
ADG: Annotated Dependency Graphs for Software Understanding

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa,holt }@plg.uwaterloo.ca

ABSTRACT
Dependency graphs such as call and data usage graphs are
often used to study software systems and perform impact
analysis during maintenance activities. These graphs show
the present structure of the software system (e.g. In a com-
piler, anOptimizer function calling aParser function).
They fail to reveal details about the structure of the system
that are needed to gain a better understanding. For exam-
ple, traditional call graphs cannot give the rationale behind
anOptimizer function callingParser function.

In this position paper, we advocate a new view on de-
pendency graphs – Annotated Dependency Graphs (ADG).
ADG can assist maintainers understand better the current
structure of large software systems. We show an example
of using an ADG to studyPostgres, a large DBMS open
source software system.

1 INTRODUCTION
To aid in software understanding tasks, documentation is
used to narrate different aspects in the life cycle of a software
system. Unfortunately software developers are not interested
in documenting their work. Documentation rarely exists. If
it does it is usually incomplete, inaccurate, and out of date.
Faced with the lack of sufficient documentation, developers
choose alternative understanding strategies such as search-
ing or browsing the source code. The source code in many
cases represents the definitive source of accurate informa-
tion about the system [11]. Developers search the code using
tools such asgrep . They browse the code using simple text
editors or cross-reference code browsers such asLXR, which
permit jumping between variables/functions usage and vari-
ables/functions declarations while browsing the source files.

Dependency graphs have been proposed and used in many
studies and maintenance activities to assist developers in un-
derstanding large software systems before they embark on
modifying them to meet new requirements or to repair faults.
Call graphs and data usage graphs are the most commonly
used dependency graphs.

The rationale behind the existence of dependencies between
two nodes in a dependency graph are usually based on
domain and system knowledge. For example, based on
our knowledge of the reference architecture of a compiler,

we can reason about the rationale behind the dependencies
shown in the graphs [10]. For domains that are not well un-
derstood that may not be clear and may prove to be a chal-
lenging and daunting task. Moreover, for well understood
architectures such as compilers, we may find unexpected de-
pendencies that indicate, for example, that anOptimizer
function depends on aParser function. As a maintainer of
such a system, the rationale behind such unexpected depen-
dency is not clear - Are there valid reasons for such depen-
dency? Or was it due to laziness or ignorance of the devel-
oper that introduced the dependency?

Much of the knowledge about the design of a system, its ma-
jor changes over the years and its troublesome subsystems
live only in the brains of its developers. Such live knowl-
edge is sometimes calledwet-ware. When new developers
join a team, mentoring by senior members and informal in-
terviews are used to give them a better understanding of the
system. Leveraging this knowledge may not always be pos-
sible as the software may have been bought from another
company, its maintenance outsourced, or its senior develop-
ers are no longer part of the company. Thus, answering ques-
tions about unexpected dependencies and other discoveries
as developers study dependency graphs becomes a challeng-
ing and time consuming task. Traditional dependency graph
are only capable of giving us a current view of the software
system without details about the rationale, the history, or the
individuals behind the dependency relations.

In this paper, we propose to extend dependency graphs – An-
notated Dependency Graphs (ADG) – to attach more details,
in an attempt to assist developers in understanding and study-
ing software systems. In an ideal world, if each developer
attached a sticky note to each added dependency to record
their name, the rationale behind the addition or removal of
the dependency then the job of the maintainer will be much
easier. In the fast paced world of software development with
tight schedules and short time to market, this is neither pos-
sible nor practical. Thus in addition to proposing these ex-
tended dependency graphs, we present a technique to build
such graphs automatically without any input from the devel-
opers of the system.

Organization of Paper
The paper is organized as follows. Section 2 highlights sev-



eral problems associated with traditional dependency graphs
and proposes Annotated Dependency Graphs (ADG) to ad-
dress these shortcomings. Section 3 gives an overview of
how to build an ADG. Section 4 presents a short case study
of an ADG forPostgres, a large open source database man-
agement system (DBMS). Section 5 describes related work.
Finally section 6 draws conclusions from our work and pro-
poses future directions.

2 SHORTCOMINGS OF DEPENDENCY GRAPHS
As maintainers prepare to modify a software system to add
features or repair bugs, they start off by examining any avail-
able documentation, and consulting senior developers. Then
they browse the source code and use tools to generate depen-
dency graphs such as call and data usage graphs. Following
these steps in an iterative manner, maintainers start gaining
a better understanding of the software system. Using their
newly acquired understanding, they form an internal cogni-
tive model of the software [12]. Dependency graphs assist
maintainers in gradually piecing together the software puz-
zle. Unfortunately, dependency graphs fall short in the fol-
lowing areas:

1. Rationale: They do not indicate the reasons behind
the introduction or removal of dependencies between
source code entities.

2. Time: They do not indicate how long a dependency has
existed for or how long ago has it been removed.

3. Inter-dependency patterns: They fail to show patterns
of dependencies. For example, in a compiler system it
is hard to deduce from a call graph that once a function
depends on thepopulate symbol table() function, it
will also depend onsymbol table entry data type.

4. Creator: They fail to show the name of the developer
that introduced the dependency.

In the following subsections, we elaborate on the benefits of
each area for software understanding.

Rationale
In a compiler, when a dependency between anOptimizer
function and aParser function is discovered, the maintainer
puzzled by the unexpected dependency can contact the se-
nior developer to get a better understanding of the rationale
behind the introduction of such a dependency. The senior
developer may be too busy or may not recall the rationale.
Furthermore the developer who introduced the dependency
may no longer work on the software system. Then the main-
tainer has to examine the source code closer and spend hours
trying to understand the rationale behind such unexpected
dependency. In some cases the added dependency may be
justified due to, for example, optimizations or code reuse;
or not justified due to, developer ignorance, or pressure to
market.

Another popular usage of dependency graphs is the discov-
ery of dead code. Dead code is code which no other enti-
ties in the software system depends on. Again dependency
graphs are able to locate the dead code such as unused func-
tions and unused data types, but fail to indicate the reason
for the death of the code. A maintainer would like to know
if the dead code has been replaced by an optimized or bet-
ter piece of code capable of performing the same functional-
ity, replaced by a more general piece of code that encourages
more reuse, or even decommissioned as the system no longer
supports the functionality offered by the dead code.

These two aforementioned examples are some of the many
situations where theRationale for the appearance or dis-
appearance of dependencies is essential in aiding maintain-
ers of large software systems. Unfortunately, attaching the
Rationale for each dependency would require many re-
sources and is time consuming. Consequently an automated
technique to annotate each dependency with its rationale
would be very beneficial.

Time
Current dependency graphs only provide a single current
view of the software system. As pointed out in the previ-
ous section this prevents the dependency graph from helping
developers understand the evolution of dependencies in the
software system. Determining the evolution of dependencies
for a dead piece of code is a good example. For example, the
developer may want to know whether the dead function was
introduced in the previous release to go around a bug and the
bug is now fixed yet the functions isn’t removed or whether
the dead function has been around for many releases.

Inter-dependency patterns
The ability to determine that adding a dependency to one en-
tity entails adding dependencies to other entities is a very
valuable information that can be used in building tools to
assist developers in maintaining large complex software sys-
tems. This knowledge would help developers guide devel-
opers to other entities in the source code that may require
modifications.

Creator
In some cases, the creator of a dependency may pose a con-
cern. The creator is a good indicator of the validity and trust-
worthiness of unexpected dependencies. For example an un-
expected dependency created by a developer that was junior
when the dependency was created is a strong sign that the
dependency may be an invalid one.

3 BUILDING ANNOTATED DEPENDENCY
GRAPHS

Entity A
(eg. function)

Entity B
(eg. function,

data type)

Dependency

Figure 1: Schema for a Traditional Dependency Graph



To overcome the shortcomings highlighted in the previous
sections, we propose Annotated Dependency graph (ADG).
Whereas a traditional dependency graph would consist of en-
tities and edges, as shown in Figure 1, an ADG would have
several attributes attached to the nodes and the edges. Fig-
ure 2 shows the attributes that are attached. These attributes
address shortcomings of traditional dependency graphs.

Entity A
(eg. function)

Entity B
(eg. function,

data type)

Dependency

1. Rational
2. Time
3. Related Depedencies and Entities
4. Creator

Figure 2: Schema for a Annotated Dependency Graph

Although, The ADG can be created manually by developers
as they update the source code, this is not a practical solution
for the following reasons:

1. It requires developers of large established software
projects to go through a traditional dependency graph of
the software system and try to populate the ADG. This
is a time consuming and erroneous task. In many cases
the developer may no longer recall the reasons for the
dependencies and in most cases won’t recall the details
for the other attributes in an ADG.

2. Another alternative would be to use the ADG at the start
of a new project and make sure developers always an-
notate any new or removed dependencies. Again this is
extra work which most developers would not be inter-
ested in doing.

Instead of building the ADG manually, we chose to use the
change records stored in the source control repository such as
RCS [13] or CVS [3, 5].The repository contains details about
the development history of each file in the software system.
The repository stores the creation date of the file, its initial
content and a record of each modification done to the file.
A modification recordstores the date of the modification,
the name of the developer that performed the changes, the
line numbers that were changed, the actual lines of code that
were added or removed, and a detailed message entered by
the developer explaining the rationale behind the change.

Source control systems store the details of the modification
at the line level of a file which is not sufficient to build the
ADG which has as functions and data types as nodes. Thus,
we first need to preprocess the modification records to map
the changes to the appropriate source code entities (i.e. func-
tions or data types). Then we build the Annotated Depen-
dency Graph and annotate it with details from the modifica-

tion records such as time, and rationale. Due to size limita-
tions, we will not discuss the details of the ADG building as
it is detailed elsewhere [7].

4 CASE STUDY
To validate the usefulness of our approach we show a small
case study onPostgres. Postgresis a sophisticated open-
source Object-Relational DBMS supporting almost all SQL
constructs. Its development started in 1986 at the University
of California at Berkeley as a research prototype. Since then
it has become an open source software with a globally dis-
tributed development team. It is being developed by a com-
munity of companies and people co-operating to drive the
development of one the world’s most advanced Open Source
database software (DBMS).

In our case study we build an ADG using data beginning with
1996 when Postgres became an open source project. Build-
ing the ADG for Postgres requires 2 hours and 30 mins on a
1.8 Pentium 4 CPU. Luckily building the ADG needs to be
done only once, then we can use it to generate graphs as re-
quired. All graphs shown in this section have been generated
in under 5 seconds once the ADG was generated.

Figure 4: Zoomed-In Low-Level (Function) Call Graph for
Postgres Optimizations

Using an ADG, we can generate a call graph similar to tra-
ditional call graphs generated by parsing the latest source
code. Instead we chose to generate a more interesting call
graph that showcases the benefits of using an ADG. Figure 3
shows an example of such graph. The displayed call graph
shows changes to the call graph that

• occurred in the last month,
• and which were due to optimizations work done to

speed up the database.

Each oval represents a function. Blue ovals indicate func-
tions that have been removed from the source code, pink
ovals indicate functions that have been added to the source
code, and yellow ovals indicate functions that been modi-



Figure 3: Low-Level (Function) Call Graph for Postgres Optimizations

fied in the last month. Also, blue arrows indicate function
calls that have been removed and red arrows indicate func-
tion calls that have been added in the last month.

The graph shown in Figure 3 is too small to distinguish its
various details. In Figure 4, we show a small zoomed-in sec-
tion of the larger graph to give a better idea of the changes.
A developer visualizing the call graph can focus on their area
of interest using their visualization software.

Alternatively, we can lift the details of the graph from the
function level to the subsystem level [6]. For each function
in the call graph we locate the file that defines it, then the
subdirectory in which that file resides. We use the subdi-
rectory as the node in that lifted visualization instead of the
function. The lifted visualization is shown in Figure 5 where
each node represents a subdirectory. The new visualization
is much clearer but does not have as much details. If more
details are required then the function level visualization can
be used.

5 RELATED WORK
The work presented in this paper addresses two main streams
of research in particular, visualizing the evolution of source
code and locating features in the source code.

Visualizating Evolution
In [8] and [14], two approaches are presented to tackle
the issue of visualizing software structural changes. Both
approaches are based on studying the changes between re-
leases on a software system instead of basing their study on
changes that occurred in the source control system, which
are more granular and more detailed. They are only capa-
ble of comparing changes from one release to the next in-
stead of being able to compare on a calendar basis or even
comparing changes relative to other changes (such as ex-
amining changes that occurred before or after a particular
change). Furthermore, they do not provide techniques to fil-
ter the changes and categorize them according to their ratio-
nale.

Locating Feature in Source Code
Chen et al. have shown that comments associated with
source code modifications provide a rich and accurate index-
ing for source code when developers need to locate source
code lines associated with a particular feature [2]. We ex-
tend their approach and map changes at the source line level
to changes in the source code entities, such as functions and

data structures. Furthermore, we map the changes to depen-
dencies between the source code entities.

Murphy et al. argued the need to attach design rationale
and concerns to the source code [1, 9]. They presented ap-
proaches and tools to assist developers in specifying and at-
taching rationale to the appropriate source code entities. The
processes specified in their work is a manual and labor in-
tensive process, whereas our approach uses the source code
comments and source control modification comments to au-
tomatically build a similar structure to assist developers in
maintaining large code bases. Moreover as our approach is
automated, developers do not need to worry about maintain-
ing the outcome of the process in addition to maintaining
their source code, a challenge faced by the aforementioned
processes.

Finally, Eisenbarthet al. presented an approach to locate
features in the source code based on the integration of static
and dynamic dependencies graphs [4]. Their approach uses
a set of test cases to exercise features in the source code, then
the static and dynamic call graphs for the specific test are an-
alyzed to locate areas in the code that implement the feature.
Whereas their approach uses a combination of static and dy-
namic source code and a suite of test cases, we only use the
source code and the source code repository to locate features.
Our approach will only locate features if they were specified
in some comment in the source code or the source control
system throughout the development history of the project.
Thus in some cases using a dynamic analysis such as pro-
posed by Eisenbarthet al. will be of great value and will
complement our work.

6 CONCLUSIONS AND FUTURE WORK
In this paper we presented a new view on dependency graphs
– Annotated Dependency Graphs (ADG). ADG represents a
family of graphs which can assist maintainers as they work
on gaining a better understanding of large software system.
An ADG provides maintainers with the ability to study de-
pendencies between the software entities and limit the de-
pendencies to various criteria such as to a specific period in
time, a specific change reasons, or even a specific developer.

In future work, we plan on using ADG to extract aspects
from the source code and to build wizards that assist de-
velopers by suggesting source code entities that need to be
modified once an entity has been modified based on the co-
modification history stored in the ADG.



Figure 5: High-Level (Subsystem) Call Graph for Postgres Optimizations

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the significant contribu-
tions from the members of the open source community who
have given freely of their time to produce large software sys-
tems with rich and detailed source code repositories; and
who assisted us in understanding and acquiring these valu-
able repositories.

The figures shown in this paper were generated using the
aiSee graph layout software.

REFERENCES

[1] E. L. Baniassad, G. C. Murphy, and C. Schwanninger.
Design Pattern Rationale Graphs: Linking Design to
Source. InIEEE 25th International Conference on Soft-
ware Engineering, Portland, Oregon, USA, May 2003.

[2] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang,
S. Zhang, and A. Michail. CVSSearch: Search-
ing through Source Code Using CVS Comments. In
IEEE International Conference Software Maintenance
(ICSM 2001), pages 364–374, Florence, Italy, 2001.

[3] CVS - Concurrent Versions System. Available online
at<http://www.cvshome.org>

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating
Features in Source Code.IEEE Transactions Software
Engineering, 29(3):195–209, Mar. 2003.

[5] K. Fogel.Open Source Development with CVS. Corio-
los Open Press, Scottsdale, AZ, 1999.

[6] A. E. Hassan and R. C. Holt. Architecture Recovery of
Web Applications. InIEEE 24th International Confer-
ence on Software Engineering, Orlando, Florida, USA,
May 2002.

[7] A. E. Hassan and R. C. Holt. Understanding Change
Propagation in Software Systems. InSubmitted for
Publication, 2003.

[8] R. C. Holt and J. Y. Pak. GASE: visualizing software
evolution-in-the-large. InWorking Conference on Re-
verse Engineering, pages 163–, 1996.

[9] M. P. Robillard and G. C. Murphy. Concern Graphs:
Finding and Describing Concerns Using Structural Pro-
gram Dependencies. InIEEE 24th International Con-
ference on Software Engineering, Orlando, Florida,
USA, May 2002.

[10] M. Shaw and D. Garlan.Software Architecture: Per-
spectives on an Emerging Discipline. Prentice-Hall,
Inc., Upper Saddle River, NJ., USA, 1996.

[11] S. E. Sim. Supporting Multiple Program Comprehen-
sion Strategies During Software Maintenance. Mas-
ter’s thesis, University of Toronto, 1998. Avail-
able online at<http://www.cs.utoronto.ca/
˜simsuz/msc.html>

[12] M.-A. D. Storey, F. D. Fracchia, and H. A. M̈uller. Cog-
nitive design elements to support the construction of a
mental model during software exploration. InInter-
national Workshop on Program Comprehension, pages
17–28, 1997.

[13] W. F. Tichy. RCS - a system for version control.Soft-
ware - Practice and Experience, 15(7):637–654, 1985.

[14] Q. Tu and M. Godfrey. An Integrated Approach for
Studying Software Architectural Evolution. InWork-
shop on Program Comprehension (IWPC2002), Paris,
France, June 2002.


