
Self-Organizing Maps Applied in Visualising Large Software Collections

James Brittle and Cornelia Boldyreff
Department Of Computer Science

University Of Durham
{j.g.brittle,cornelia.boldyreff}@durham.ac.uk

Abstract

The self-organizing map’s unsupervised clustering
method can be used as a data visualisation technique.
Within this paper different techniques to visualise self-
organizing maps (SOM) and their effectiveness are inves-
tigated in relation to the organisation of a large software
collection and its visualisation.

GENISOM, an offspring component of the GENESIS
software engineering platform, incorporates the genera-
tion, maintenance and viewing of Self-Organizing Maps.

The results from our studies indicate that a hybrid of 2D
and 3D visualisations is favoured by users. Extensive us-
ability tests also show that the majority of users found that
the additional information a SOM provides, aids browsing
and searching of a software collection. Further work is
addressing the problems found in the application of SOM
within a software engineering environment.

Key Words: Self Organizing Maps, GENISOM, software
visualisation

1 Introduction

Interactive exploration of a large software collection or
large software systems, where the user looks at individual
artefacts one at a time would be greatly aided by ordering
them according to their contents.

There exist many possibilities to achieve this organisa-
tion, e.g. as a graph or a hierarchical structure. A common
organisation is one in which the artefacts are represented
by points on a 2D plane and the geometric relations be-
tween them relate to their similarity. Such representations
are often called document maps. These organised collec-
tions of data facilitate a new dimension in information re-
trieval namely the possibility to locate pieces of relevant or
similar information that the user was not explicitly looking
for.

Document maps can be constructed through a number of
methods including the data visualisation technique, the Self
Organizing Map (SOM), invented by Prof. Teuvo Kohonen
in the early 1980s [7]. SOMs are an unsupervised, cluster-
ing algorithm, which use neural networks. They have been
demonstrated to aid programmers in the process of reverse
engineering by discovering common features within legacy
code [2] and to assist in object recovery[1], although visu-
alisation of the associated maps is not explicitly considered
in reports of this research.

A prominent problem within the field of Software Engi-
neering concerns reuse. Reusable assets are in abundance,
over the web and in libraries but it is extremely difficult
to locate reusable software artefacts that are relevant to a
particular application. The necessary organisation is often
lacking and difficult to achieve given the dynamic nature of
such software collections. This problem can also be found
where a large evolving software system consists of an ever
growing number of components and the managment and
hence the comprehension of the associated software arte-
facts tends to be increasingly difficult.

Having suitable visualisations of such software collec-
tions can mitigate the problem identified above. The appli-
cation of information visualisation builds upon the strenghts
of humans and computers as

“by properly taking advantage of peoples’ abili-
ties to deal with visual presentations, we may rev-
olutionise the way we understand large amounts
of data” [5]

Within this paper the use of Self Organising Maps as
a means of visually presenting large software collections
is demonstrated. Section 2 describes the implementation
of GENISOM. Section 3 details the different visualisations
the software can produce. Section 4 presents the results of
the evaluation of the tool and subsequent adaption of maps.
Section 5 identifies further work.



2 GENISOM

GENISOM is a client/server application designed to
manage and enable viewing of SOMs. Figure 1 illustrates a
simplified architecture diagram for the GENISOM system.

TCP/IP

SERVER SIDE CLIENT SIDE

MySQL SERVER

SOM DB

WEB SERVER

GENISOM CLIENT

User Interface

SOM Trainer

SOM Viewer

WORKSTATION

GENISOM ADMINISTRATOR

SOM Viewer

User Interface

WEB BROWSER

WORKSTATION

GENISOM CLIENT

Figure 1. GENISOM architecture

The GENISOM Administrator is used to manage SOMs;
it enables their creation and maintenance. The generated
SOMs are then stored within a MySQL database, from
which the GENISOM Client can then retrieve the data and
display the generated maps. The Client is web based us-
ing Java Web Start1 to aid its accessibility to users. The
architecture of the system enables distributed software en-
gineering teams to work together (see Figure 2).

Input data to create a SOM can be descriptions of any
content as long as it is stored within a database table. For
example each record could be a description of a reusable
artefact or of a software component within a large software
sytem such as a method in a class.

There are two main use case scenarios for the system;
firstly the Administrator could be used by the librarian of a
reuse library and the Client by the system developers (see
Figure 3), therefore aiding them in the location of reuse can-
didates. Secondly both tools could be used by members of a
software development team to aid program comprehension,
or help in decisions regarding restructuring and reengineer-
ing of the system.

3 Visualisations of Maps

The GUI for the SOM evolved through a number of
stages, due to the interactive design approach adopted.

1http://www.java.sun.com/products/javawebstart/

Figure 2. Possible geographic layout of GENI-
SOM system

Figure 3. Reuse infrastructure with GENISOM
system in place



Earlier designs drew inspiration from and were similar to
WEBSOM [8], a web based example of the use of SOMs
for organisation of document collections. Feedback through
quick and dirty evaluations [12] was critical of the initial
colour scheme used. This resulted in the final 2D map as il-
lustrated in Figure 4. The improved colour scheme is based
upon the use of the primary colours, essentially to help dis-
tinguish different elements of the map more clearly than the
heatmap approach applied in WEBSOM.

Figure 4. Screenshot of 2D Map

The neural net is arranged as a grid with the inputs (e.g.
reusable artefacts) being attached to the neurons. The black
dots on grid cells (i.e. neurons) indicate that inputs have
been matched to them, with the size of the dot representing
the number of them. The green shading of the grid cells
indicates the boundaries of similar clusters of neurons.

The map is interactive allowing the user to select a par-
ticular neuron (the blue cursor indicating the selection), this
displays the neuron’s labels, five or less words that best de-
scribe the inputs matched to it (see Figure 5). This labelling
approach, taken from LabelSOM [13], is a commonly used
method within SOM software. As well as displaying the la-
bels for a selected neuron, details of the inputs matched to
it are also displayed in a side bar though this is not depicted
in the figures.

Figure 5. Closeup screenshot of 2D Map

Browsing is aided by a search system coupled to the map
which highlights the results in red for a certain search string.

Using 2D limits the amount of information that can be
visualised. Improvements to the GENISOM GUI therefore
naturally led on to the development of a 3D map using the
Cityscapes technique which has already found application
in software visualisation [6]. Using this technique in GENI-
SOM each value is plotted as a column (or ’building’). The
’buildings’ are plotted on the same horizontal plane, allow-
ing differences in height and position to be analysed. In re-
lation to a SOM, each building represents a neuron and the
height of the building relates to the number of inputs that are
matched to it. The implementation of this used Java3D2 and
in the final system the option was made available to switch
between using 2D and 3D interfaces.

Figure 6 illustrates the 3D map; the user’s view can be
rotated and zoomed in and out. Furthermore, the user can
also interact with the 3D map in the same manner as the 2D
map following the same colour scheme (see Figure 7).

Figure 6. Screenshot of 3D Map

4 Evaluation and Results

A series of different evaluations were carried out to as-
sess the success of the GENISOM software. As test input
data, a selection of 300 Debian Packages were gathered
from the Debian Project. This is an open source develop-
ment of a free OS, Debian GNU/Linux. New contributors to
the project as well as users interested in studying the Debian
project could be the potential beneficiaries of these maps. In
the evaluations all participants were from the Department of
Computer Science at the University of Durham.

2http://java.sun.com/products/java-media/3D/



Figure 7. Screenshot of 3D Map

4.1 Administrator

The Administrator was assessed for usability as it is a
critical area of the software, in that the user should be able
to generate maps proficiently. Results from a heuristic eval-
uation showed that the technical terminology used within
the software and also the task of assessing the ’goodness’
of the SOM produced could be problematic. The former
was found to be the case after carrying out usability test-
ing and questionaires. The anticipated problem of assessing
the ’goodness’ of a map did not actually occurr in practice
during the evaluations.

Overall the Administrator has a steep learning curve,
which is to be expected with such a technical piece of soft-
ware. However it is predicted that once the terminology (i.e.
language) barrier has been overcome, operation of the sys-
tem can be quickly mastered with training. Trials carried
out with software engineering researchers proved this to be
the case.

4.2 Client - 2D versus 3D

Secondly the Client was evaluated, in two distinct trials.
The first of these involved a comparison between the two
types of interface with respect to usability and efficiency. A
population of 10 computer scientists carried out a series of
usability exercises, which involved searching for informa-
tion held within the map.

Statistical results from these evaluations indicated that
the 2D interface was superior to the 3D. The 2D was more
efficient with respect to the time required to complete the
tasks and more effective due to the observed signs of frus-
tration shown by the users. All participants considered that
the Cityscape technique did inform them far better on the
spread of the population (i.e. the heights of the buildings
were more intuitive indicators of the population density than
the different sizes of black dots), however this feature was
not considered a necessity. Overall an overwhelming ma-
jority, 90%, preferred to use the 2D interface.

Reasons for their opinions mostly arose from the dif-
ficulty in selecting a ’building’ (i.e. a neuron) in the
Cityscape, as certain buildings could obscure others mean-
ing that the view of the scene would have to be changed to
enable selection of the obscured buildings. Other comments
noted the poor navigation through the 3D scene, which is a
common problem with such applications. It is difficult to
control the 3D space with interaction techniques that are
currently in common use since they were designed for 2D
manipulation (e.g. dragging and scrolling) [11].

Overall conclusions drawn from the evaluation were that
the combination of the two maps actually complemented
each other. The 2D map was quick and simple to use;
however, the 3D map did add functionality to the browsing



which concurs with the findings of Koua and Kraak [9].

4.3 Client - Major Evaluation

In the second part of the evaluation of the Client, a key
question sought to determine whether using SOMs was an
improvement against other methods. This led to the cre-
ation of the GENISOM Testbed, an application that could
be downloaded by participants and would essentially guide
them through an evaluation while automatically logging the
results.

The Testbed consisted of two searching tasks using the
2D map and as a comparison two tasks using a standard
search system, similar to the functionality of the Google
web search engine. It also included a questionnaire to
record the users’ experiences.

114 participants took part in the evaluation, on the basis
of the statistical results the 2D map proved to be less effec-
tive, as it took users longer to complete set tasks with the
2D map. User opinions on the effectiveness of the new sys-
tem were mixed though; over 30% thought that it was more
effective and only 52% stated it was less effective. Overall,
however, the evaluation statistically regarding the times to
complete tasks was seen to be flawed due to the difference
in learning curves of the two systems. The 2D map provides
a fairly complex interface and therefore has a steep learning
curve, while users will already have obtained most knowl-
edge of how to operate the standard search system due to
prior experience with web search engines.

Predictions regarding future fair usability tests are
promising for the SOM as users were found to vastly re-
duce their times for the second task using the map even
though the second task was considerably more difficult.
Also participants’ views on whether the additional infor-
mation the SOM provided, aided searching and browsing
showed that over 68% thought this to be true, which con-
curs with Merkl’s findings:

“such a library system has its benefits when develop-
ers look for a particular component during the develop-
ment process of a software system. Additionally the self-
organizing map can be used easily for interactive explo-
ration of the software library - a feature that is of vital im-
portance in software reuse”[10]

Although Merkl’s paper is very positive towards the ap-
plication of Self-Organizing Maps to reuse libraries, its re-
sults were subjective. The asset population was small in
comparison to what would be found in a normal reuse li-
brary and there was no formal evaluation of the prototype
system developed.

4.4 SOM Algorithm

Evaluation of the algorithm behind the Administrator
consisted of creating a number of different maps with vary-
ing input size, 25 to 13000 Debian Packages. The very na-
ture of the standard SOM algorithm is that a number of trial
maps need to be created to achieve the best map:

“an appreciable number (say, several dozens) of random
initialisations...and different learning sequences ought to be
tried, and the map with the minimum quantization error
selected.”[7]

The results from the evaluation back up this theory, how-
ever, they present a possible problem for the use of SOMs
in this application. Generating maps is a time consuming
activity due to the memory latencies of self-organizing neu-
ral networks. Coupled with the factor that many maps will
need to be trialled the feasabilty of using the standard SOM
algorithm in a software engineering environment is fairly
low, unless the software collection is stable and justifies the
initial investment in the map production. Further work into
researching more advanced algorithms is therefore a main
priority of our work.

4.5 Outstanding Problem

Feedback highlighted one major criticism of both the
GENISOM 2D and 3D map interfaces. The criticism was
that initially the view of the maps was ’uninformative’ as
information, i.e. grid cell label, was only displayed once
the cell had been selected. Therefore the user must sys-
tematically select cells to build up a mental model of the
map’s contents. However, displaying all the labels at the
same time led to a cluttered map therefore it was decided
let the user have control over which label was displayed. A
better mechanism for providing the user with an overview
of the map’s contents other than exposing the textual labels
over the whole map is being sought. Currently structuring
the SOM hierarchically is being investigated.

5 Conclusions and Further Developments

The evaluation of GENISOM highlighted many differ-
ent areas of improvement. Firstly regarding the SOM algo-
rithm, a hybrid algorithm the Growing Hierarchical Self-
Organizing Map (GHSOM)[3] is proposed as a replace-
ment. This has a number of benefits: the training process
is virtually automated minimizing the number of parame-
ters and in theory allowing the best map to be generated on
the first attempt. This also has the advantage of simplify-
ing the generation of the maps, which was found to be a
troublesome area within the Administrator.

The GHSOM also enables a hierarchical structure of
SOM to be built up, firstly this would aid visualisation of



the information in respect to the SOM’s organisation and
the earlier stated problem regarding labelling of the map.
Secondly if actual source code was used as input data then
it would facilitate object finding as demonstrated by Chan
and Spracklen [2].

Regarding the different visualisations of SOM, the pre-
sented results suggest a combination of the 2D and 3D
maps. Research into combining the two would be worthy
of further consideration. Investigating other 3D techniques
to visualise SOMs may lead to conclusions on whether the
technique of Virtual Data Mining is applicable in this appli-
cation.

The integration of the software to the GENESIS platform
[4] is also proposed, giving scope for real life trials of the
software and actual use by software engineering profession-
als. Investigations could also be carried out into the appli-
cability of the SOM not just to software components but to
a variety of reusable artefacts: test cases, designs and docu-
mentation. This would allow the possibility of further work
following the findings of Chan and Spracklen to investigate
in more detail the software analysis properties of the SOM.

References

[1] A. Chan and T. Spracken. Discovering common features in
software code using self-organizing maps. InProceedings
of the International Symposium on Computational Intelli-
gence, Kosice Slovakia, August 2000.

[2] A. Chan and T. Spracklen. Object recovery using hierar-
chical self-organizing maps. InProceedings of the Inter-
national Conference on Engineering Applications of Neural
Networks, Kingston Upon Thames UK, July 2000.

[3] M. Dittenbach, D. Merkl, and A. Rauber. The growing hi-
erarchical self-organizing map. InInternational Joint Con-
ference on Neural Networks, volume 24, Como, Italy, July
2000.

[4] M. Gaeta and P. Ritrovato. Generalised environment for pro-
cess management in cooperative software engineering. In
International Computer Software and Applications Confer-
ence, volume 26, pages 1049–1059, Oxford, England, Au-
gust 2002. IEEE.

[5] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Sta-
tistical themes and lessons for data mining. InData Min-
ing and Knowledge Discovery. Kluwer Academic Publish-
ers, 1997.

[6] C. Knight. Virtual Software In Reality. PhD thesis, Durham
University, 2000.

[7] T. Kohonen. Self-Organizing Maps. Information Sciences.
Springer, second edition, 1997.

[8] T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, J. Honkela,
V. Paatero, and A. Saarela. Self organization of a massive
document collection. InIEEE Transactions on Neural Net-
works, volume 11, pages 574–585, May 2000.

[9] E. Koua and M. Kraak. An evaluation of self-organizing
map spatial representation and visualization for geospatial

data: Perception and visual analysis. Technical report, In-
ternational Institute for Geo-Information Science and Earth
Observation (ITC), 2001.

[10] D. Merkl. Self-organizing maps and software reuse. InCom-
putational Intelligence in Software Engineering. World Sci-
entific, 1998.

[11] J. Nielsen. 2d is better than 3d. useit.com - Jakob Nielsen’s
Alertbox, 1998.

[12] J. Preece, Y. Rogers, and H. Sharp.Interactive Design: be-
yond human-computer interaction. John Wiley and Sons,
2002.

[13] A. Rauber. Labelsom : On the labeling of self-organizing
maps. InInternational Joint Conference on Neural Net-
works, 1999.


