
Demonstration of Advanced Layout of UML Class Diagrams by SugiBib

Holger Eichelberger
chair of computer science II

Würzburg University
Am Hubland, 97074 Würzburg, Germany

eichelberger@informatik.uni-wuerzburg.de

Jürgen Wolff von Gudenberg
wolff@informatik.uni-wuerzburg.de

1 Introduction

The Unified Modeling Language (UML) [7] has become the
standard for specifying object-oriented software systems.
Some of the tools are primarily designed to work on a di-
rect mapping between the design diagrams and the software
and vice versa. Since understanding the software is usu-
ally using more abstract concepts than those defined in pro-
gramming languages, restriction of the UML used in these
tools is not permissible. On the other side, visualization
of changes to the software implementation and design doc-
uments require sophisticated layout algorithms. In [2] we
have shown that most of the tools are not sufficient in that
field.

2 Layout of UML class diagrams

Obviously a UML class diagram can be described as graph
G = (V,E) with nodes V and edges E. V can then be par-
titioned into nodes of different types: packages and classes
may be nested (nested nodes might be structured accord-
ing to different criteria like coupling [3], subsystems [7]
or component classifiers in the new UML 2.0), annotations
can be attached to all model elements, association classes
(classes attached to an association can be part of other as-
sociations or generalization relations) and natural or arbi-
trary clusters (like design patterns or higher associations).
According to [1, 3] E should be partitioned into a set of
hierarchical edges EH and a set of non-hierarchical edges
EN using heuristics or user defined preferences. Different
types of edges have to be respected: Generalizations, asso-
ciations, aggregations, compositions and dependencies with
different textual and symbolic adornments. Adornments of
edges may not overlap adornments of other edges or node
boxes. Constraints concerning two or more associations
(denoted by a dashed line connecting the associations) have
to be laid out.
The layout calculated by the algorithm should be optimized
for a clear representation of a software design diagram, easy

to read, understandable and therefore a large set of crite-
ria for optimal readability according to semantical reasons
must hold beside usual graph drawing criteria like overall
number of edge crossings and bends [1, 3].
The layout algorithm is clearly explained in [1, 5].

3 Architecture of the framework

SugiBib is a pure Java framework which primarily was
designed to implement a general, highly configurable,
component-based version of the Sugiyama algorithm [10].
The components can be combined in different sequences to
implement other layout algorithms. Because of the compo-
nent architecture information hiding is preserved between
two consecutive steps. Nodes and edges of the framework
are parametrized by their individual graphical information.
SugiBib was instantiated to represent UML class diagrams
and provides interactive frontends in AWT and Swing as
well as online and batch rendering servers. Advanced fea-
tures of UML class diagrams like association classes and
annotations are treated by an extension of the Seemann al-
gorithm [9].
Currently SugiBib accepts input in UMLscript [4], a pro-
gramming language for object oriented design. The stan-
dard XML Metadata Interchange format XMI [8] is ex-
tended by different vendors with their proprietary nota-
tion for layout information. Therefore a general import
of XMI into SugiBib can be realized only by extensive
XSLT preprocessing. The current implementation is pre-
pared for the XMI version produced by MagicDrawUML
(www.nomagic.com). As an intermediary format while
processing XMI, the XML version of UMLscript called
XUMLscript is produced. Therefore SugiBib is able to ac-
cept plain XUMLscript as input, too. Additionally we are
working to read diagrams in the new UML 2.0 Diagram In-
terchange format [6] XMI[DI] or XMI[UML+DI], respec-
tively.
The output format we produce is the laid out graph and
as a proprietary textual XML representation of the internal



graph to be postprocessed by diff, e.g., currently for debug-
ging purpose only. Output of standardized XML (XMI[DI]
or XMI[UML+DI]) is planned for the near future.

Current information on SugiBib can be obtained from
www.sugibib.de.

References

[1] H. Eichelberger. Aesthetics of class diagrams. In Proceed-
ings of the First IEEE International Workshop on Visualiz-
ing Software for Understanding and Analysis, pages 23–31.
IEEE, 2002.

[2] H. Eichelberger. Evaluation-report on the layout facilities
of UML tools. TR 298, Institut für Informatik, Univer-
sität Würzburg, jul 2002. Institut für Informatik, Universität
Würzburg.

[3] H. Eichelberger. Nice class diagrams admit good design?
In Proceedings of the 2003 ACM symposium on Software
visualization, pages 159–ff. ACM Press, 2003.

[4] H. Eichelberger and J. W. von Gudenberg. UMLscript
sprachspezifikation. TR 272, Institut f̈ur Informatik, Univer-
sität Würzburg, feb 2001. Institut für Informatik, Universität
Würzburg.

[5] H. Eichelberger and J. W. von Gudenberg. On the visual-
ization of Java programs. In S. Diehl, editor, Software Vi-
sualization, State-of-the-Art Survey, volume 2269 of Lec-
ture Notes in Computer Science, pages 295–306. Springer,
Springer, 2002.

[6] OMG. UML 2.0 Diagram Interchange. Second (Fi-
nal) Revised Submission, OMG document number
ad/2002-12-20, Version 1.0, January 6, 2003, via
http://www.xml-strategie.de/files/UML2DIRevSub.pdf.

[7] OMG. Unified Modeling Language Specification. Version
1.5, March 2003 via http://www.omg.org.

[8] OMG. XML Metadata Interchange (XMI). Version 1.1, via
http://cgi.omg.org/docs/ad/99-10-02.pdf.

[9] J. Seemann. Extending the sugiyama algorithm for drawing
UML class diagrams: Towards automatic layout of object-
oriented software diagrams. Lecture Notes in Computer Sci-
ence, 1353:415–423, 1997.

[10] K. Sugiyama, S. Tagawa, and M. Toda. Methods for vi-
sual understanding of hierarchical system structures. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-
11(2):109–125, Feb. 1981.

Figure 1. A part of the static structure of a GUI
application drawn by SugiBib.


