
VISSOFT’03 Maletic, Marcus

CFB: A Call For Benchmarks - for Software Visualization

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242 USA
jmaletic@cs.kent.edu

Andrian Marcus
Department of Computer Science

Wayne State University
Detroit, MI 48202 USA
amarcus@cs.wayne.edu

Abstract
The paper argues for the need of a benchmark, or

suite of benchmarks, to exercise and evaluate software
visualization methods, tools, and research. The intent of
the benchmark(s) must be to further and motivate
research in the field of using visualization methods to
support understanding and analysis of real world and/or
large scale software systems undergoing development or
evolution. The paper points to other software
engineering sub-fields that have recently benefited from
benchmarks and explains how these examples can assist
in the development of a benchmark for software
visualization.

1 Introduction

Recently, the development of benchmarks has been
highlighted [15] as a means to increase the scientific
maturity of a discipline. Sim et al [15] detail a number of
fields in Computer Science and Software Engineering
that have proposed benchmarks to further research and
understanding of the fields.

With regards to reverse engineering and program
analysis a recent benchmark on dealing with fact
extraction [16] motivated a number of improvements on
tools such as cppx [3]. Also, developing a benchmark for
clone detection was recently discussed at the
International Workshop on Program Comprehension
2003 with a main goal of formalizing the meaning of
source code clones and the like.

A number of individuals have argued for the Software
Visualization community to develop a standard
benchmark to support the research in the field. This
important issue was discussed at the ICSE’01 Workshop
on Software Visualization, VISSOFT’02, and most
recently at the ACM Symposium on Software
Visualization (SoftVis’03).

In particular, our recent discussions with Stephan
Diehl, general chair of SoftVis’03, and Margaret-Ann
Storey, an organizer for VISSOFT’02 and ’03, motivated
us to develop a Call-For-Benchmarks in Software

Visualization. We will motivate why this may be the
best means of developing a benchmark (suite) for
software visualization research. We feel there is a need
for a suite of problems that address different aspects of
software visualization and argue for this type of
approach. Additionally, we will propose a set of
guidelines to help organize this call.

2 Aspects of Software Visualization

The focus of the benchmark will be to exercise
software visualization systems/tools/methods in light of
their applications toward supporting industrial software
development, maintenance, and evolution. In order to
frame this task we define five dimensions of software
visualization [6]. These dimensions reflect the why,
who, what, where, and how of the software visualization.
The dimensions are as follows:

• Tasks – why is the visualization needed?
• Audience – who will use the visualization?
• Target – what is the data source to represent?
• Representation – how to represent it?
• Medium – where to represent the visualization?

These dimensions define a framework capable of

accommodating a large spectrum of software
visualization systems. This viewpoint subsumes such
diverse topics as program visualization, algorithm
animation, visual programming, programming by
demonstration, software data visualization, and source
code browsers. This diversity is reflected in the
taxonomic descriptions of the field by researchers such as
Price [9, 10], Roman [14], Myers [8], and Stasko [17].

Foremost, the benchmark should highlight different
types of tasks. For instance one could propose a
benchmark with the task of visualizing possible ADTs in
legacy code or visualizing the run time activation of
classes over a system. These are specific tasks that
require (possibly) very different visualization metaphors
and tools.

Before we continue this discussion let us present a
general reference model for information visualization.

 4

VISSOFT’03 Maletic, Marcus

This will help focus the particulars of the benchmark
with regard to the underlying pre-processing and analysis
that must accompany any software visualization tool or
method.

3 A Reference Model for Visualization

Card [1] proposes that visualization is a mapping from
data to a visual form that the human perceives. Figure 1,
adapted from [1], describes these mappings and serves as
a simple reference model for visualization. In this figure,
the flow of data goes through a series of transformations.
The human may adjust these transformations, via user
controls, to address the particular application task.

The first transformation converts raw data into more
usable data tables. The raw data is typically in some
domain specific format that is often hard, or impossible,
to work with. This is very apparent when working with
trace data generated from program executions. Data
tables [1] are relational depictions of this data.
Information about the relational characteristics of the
data (meta data) can also be included in the data tables.
Meta data is descriptive information about the data [19].
From here, visual mappings transform the data tables into
visual structures (graphical elements). Finally, the view
transformations create views of the visual structures by
specifying parameters such as position, rotation, scaling,
etc. User interaction controls the parameters of these
transformations. The visualizations and their controls are
all with respect to the application task.

The core of the reference model is the mapping of a

data table to a visual structure. Data tables are based on
mathematical relationships whereas visual structures are
based on graphical properties processed by human vision.
Although raw data can be viewed directly, data tables are
a vital intermediate step when the data is abstract [2, 5,
12].

Software visualization maps to this reference model
directly. The raw data is source code, execution data,
design documents, etc. In the case of execution (trace)
data, the readability is minimal. However, source code is
readable, at least on a small scale, that is, one can hardly
keep in mind more than a few dozen lines of source at
one time. Data tables, an abstraction of the raw data,
take the form of abstract syntax trees, program
dependence graphs, or class/object relationships for
example. A variety of software analysis tools can
generate this type of data (table). Visual structures are
then the software-specific visualizations we render.
These visual structures are typically very specific to a
particular software engineering task.

This model also points out the need to transform raw
data into something more usable. This includes initial
acquisition, quality, and granularity of the data. While
these issues are not high profile for source code, they are
a key component for dealing with the huge amounts of
data that can be generated from execution traces, or from
parse trees of large systems.

The software visualization process maps on top of this
reference visualization model. Roman [14] and Price [9,
10], each define their own general model of the software
visualization. Their views are more domain-specific and

 Data Visual Form

Data
Transformations

Visual
Mappings

View
Transformations

Data
Tables

Visual
StructuresRaw Data Views

Human
Perceiver

Human Interaction Human Interaction

Raw Data: idiosyncratic formats
Data Tables: relations (cases by variables) + meta data
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, etc.)

Figure 1. Reference Model for Visualization. Visualization can be described as a mapping of data to
visual form that supports human interaction for making visual sense [1].

 4

VISSOFT’03 Maletic, Marcus

omit aspects related to generation of views and data
transformations. These models drive the definition of
their respective taxonomies. We believe the general
information visualization reference model should also be
taken into direct consideration by a software visualization
system designer.

Development of a benchmark for visualizing the run
time behavior of a system may be more difficult for some
particular tasks. Providing an execution trace for a given
system along with specific features of that trace that are
deemed interesting is quite straight forward. However,
developing a benchmark for visualizing the execution of
a system in real time such as the research being done by
Reiss [13] may be more difficult. However this could be
posed as a specific question such as with debugging or
bottleneck location. Of course the underlying analysis
and data gathering is a permanent issue.

4 Composition of the Benchmark

Given this general reference model we can now define
benchmarks in terms of each of its specific components
in conjunction with the task, audience, target, etc being
addressed. A question that must be raised at this point is
whether the underlying program/data/run time analysis
methods are an integral part of the software visualization
method? That is, can we (completely) decouple the
visual structures and views from the underlying raw data
and data tables? Obviously in general the answer to this
question is no. However, the authors own work [7] along
with others [18] counters this to some degree within a
broad, abet limited, set of problem domains.

5 Call For Benchmarks

To develop a benchmark suite for software
visualization we propose a Call For Benchmarks much
like a Call For Papers. We issue this call to all
researchers active and/or interested in software
visualization. The plan is to collect all proposed
benchmarks, review each, and have a round of
revisions/clarifications. The collection will assembled
and made available to the research community on the
web. This should coincide with a related conference or
workshop and the benchmark could be presented in a
working session or the like to motivate individual
research groups to apply the benchmarks to their work.

Of course, the concept that a software visualization
tools is quite task specific and tightly coupled with the
underlying data analysis is what makes construction of a
single general benchmark, for software visualization,
quite difficult (impossible). However, for a visualization
tool to be widely utilized it should be interoperable with
a variety of tools and environments.

The goal is to collect the results of using the
benchmarks and present the findings in a paper,
presentation, and/or web site. This being the case, what then must the benchmark be

composed of? We believe the general consensus is that a
number of distinct problems (i.e., tasks, target, and
audience) of differing domains, each with its own data
set must be developed. The data set could include raw
data but alternatively include data tables (or both).
Providing data tables will drastically improve the ability
to compare the visual aspects of methods as opposed to
the underlying analysis methods.

We, the authors, invite benchmark proposals. The
submitted benchmarks should include:

• Description of the proposed benchmark
• Software engineering task being addressed
• The data (sets) necessary (source code, models,

data tables, etc.)
• What types of data analysis are necessary (if any)

to apply the benchmark
Furthermore, the stated task of a given benchmark

must be well directed at software engineering problems.
We could easily fall into comparing 2D graph layout
algorithms, whereas the real software visualization
problem is more like the comparison of UML class
diagrams layout methods (in a 2D space). Of course
there must be an agreed upon quality measure. For class
diagrams, recent work on the esthetics of UML diagram
layout [4, 11] can help provide guidelines. In this case,
the data table (UML class model) is all that is necessary.

• An evaluation method
• Types of user interaction required

E-mail your benchmark proposal to both

jmaletic@cs.kent.edu and amarcus@cs.wayne.edu. For
further information visit the web site www.sdml.info.

6 References

[1] Card, S. K., Mackinlay, J., and Shneiderman, B., Readings
in Information Visualization Using Vision to Think, San
Francisco, CA, Morgan Kaufmann, 1999.

Broader problems may include the visualization of
cross cutting concerns within a given system. Here one
must supply a system (raw data), with known aspects,
and (hopefully) pointers to (or a list of) these aspects
within the source (data tables). In this case the weaker
the data table, the more of an analysis problem this
becomes.

[2] Chi, E. H., Barry, P., Riedl, J. T., and Konstan, J., "A
spreadsheet approach to information visualization", in
Proceedings of Information Visualization Symposium '97,
1997, pp. 17-24,116.
[3] CPPX, "CPPX - Open Source C++ Fact Extractor", Web
page, http://swag.uwaterloo.ca/~cppx/, 2001.

 4

http://swag.uwaterloo.ca/~cppx/

VISSOFT’03 Maletic, Marcus

[4] Eichelberger, H., "Nice Class Diagrams Admit Good
Design", in Proceedings of ACM Symposium on Software
Visualization (SoftVis'03), San Diego, CA, June 11-13 2003,
pp. 159-168.
[5] Levoy, M., "Spreadsheet for images", Computer Graphics,
vol. 28, 1994, pp. 139-146.
[6] Maletic, J. I., Marcus, A., and Collard, M. L., "A Task
Oriented View of Software Visualization", in Proceedings of
1st IEEE Workshop of Visualizing Software for Understanding
and Analysis (VISSOFT'02), Paris, France, June 26 2002, pp.
32-40.
[7] Marcus, A., Feng, L., and Maletic, J. I., "3D
Representations for Software Visualization", in Proceedings of
1st ACM Symposium on Software Visualization (SoftVis'03),
San Diego, CA, June 11-13 2003, pp. to appear.
[8] Myers, B. A., "Taxonomies of Visual Programming and
Program Visualization", Journal of Visual Languages and
Computing, vol. 1, no. 1, March 1990, pp. 97-123.
[9] Price, B. A., Baecker, R. M., and Small, I. S., "A Principled
Taxonomy of Software Visualization", Journal of Visual
Languages and Computing, vol. 4, no. 2, 1993, pp. 211-266.
[10] Price, B. A., Baecker, R. M., and Small, I. S., "An
Introduction to Software Visualization", in Software
Visualization, Stasko, J., Dominque, J., Brown, M., and Price,
B., Eds., London, England MIT Press, 1998, pp. 4-26.
[11] Purchase, H. C., "Effective information visualisation: a
study of graph drawing aesthetics and algorithms", Interacting
with Computers, vol. 13, no. 2, December 2000 2000, pp. 147-
162.

[12] Rao, R. and Card, S. K., "Exploring large tables with the
table lens", in Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI'95), 1995, pp. 403-404.
[13] Reiss, S. P., "Visualizing Java in Action", in Proceedings
of ACM Symboposium on Software Visualization (SoftVis'03),
San Diego, CA, June 11-13 2003, pp. 57-66.
[14] Roman, G.-C. and Cox, K. C., "A Taxonomy of Program
Visualization Systems", IEEE Computer, vol. 26, no. 12,
December 1993, pp. 11-24.
[15] Sim, S. E., Easterbrook, S., and Holt, R. C., "Using
Benchmarking to Advance Research: A Challenge to Software
Engineering", in Proceedings of 25th International Conference
on Software Engineering (ICSE'03), Portland OR, May 3-10
2003, pp. 74-83.
[16] Sim, S. E., Holt, R. C., and Easterbrook, S., "On Using a
Benchmark to Evaluate C++ Extractors", in Proceedings of
10th International Workshop on Program Comprehension,
Paris, France, 2002, pp. 114-123.
[17] Stasko, J. T. and Patterson, C., "Understanding and
Characterizing Software Visualization Systems", in
Proceedings of IEEE Workshop on Visual Languages, Seattle,
WA, September 1992, pp. 3-10.
[18] Storey, M.-A. D., Best, C., and Michaud, J., "SHriMP
Views: An Interactive Environment for Exploring Java
Programs", in Proceedings of Ninth International Workshop on
Program Comprehension (IWPC'01), Toronto, Ontario, Canada,
May 12-13 2001, pp. 111-112.
[19] Tweedie, L., "Characterizing interactive externalizations",
in Proceedings of Conference on Human Factors in Computing
Systems (CHI '97), 1997, pp. 375-382.

 4

	Introduction
	Aspects of Software Visualization
	A Reference Model for Visualization
	Composition of the Benchmark
	Call For Benchmarks
	References

