

KScope: A Modularized Tool for 3D Visualization of Object-Oriented Programs

Timothy A. Davis Kenneth Pestka Alan Kaplan
Department of Computer Science Department of Computer Science Panasonic Technologies

Clemson University Clemson University Princeton, NJ
tadavis@cs.clemson.edu kapestk@clemson.edu kaplana@research.panasonic.com

Abstract
Visualization of software systems is a widely used tech-
nique in software engineering. This paper proposes a 3D
user-navigable software visualization system, termed
KScope, that is comprised of a modular, component-
based architecture. The flexibility of this construction al-
lows for a variety of component configurations to vali-
date experimental software visualization techniques. The
first iteration of KScope is described and evaluated.

1. Introduction

Software visualization has become an important means
by which software engineers can study and understand
complex software systems at any stage during the soft-
ware lifecycle – from initial development to legacy code
maintenance. Currently, a popular 2-dimensional (2D)
approach to software visualization is represented by the
Unified Modeling Language (UML). The application of
3D visualization systems to software engineering is chal-
lenging, as in 2D representations, since the software com-
ponents are abstractions that have no immediately
recognizable shape or substance and choices must be
made as to the physical object used to represent each
software component.

While both 2D and 3D representations can take advan-
tage of shape recognition, symbol set knowledge, and the
color awareness abilities of viewers, 3D systems add
depth, motion, distance, transparency, animation and spa-
tial orientation as data transmission tools. These addi-
tional attributes allow a larger set of data values to be
incorporated into a single view. Accordingly, a large
amount of information can be communicated more
quickly and with a higher assimilation rate [10]. The
ability to navigate a 3D visualization space further allows
a software engineer to transition from one view to another
in a seamless manner.

As a means of testing various possible aspects of a 3D
visualization system, a modularized tool, termed KScope,

has been designed and a prototype implementation has
been developed. The advantage of a component-based
system is that it facilitates the creation of experiments in
which some components are fixed, while others are al-
tered or replaced in order to compare the efficiencies of
various configurations. For instance, parsers for various
languages might supply the definition of scene objects
while the rest of the components are held fixed in one
configuration, and thus allow a realistic evaluation of the
degrees of variation in the output based on the language
input.

The development of the KScope visualization system
is planned as an iterative process. The first iteration de-
fines the following five dimensions as specified in [8] :
� task – provide an analysis of java programs
� audience – researchers in the implementation of

visualization systems
� target – Java class files as the data source
� representation – primitive visual objects in the

analysis
� medium – a navigable 3D visualization with a sys-

tem architecture that allows for the easy substitution
of alternate components.

Subsequent iterations will expand the definition of these
dimensions.

Several key issues arise when formulating a software
visualization system: finding a suitable symbol set for
representing abstract program concepts, placing these ob-
jects in 3D space to enhance understanding and minimize
confusion, ensuring the system scales across systems of
varying size, and finally, selecting some form of criteria
for evaluating the effectiveness of the visualization.

2. Related Work

Research in the area of 3D visualization over the last
few decades has covered many areas. Several studies [4]
[10] validate that visualization of software systems in-
creases the ability to acquire knowledge of a software sys-

tem, and that 3D visualizations are more effective than
2D ones in transmitting information to a software engi-
neer. The exploration of visualizing C++ programs as a
means of increasing program comprehension is illustrated
by [4]. This work explores the basic visual symbol set of
objects and relationships in a 2D system and justifies
visualization as an important learning tool in understand-
ing software.

A 3D representation increases the software engineer’s
information perception over that of a 2D representation
[10]. Additionally, combining motion (e.g., rotation of
the scene) and a 3D stereo view (e.g., through navigation)
is a useful visualization technique to aid in understanding
the structure of object-oriented code. In many instances,
3D visualization overcomes the limitations of 2D visuali-
zations and in minimizing user confusion and increasing
data comprehension [7].

The use of 3D visualization may be especially useful in
understanding class structure of Java programs, as evi-
denced by the J3Browser tool [1]. Here, transparency,
depth, ordering in space, and motion are used to convey a
large amount of information in a highly effective manner.
Of course, object placement and structure of the visual
scene are significant in the overall success of the system.

Symbol sets and object metaphors are also significant
in creating effective software visualizations. One symbol
set, the “Software World” metaphor [5], uses a cityscape
based on classes represented as districts within a city,
with each district composed of buildings that represent
class methods. This type of symbol set can be effective,
but in all cases, the symbol set should reduce the com-
plexity of the concept being visualized [6].

More recent customized symbol sets, such as the static
shaded 3D symbols in [3], are also effective in user un-
derstanding as compared to the standard UML class dia-
gram symbols. The symbols in this set are constructed
using a basic symbol alphabet known as geons [2] and
outperform the UML set in all the illustrated experiments.

In evaluating the effectiveness of 3D visualization sys-
tems, two distinct elements should be considered: repre-
sentation of objects and the mode of visualization [11].
The first element involves the representation of abstract
concepts as physical entities, and covers the symbol set

used in the visualization. The second set of criteria deal
with the visualization itself. These criteria will be used in
assessing the effectiveness of KScope.

3. Implementation

3.1 Architecture

The implementation of the KScope tool is based on the
following of components (see Figure 1):
� KScope Visualization System – acts as the main

driver and calls the other modules in the order
shown along the arrow connectors

� Program Parser Module – extracts meaningful in-
formation about the structure of the program under
inspection

� Spatial Coordinate Module – determines the loca-
tion in 3D space of each of the scene objects

� Display Module – maintains the interactive 3D envi-
ronment on a chosen visual system

Java, a reflective language, was chosen as the language
to be analyzed by this first iteration of the KScope visu-
alization tool. The extensive Java Byte Code Engineering
Library (BCEL) [??] is freely available and allows for
easy implementation of the parsing stage. The initial
symbol set is made up of simple primitive objects includ-
ing cubes, pyramids, and lines that can be rendered
quickly in the display component. KScope uses the
Java3D graphics library because of its cross-platform ca-
pabilities and the ease of configuring across various dis-
play devices.

Our sample test case is based on classes and interfaces
coded in such a way as to illustrate five UML relationship
types represented within the main class, and within the
classes and interfaces used by the main class. Classes are
named to show their relationships with the class under
analysis. For example, the parent class of Child_Main_1
class is named “Parent.” The types of relationships illus-
trated include: inheritance, association, dependency,
composition, and implementation. Inheritance in Java is
based on extending the functionality of a parent class,
while implementation is based on an implementing class
defining the methods of the interfaces. There is an
association relation between classes when a reference to a
class object existing outside the class under analysis is
passed as an argument to a class constructor. A depend-
ency exists where a class object is an argument to a
method of the class under analysis. A composition rela-
tion exists when a class object is created within the class
under analysis and has a lifetime less than or equal to the
lifetime of the class (e.g., a class object as an attribute of
a class).

Figure 1: KScope architecture

Figure 2 shows our test case as analyzed by the 2D
visualization system, Together Version 6.0 [9]. The en-
tire static class representation uses standard UML nota-
tion to represent the various relations.

Figure 3 shows the same example test case as analyzed
by KScope. In KScope, coloring is used as a significant
element in defining symbols. A multicolored cube repre-
sents the main class (i.e., the class containing the main
method) under analysis. The cube shape is used to indi-
cate a class, while a pyramid indicates an interface. The
dark blue shaded cubes represent what are called termina-
tor classes, which are those classes defined outside the di-
rectory of the class under analysis, including the standard
Java library classes and other predefined libraries. Ter-
minators are primarily used to limit the extent of the
analysis. The light purple pyramids represent interfaces,
while the light green pyramid represents a terminator in-
terface. The color of the connecting line indicates the re-
lationship of the connected objects: association is red,
dependency is blue, composition is magenta, implementa-
tion is black, class inheritance is green, and interface in-
heritance is yellow.

Two forms of text-based information are available to
the user: class and interface names, and additional infor-
mation displayed by selection with the left mouse button.
For classes and interfaces in the current directory, a
BCEL-derived analysis appears; in the case of termina-
tors, the appropriate JavDoc appears.

3.2 Object Placement

Within KScope spatial orientation is used to indicate
the direction of relationships. Class inheritance proceeds
upwards, as indicated by the green vertical lines connect-
ing classes. An interface is placed on the horizontal plane
of the class that implements it, while interface inheritance,
like the class method, is indicated vertically. The compo-
sition, dependency and association relations are placed
below the main class with appropriately colored connect-
ing lines. Terminators are place above the main class.

The placement of each type of object is determined by
separate placement algorithms. The main class is always
placed at the origin of the display universe (0, 0, 0).
Classes that are part of an inheritance hierarchy are
placed above their respective child class (i.e., parent
classes are always higher than their children). Related
classes are set in place based on conical calculation; that
is, a count of the related classes is used to divide a circle
into equal arcs with classes placed at the end point of
each arc. The entire circle is displaced on the negative Y
axis based on the generation of the parent class. The ra-
dius of a placement circle is based on the number of ob-
jects in the set and the number of generations below the

main class. The terminator classes are placed in a similar
manner with displacement on the Y-axis in a positive di-
rection. Interfaces are offset in the positive X direction
with inheritance in a vertical displacement.

3.3 User Navigation

User navigation is performed via the keyboard (see
Table 1).

4. Results

Figure 3 shows the initial view of the test case under
analysis. The user can select (through a drop-down
menu) three other views: related classes, interfaces and
their related classes, and terminators, as shown in Figures
4, 5 and 6, respectively. In all of the views, the entire
software representation initially rotates at a constant rate.

Table 1 Keyboard navigation

Key Action
� move viewpoint left
� move viewpoint right
�
 move viewer toward objects

�
 move viewer away from objects

page up move visual objects up (viewpoint down)
page down move visual objects down (viewpoint up)
= return to start view

Figure 2: Together 6.0 class analysis

The user has the option to start or stop the rotation as de-
sired. Note that Figures 2 and 3 analyze the same system.

In each view an object can be inspected by left clicking
on it. This brings up a pop-up window (see Figure 7)
with a textual description of the class or interface, as ex-
plained in Section 3.1. Various details of the class are
listed within this text area. Additional items can also be
included; the items shown were selected for brevity.

A complex system can create a complex visualization,
as shown in Figure 8 (KScope’s self analysis); therefore,
the system includes a user choice of level of detail. The
user can right click on a class to change the view to one
that contains the class and terminators related to that class
(see Figure 9).

4.1 Evaluation

The evaluation of KScope is based on the criteria dis-
cussed in Section 2 [11]. First, the abstract representation
contained in the system is considered:
� individuality – color is used to express the individu-

ality of the types of objects
� distinctive appearance – classes are distinguished

from interfaces by 3D shape

� high information content – colors, shape and text are
used to present data to the user

� low visual complexity – primitive shapes, such as
the cube and pyramid, keep visual complexity low

� scalability of visual complexity and information
content - KScope performs well for small to medium
sized programs, but the scalability to large programs
has yet to be demonstrated

� flexibility for integration into visualizations - the
flexibility of the overall system is reduced when
color is applied as a distinguishing characteristic to
the object symbols (i.e., color is no longer available
as a characteristic of some other aspect of the analy-
sis); however, such tradeoffs are often necessary

� suitability for automation - selection of simple
primitives require low processor time to display

When considering the visualization criteria as pertain-
ing to KScope the following is noted:
� simple navigation with minimum disorientation –

the small number of keyboard and mouse commands
makes KScope's user interface extremely simple

� high information content – large amounts of infor-
mation is presented in each view

� well-structured with low visual complexity – ar-

Figure 3: KScope: all views

rangement of the objects in hierarchical cone-like
formations represents a structuring of the visualiza-
tion; however, the arrangement of objects with a
multitude of connector lines does lead to a complex
visualization; rotation of the scene, as well as select-
able views for reduced object sets and relationships,
gives the viewer an enhanced understanding of the
virtual space and increases the ability to compre-

hend the relationships of the objects
� varying levels of detail - the user’s ability to select a

class and view the related terminals is a direct appli-
cation of this criterion

� resilience to change – as the views are changed, re-
lationships of objects is maintained in either a sub-
tractive or additive selection of views

� good use of visual metaphors – no attempt was
made to find visual metaphors

� approachable user interface – the limited controls
and simple selection process of the user interface
satisfy this criterion

� integration with other information sources – the text-
based representation of the object integrates the 3D
view with another source of information

� good use of interaction – user interaction with the
objects is shown through the ability to navigate the
visual space and to select alternate sources of
information

� suitable for automation – the system is fully auto-
mated in the generation of the visualization.

5. Conclusion and Future Work

Future work will focus on additional spatial coordinate
selection algorithms, symbol sets, and language parsers.
Further additions to the symbol library could be achieved
by extending the “geon” symbol alphabet [3] into a vir-
tual environment and thus, greatly expand the number of
geon-defined objects and the variety and number of rela-
tionships expressed in a single view.

Figure 4: KScope: “ Relationships” view

Figure 5: KScope: “ Interfaces” view

Figure 6: KScope: “ Terminators” view

Figure 7: Class pop-up

The modular structure of KScope lends itself to vari-
ous extensions. Improvements to the system would in-
volve additions to the current number of alternative
modules. By increasing the variety of components, such
as additional selections of the type of spatial coordinate
placement algorithms, and additional symbol sets for the
symbol library module, the tool will be made the basis for
a series of experiments as to the quality of information
presented to the user and the user's ability to comprehend
the information.

Overall KScope presents the visualization of software
in an interesting and visually stimulating manner. The
colors, spatial placement, alternate views, multiple meth-
ods of presenting data, and viewer interaction create an
effective educational environment for the user. Increas-
ing the functionality of the system and experimenting with
different configurations will build on the strengths illus-
trated by KScope.

6. References

[1] K. Alfert and F. Engelen, “Experiences in 3-Dimensional

Visualization of Java Class Relations,” Transactions of

the SDPS, September 2001, Vol.5, No. 3, pp 91-106.
[2] I. Biederman, “Recognition-by-Components: A Theory of

Human Image Understanding,” Psychological Review,
Vol. 94, No. 2, 1987, pp 115-147.

[3] P.Irani, C.Ware and M.Tingley, “Using Perceptual Syntax
to Enhance Semantic Contents in Diagrams,” IEEE Com-
puter Graphics and Applications, (in Press)

[4] D. F. Jerding and J. T. Stasko,”Using Visualization to
Foster Object-Oriented Program Understanding,” Techni-
cal Report GIT-GVU-94-33, July 1994.

[5] C. Knight and M. Munroe, “Virtual but Visible Soft-
ware,” Visualization Research Group, Centre for Soft-
ware Maintenance, Department of Computer Science,
University of Durham, Durham, DH1 3LE, UK. 1998.

[6] C. Knight and M. Munroe, “Comprehension with[in] Vir-
tual Environment Visualization,” Visualization Research
Group, Centre for Software Maintenance, Department of
Computer Science, University of Durham, Durham, DH1
3LE, UK. 1999.

[7] H. Koike, “The Role of Another Spatial Dimension in
Software Visualization,” ACM Transactions of Informa-
tion Systems, Vol. II, No. 3, July 1993 pp 266-286.

[8] J. I. Malectic, A. Marcus and M. Collare, “A Task Ori-
ented View of Software Visualization,” VISSOFT 2002,
June 26, 2002.

[9] http://www.borland.com/together/index.html, 2003.
[10] C. Ware, D. Hui and G. Franck, “Visualizing Object Ori-

ented Software in Three Dimensions,” CASCON 93 Con-
ference Proceedings, Toronto, Ontario, Canada, October,
1993, pp 612—620.

[11] P. Young and M. Munroe, “Visualizing Software in Vir-
tual Reality,” 6th International Workshop on Program
Comprehension: IWPC'98.

Figure 8: KScope analyzes KScope

Figure 9: Level of detail

