
The end of the line for Software Visualisation?

Stuart M. Charters, Nigel Thomas and Malcolm Munro
Visualisation Research Group

Department of Computer Science
University of Durham,

South Road,
Durham,

DH1 3LE, UK
S.M.Charters@durham.ac.uk Nigel.Thomas@durham.ac.uk Malcolm.Munro@durham.ac.uk

Abstract

This position paper addresses the issue of how software
visualisation should develop in the future. A number of use-
ful visualisations have been developed by the software vi-
sualisation community but these have usually been through
standalone tools. Is it now time to consider if and how these
visualisation tools can be integrated into development envi-
ronments and be used as roundtrip visualisation tools. If
this is not addressed then software visualisation research
may have come to a useful end.

1 Introduction

Software visualisation is a relatively young research area
where great progress has been made in developing ideas,
representations and tools to aid program comprehension
during the maintenance and evolution of software. This de-
velopment is paralleled in the software development com-
munity where visual representations of systems have been
used to help in for example requirements capture and de-
sign [11] [7]. The representations and tools to aid program
comprehension take a variety forms from animations of al-
gorithms and data structures, through dynamic run-time in-
formation, to tools which present static view of software
structures linked to source code views [8] [9] [10] [3] [2]
[4]. Despite these advances it is time to question if the time
has come when no new advances are being made and all
advances are just variants on the old theme.

Software development is an evolutionary process, often
one of iterative refinement. Segments of code are written,
tested, refined and built upon. Software visualisation needs
to support this iterative process, if tools are stand alone the
effort to evaluate changes to code using those tools is con-

siderable.

In an ideal world the maintenance and evolution of a sys-
tem is carried out on the appropriate level of structure within
the lifecycle model because of the in built traceability be-
tween the documents that result from each phase. For exam-
ple, corrective maintenance is concerned with the code, and
changes are made at this level, whereas perfective mainte-
nance is concerned with changing requirements and hence
the changes should be made to the requirements and then
be reflected through to changes in the design documents
and the code. In practise however, maintenance and evo-
lution is carried out at the code level because the traceabil-
ity has been destroyed through excessive maintenance or it
never existed in the first place. In this situation changes are
rarely reflected in the other lifecycle documents that define
the system. Thus the need for program comprehension sup-
plemented by visualisation.

It is recognised that program comprehension occurs in
different ways, top-down, bottom-up or a combination of
the two [12]. This program comprehension can be system-
atic or as-needed, the integration of visualisation allows de-
velopers and maintainers to use whichever strategy is re-
quired or suits them best to achieve the understanding they
require to make changes. Another view of program compre-
hension is the feedback loop strategy, where the program is
compared against the mental model of the problem solution
held by the developer. The use of visualisation throughout
the implementation phase would complement this feedback
loop strategy as the developer saw the program growing vi-
sually allowing them to continually compare this against
their mental model. Work has already been done to integrate
different views to allow the use of different comprehension
strategies within a number of tools [9].

1



2 A Simple Analogy

This section draws a simple parallel between the devel-
opment of HTML pages and program code. It is not in-
tended to be a comprehensive comparison but to act as a
simple analogy to illustrate a possible way forward for soft-
ware visualisation.

When developing an HTML page one approach is to use
a simple text editor to write raw HTML and then to view
that HTML in a browser. In the maintenance of that HTML
page the maintainer will iterate between the editor and the
browser, always changing the HTML in the editor. The use
of the browser can been seen as using a visualisation of the
HTML code to check that it is correct and to get some un-
derstanding of how the HTML works. This type of use is
termed a one-way trip, in that the code (HTML in this in-
stance) is edited and the visualisation is used to give some
understanding. This can be seen as a simple analogy with
one way that program code is developed and where visuali-
sation is used to help understand some aspect of that code.
The programmer will use simple visualisation tools (such as
call graphs and control flow diagrams) to supplement their
understanding of the program source code.

Another way to develop HTML pages is to use a devel-
opment environment such as Dreamweaver. Here the main
interface is a visual one that allows WYSIWYG layout and
editing of the underlying HTML without having to resort to
understanding the HTML. Changes in the visual interface
generate or update the underlying HTML. In addition these
development environments allow the direct editing of the
underlying HTML and changes made via the textual repre-
sentation are reflected in the visual interface. This type of
use is termed roundtrip editing.

Of course it is recognised that Dreamweaver is a tool
with complete integration that operates on a somewhat re-
stricted language (HTML) that is inherently visual. The
Dreamweaver type of tool [5] [1] [6] works with HTML
because there is a one to one mapping between the HTML
tags and the visual representation. With software visualisa-
tion tools this one to one mapping is less obvious and harder
to achieve due the complexity of programming languages
and the nature of the visualisations.

Visualisation of software systems show the relationships
between the components of the system at different levels
of granularity and at different levels of abstraction. They
come in many forms and range for example, from high-
level architectural representations, through design notations
(UML) to structural representations such as call graphs and
control flow diagrams. To these may be attached attributes
that show, for example, the relationships between names
(variable, class etc.) used in systems. These visualisations
have been shown for example, using conventional node and
arcs, tables, and grids, and have utilised real life and abstract

metaphors in a two-dimensional or a virtual reality world.

3 Roundtrip visualisations

Roundtrip visualisation is used to describe visualisation
systems that are linked with the data from which they are
generated in such a manner that changes to the underlying
data updates the visualisation and changes made through the
visualisation itself are reflected in the underlying data. An
example of roundtrip visualisation for software is the con-
struction of a visualisation that represents the class structure
of a Java project and where if the structure of the classes
is modified then the visualisation is updated and similarly
if the visualisation is used as a mechanism to restructure
classes then the code reflects that restructuring.

Current visualisation tools tend to be one-way trip. One
model is where the source code is edited and this is reflected
in the visualisation but not the other way round. An exam-
ple of this is a call graph visualisation linked to a source
code editor that changes as the calling structure of the code
is modified. A further one-way trip mode is where the vi-
sualisation is edited and this is reflected in the code but not
the other way round. An example of this is the JBuilder GUI
designer where the visualisation consists of a canvas and a
palette of GUI components. The canvas can be ’edited’ in
order to change the GUI and these changes are reflected in
the java source code. However if the generated GUI java
code is edited directly then the changes are not necessarily
reflected on the canvas.

The limiting factor is that the visualisations developed so
far do not have the required properties for roundtrip visual-
isations. The current visualisations of software are at the
wrong level of abstraction or of the wrong granularity and
thus are one-way trip visualisations.

4 Conclusion

Current progress in software seems to confined to:

� improving abstractions to reduce information over-
load;

� developing new representations using abstract or real
world metaphors; and

� improving layout of existing representations;

and are instantiated in one-way trip standalone tools. These
are all laudable research aims and can sustain software vi-
sualisation research for a while longer.

The way forward for software visualisation is to address
the issues of roundtrip visualisation. To support roundtrip
visualisation an alternative approach is required, partial in-
tegration with the development environment is needed to

2



allow for access to the source data by the visualisation and
for changes made in the visualisation to be reflected in the
development environment. However this integration must
be sufficiently flexible, for example by the use of a standard
integration method for visualisations, that different types of
visualisations can easily be integrated and that visualisa-
tions can be integrated with different development environ-
ments. The roundtrip nature of the integration would need
to ensure that changes made using the visualisation are re-
flected in the source and that changes to the source were
reflected in the visualisation.

If this issue is not addressed then it really is the end of
software visualisation. We must develop new visualisations
that can easily integrate as roundtrip visualisations.

References

[1] Adobe. Pagemill. http://www.adobe.com/, 2003.
[2] J. Cain and R. McCrindle. Software visualisation using c++

lenses. Proccedings of 7th International Workshop on Pro-
gram Comprehension, May 1999.

[3] C. Knight and M. Munro. Comprehension with(in) vir-
tual environment visualisations. Proccedings of 7th Inter-
national Workshop on Program Comprehension, May 1999.

[4] C. Knight, M.-A. Storey, and M. Munro. First IEEE Interna-
tional Workshop on Visualizing Software For Understanding
And Analysis, 2002.

[5] Macromedia. Dreamweaver. http://www.dreamweaver.com/,
July 2003.

[6] Netscape. Netscape composer. http://www.netscape.com/,
2003.

[7] P. W. Parry, M. B. Ozcan, and J. I. Siddiqi. The applica-
tion of visualization to requirements engineering. Technical
report, Computing Research Centre, Shefield Hallam Uni-
versity, England, 1998.

[8] M. P. Smith and M. Munro. Runtime visualisation of ob-
ject orientated software. First IEEE International Workshop
on Visualizing Software For Understanding And Analysis,
2002.

[9] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Muller.
On integrating visualization techniques for effective soft-
ware exploration. In Proceedings of the IEEE Symposium
on Information Visualization, 1997.

[10] C. M. B. Taylor and M. Munro. Revision towers. First IEEE
International Workshop on Visualizing Software For Under-
standing And Analysis, 2002.

[11] A. Teyseyre, R. Orosco, and M. Campo. Requirements vi-
sualization. Workshop de Investigadores en Ciencias de la
Computacin(WICC’99), 1999.

[12] A. Von-Mayrhauser and A. M. Vanns. Program comprehen-
sion during software maintence and evolution. IEEE Com-
puter, August 1995.

3


