
VISSOFT’03 Marcus, Feng, Maletic

Source Viewer 3D (sv3D)
A System for Visualizing Multi Dimensional Software Analysis Data

Andrian Marcus, Louis Feng, Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent Ohio 44242
amarcus@cs.kent.edu, lfeng@cs.kent.edu, jmaletic@cs.kent.edu

Abstract 2. Support for User Interaction
Source Viewer 3D is a software visualization

framework that uses a 3D metaphor to represent
software system and analysis data. The 3D
representation is based on the SeeSoft pixel metaphor. It
extends the original metaphor by rendering the
visualization in a 3D space. New, object-based
manipulation methods and simultaneous alternative
mappings are available to the user.

We focus here on the types of user tasks and
interactions that are supported by sv3D. While this is not
directly related to solving/visualizing specific software
engineering tasks it is prerequisite for a software
visualization tool.

One of the strongest features of sv3D is its overview
features. The underlying 2D visualization construct used
in designing the poly cylinder containers is the pixel bar
chart [5], which generalizes the concept used by SeeSoft.
Thus sv3D can show large amounts of source code in one
view just as the SeeSoft metaphor. Figure 1 shows a 3D
overview of a small system with 30 C++ source code
files and approximately 4000 lines of code. Each file is
mapped to one container. Each container is made up of a
number of poly cylinders. Each poly cylinder represents
a line of source code. In this simple example shading
(color) is used to represent the type of control structure a
statement is in and the height is used to represent the
nesting level. On top of each container the name of the
associated file is visible. When manipulating a container
in the 3D space, the name of the file always faces the
camera.

1. Description

Source Viewer 3D (sv3D) is a software visualization
framework that builds on the SeeSoft [1, 2] metaphor. It
brings a number of enhancements and extensions over
SeeSoft-type representations. In particular it creates 3D
renderings of the raw data and various artifacts of the
software system and their attributes can be mapped to the
3D metaphors at different abstraction levels. It
implements improved, object-based user interactions, is
independent of the analysis tool, and it accepts a simple
and flexible input in XML format. The output of
numerous analysis tools can be easily translated to sv3D
input format and the design and implementation of our
system is extensible. sv3D supports zooming and panning at variable

speeds. This is especially important because the
visualization space can be quite large. Each container in
the visualization can be manipulated individually (rotate,
scale, translate). The user can also zoom in and out on
the entire space. Files can be brought into a closer view
and manipulated for a better camera angle.

SeeSoft-like tools have a variety of uses in assisting
the user solving software engineering and comprehension
tasks. sv3D can be used for all these tasks such as: fault
localization [4], visualization of execution traces [6],
source code browsing [3], impact analysis, evolution,
complexity, and slicing [1], etc. In addition, by allowing
visualization of additional information (via 3D), sv3D
can be used for solving other more complex tasks. For
example, in the case of Tarantula [4], using height
instead of brightness would improve the visualization and
make the user’s task easier.

At this point sv3D directly supports a number of
filtering methods. Un-interesting units can be filtered
through their attributes or by direct manipulation.
Transparency is used to deal with both occlusion and
filtering. The user can chose various degrees of
transparency on each class of cylinder, based on their
attributes (color, shape, or texture). With semi-
transparency the global context is preserved and heuristic
information is retained. Elevation can also be used to
filter out un-interesting units by lifting them into separate
levels.

Most software engineering tasks during maintenance
and evolution require understanding of various elements
of the software system and also of data resulted from
analysis. The main features of sv3D, namely, advanced
user interactions and usage of the 3D space for
visualization directly support the user in achieving a
better understanding of analysis data. This process, in
turn, directly supports a variety of tasks.

Currently our emphasis with regard to details-on-
demand is for simplicity. It is important to be able to

 1

VISSOFT’03 Marcus, Feng, Maletic

sup
imp
and
the
val

the
sup
sha
as
rela
con
link
gra

trac
gra
and
can
sna
the
sv3

3.

inte
ww
dow

wit

Figure 1. Overview in the 3D space of the mailing system. Color represents control structure and height represents
nesting level. Two files have active manipulators (handle box for scaling on the left and track ball for rotating on the

right). For a color view see www.sdml.cs.kent.edu
port user interaction, therefore performance is
ortant. Two types of 3D manipulators (i.e., track ball
 handle box) are available to the user to interact with
 visualization. An information panel displays the data
ues on selected items.
The relationships between items are shown through
 elements of the visualization that do not directly
port representation of quantitative data (such as
pe, texture, and position). The other elements (such
color and height) can also be used to show
tionships. The 3D space allows arranging the
tainers in any place. We are investigating ways to use
s between the 3D containers and arrange them in a

ph layout.
The user can take snapshots of the current view to
k a history. The current view is described by a scene
ph, which is composed by the attributes of the camera
 all 3D objects. These snapshots of the scene graph
 be saved and reviewed. A sequence of such
pshots can be played, thus representing a path within
 visualization. More than that, we intend to build into
D change tracking based on individual users.

 Current and Future Work

sv3D is implemented in C++ and uses Qt for the user
rfaces and Open Inventor for 3D rendering. See
w.sdml.cs.kent.edu for additional information and
nloads.

In the future versions of sv3D, position of the cylinder
hin a container can represent another type of

information (or dimension). We need to define these
visual attributes very carefully to ensure their usefulness.
Containers in the 3D space can possibly be connected by
edges to form a 3D graph. This will allow representation
of hierarchical data and also diagrammatic visualizations
(e.g., UML class diagrams). A number of user
experiments to evaluate this system are being planned.

This work was supported in part by grants from the
Office of Naval Research N00014-00-1-0769 and the
National Science Foundation CCR-02-04175.

4. References

[1] Ball, T. and Eick, S., "Software Visualization in the Large",
Computer, vol. 29, no. 4, April 1996, pp. 33-43.
[2] Eick, S., Steffen, J. L., and Summer, E. E., "Seesoft - A
Tool For Visualizing Line Oriented Software Statistics", IEEE
TSE, vol. 18, no. 11, November 1992, pp. 957-968.
[3] Griswold, W. G., Yuan, J. J., and Kato, Y., "Exploiting the
Map Metaphor in a Tool for Software Evolution", in
Proceedings of ICSE'01, Toronto, 2001, pp. 265-274.
[4] Jones, J. A., Harrold, M. J., and Stasko, J. T., "Visualization
for Fault Localization", in Proceedings of ICSE 2001 Workshop
on Software Visualization, Toronto, 2001, pp. 71-75.
[5] Keim, D. A., Hao, M. C., Dayal, U., and Hsu, M., "Pixel bar
charts: a visualization technique for very large multi-attribute
data sets", Information Visualization, vol. 1, no. 1, March 2002,
pp. 20-34.
[6] Reiss, S. P., "Bee/Hive: A Software Visualization Back
End", in Proceedings of ICSE 2001 Workshop on Software
Visualization, Toronto, 2001, pp. 44-48.

2

	1. Description
	2. Support for User Interaction
	3. Current and Future Work
	4. References

