% 3 

4 27039 183 18.30% 28068 186 16.96% 27759 213 4.91% 20916 158 29.46% 5 

5 21408 275 10.13% 25124 290 5.23% 24297 286 6.54% 1633 99 67.65% 5 

6 18880 113 11.02% 19610 116 8.66% 19771 119 6.30% 19810 127 0.00% 0 

7 228 70 15.66% 252 65 21.69% 267 79 4.82% 227 68 18.07% 3 

8 299 68 15.00% 329 68 15.00% 332 75 6.25% 285 65 18.75% 3 

9 674 70 15.66% 718 68 18.07% 721 78 6.02% 626 66 20.48% 3 

10 208 61 16.44% 219 52 28.77% 232 69 5.48% 192 61 16.44% 3 

11 316 69 15.85% 350 68 17.07% 355 77 6.10% 274 66 19.51% 3 

12 242 67 15.19% 262 63 20.25% 271 74 6.33% 245 72 8.86% 3 

 
Trace 4 represents an algorithm that creates a decision 

table and generates classifiers out of it. Although some 
polymorphic methods were found, the number of lines is 
still very large; this might be due to the complexity of this 
algorithm.  

It is interesting to notice that the number of overridden 
methods that appear in the traces as indicated by the 
variable Poly_Meth is low.  Trace 6, for example, does 
not contain any polymorphic method. In fact, Trace 6 
corresponds to the only association algorithm that is 
implemented in WEKA, called Apriori. The class Apriori 

is created to build association rules which are an 
important part of this algorithm. However, this class does 
not have a superclass, which explains why polymorphism 
was not used here. This result is very interesting because 
it shows the limitations of using polymorphism (based on 
overriding) to hide details and requires investigating other 
means for hiding these details. Perhaps, a more general 
definition of utility methods can lead the way.  

Finally, Table 5 shows the cumulative results of 
removing utility methods and removing polymorphic 
methods from the resulting trace.  The table shows higher 



compression ratios in terms of the number of 
comprehension units and very high reduction of the 
number of lines. The compression ratio of all the traces 
has increased expect for Trace 6 because it does not have 
polymorphic methods. Different combination of these 

techniques will lead to different compression ratios. 
However, future work needs to involve the users in order 
to discover which combinations suit them the best.  

 

Table 5: Cumulative results 

T Ncum-utils CUcum-utils Rcum-utils Ncum-poly CUcum-poly Rcum-poly 
1 5296 59 25.32% 202 30 62.03% 
2 2925 71 37.17% 1320 61 46.02% 
3 3514 92 25.81% 734 52 58.06% 
4 23770 138 38.39% 17048 96 57.14% 
5 19047 247 19.28% 1006 68 77.78% 
6 18645 96 24.41% 18645 96 24.41% 
7 190 48 42.17% 173 44 46.99% 
8 264 53 33.75% 227 45 43.75% 
9 615 52 37.35% 540 44 46.99% 
10 173 38 47.95% 132 32 56.16% 
11 279 52 36.59% 216 44 46.34% 
12 205 48 39.24% 180 44 44.30% 

 

Conclusions and future directions 
Dynamic analysis is very useful for understanding the 

behavior of object-oriented systems. The analysis of 
traces of object interactions can bridge the gap between 
low level implementation details and high level domain 
concepts, if effective filtering techniques exist. 
Interactions between objects are typically depicted in 
traces of method calls.  In this paper, we presented many 
techniques that can help hide implementation details and 
reveal only important interactions. The experiment 
showed several results that can be used by tool builders to 
improve their tools. First, we showed that the number of 
calls in the trace is not the major factor of complexity. 
Traces can be very large but have few comprehension 
units. Another interesting result is that traces always need 
to be preprocessed. Although, using these compression 
techniques separately might result in a good compression 
ratio, they work best when combined. 

Future work should focus on several areas such as 
considering a broader definition of utility methods. We 
also need to experiment with many other software systems 
to understand how to combine the compression techniques 
in order to extract the most important interactions that 
many software designers agree about.  
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