
UML Class Diagrams - State of the Art in Layout Techniques

Holger Eichelberger
chair of computer science II

Würzburg University
Am Hubland, 97074 Würzburg, Germany

eichelberger@informatik.uni-wuerzburg.de

Jürgen Wolff von Gudenberg
wolff@informatik.uni-wuerzburg.de

Abstract

Even if the standard for specifying software, the Unified
Modeling Language, is known in different versions to every-
body, CASE tool vendors did not implement all basic fea-
tures. Even with class diagrams, many features of the stan-
dard are ignored. Applying the layout algorithms of these
CASE tools to the user defined diagrams, usually horrible
results are produced, because state-of-the-art techniques in
drawing these diagrams are not respected by the vendors,
too.
In this paper we give an overview on the current UML
tool implementations, the research in the field of drawing
class diagrams automatically and the efforts in convincing
the community of an agreement on basic aesthetical princi-
ples for UML class diagrams in order to simplify reading
and understanding of standardized visualization of static
aspects of software.

1. Introduction

In software engineering the Unified Modeling Language
(UML) has advanced as the standard for graphically specify-
ing static and dynamic aspects of software. In 2003 the Ob-
ject Management Group (OMG) released the version 2.0 of
the UML. The number of different diagram types increased
from 9 to 13, new types of diagrams have been introduced
and some of the older types have significantly increased in
complexity. In [4] we compared the implementations of
the UML features and the automatic layout facilities of 42
current computer aided software engineering (CASE) tools
and agree to the informal statements of others, that most of
the CASE tools have not reached the conformity of UML
versions older than 1.3 Regarding the automatic layout fea-
tures, the tools usually produce horrible results by trans-
forming the layout and implicitely and accidentally chang-
ing the semantics of the complete diagram.
In the next section we summarize the results of the CASE

tool overview, then we mention the set of basic aesthetic
principles which we advocate as a set of basic rules to be
respected by software engineers as well as tool vendors and
finally we present the results of state-of-the-art graph draw-
ing algorithms for class diagrams. References to other work
are included in the individual sections.

2. UML Tools - an Overview

”For more then one decade vendors have under deliv-
ered the promises of object modeling technologies. As a re-
sult, object modeling tools are in disrepute in many develop-
ment organizations.”[10] ”As for modeling tools, the author
knows of none that fully implements the UML 1.1 seman-
tics and notation (adopted three years ago), let alone one
that completely or correctly implements the current UML
1.3 specification (which was adopted a year ago)” [10, oc-
tober 2000]. As shown in [4] even in July 2002 the sit-
uation on UML conformity and implementation of layout
algorithms was nearly the same.
For our test, we tried to use the diagram shown in figure 1
as input to the tools and then applied the automatic layout
mechanisms if present. First problems arised while trying
to define the test diagram within the tool:

1. Most tools are too implementation-specific. Model el-
ements visualizing abstract concepts which cannot be
directly realized in a programming language like as-
sociation classes, higher associations, constraints and
even comments are not present. Since most tools are
not able to correctly produce code for the different re-
sponsibilities of associations, these tools should omit
at least associations, too.

2. A lot of tools implement packaging mechanisms as
logical view only. It is not possible to use classes
within packages (extremely useful when visualizing
coupling and cohesion or applying the facade design
pattern). The alternative concept, the anchor edge, is



Note

Note

class 1

class 2

class 3 class 4

class 5

class 6 class 7

class 8 class 9 class 10

class 11

testsub

Figure 1. The test diagram in [4] which shows
classes within a package, relations across
package borders, two association classes in
further relations, a ternary association, two
nodes and two reflective associations.

usually not present. Other package-like elements like
subsystems or models are not present in most tools, ei-
ther.

3. Nearly each tool implements its own input philosophy
- as a users wish to the vendors we propose the speci-
fication of a user interface standard for CASE tools in
order to increase usability and to simplify the use of
multiple tools.

A tool which claims to be conformant to the UML in
any given version should realize the complete specification
without any restrictions!
The result of applying the automatic layout mechanism on
individual tools is depicted in the figures 2 to 5. Applying
the layout mechanism twice or more times sometimes pro-
duced different results. Screenshots of the entire screen are
shown in [4].

3. Rules for the Layout of a Class Diagram

Unfortunately most layout algorithms on class diagrams
do not adhere to any aesthetic principles. Different sur-
veys [13, 14, 15] on class diagrams have been published
but most of them rely on aesthetical principles taken from
graph drawing without respecting the underlying semantics.
The latest results show that there is not a uniform user pref-
erence on the regarded aesthetic principles.
In [3, 6] we discussed basic issues for semantic based aes-
thetic criteria in order to provide intuitive rules for drawing

Figure 2. Rational AnalystStudio 2002.05.20

Figure 3. Popkin System Architect 8.5.16

class diagrams. The rules are validated by references to the
UML specification, to HCI results and results from software
engineering. Some of the rules are mentioned below in a
compressed form:

1. Enforce hierarchy as the most appropriate ordering cri-
terion for edges in a class diagram. Since software
engineers are used to thinking hierarchically, contain-
ment, inheritance, realization, aggregation, composi-
tion and user defined hierarchies should be taken into
account. Even the latest publications on other layout
algorithms [6, 9] adhere to that principle.

2. Respect spatial relationships to encode coupling, cohe-
sion and importance of parts of the diagram.

3. Visualize the natural clustering of nodes according to
semantical reasons like containment, n-ary associa-
tions and patterns.

4. Avoid crossings and overlappings of model elements.



Figure 4. TNI OpenTool 3.2.15 (poor layout
award) - part of the diagram was cutted of
due to space limitations (red line)

5. Center position of selected nodes (n-ary associations,
pattern nodes).

6. Respect the vicinity of association classes, notes and
constraints.

7. Clearly assign adornments to edges and reflective as-
sociations to the connected classes.

8. With the minimum priority respect other graph draw-
ing criteria.

Intuitively these rules lead to readable diagrams and there-
fore can reduce the cost of communication when inter-
changing software development diagrams. Additionally
these rules can be used as definition of a measurement
framework for the objective comparison of tool features and
layout algorithms. Unfortunately validating these rules by
user experiments is a hard task: high degree of freedom in-
duced by the number of criteria, the need for qualified and
experienced software engineers instead of UML-novice stu-
dents as users to be questioned and low UML tool support
so far since no standardized diagram exchange format for
UML diagrams was defined.

4. Drawing a Class Diagram

For other UML diagrams like activity diagrams (flow
layout) and state charts [2, 1] appropriate algorithms have
been proposed but unfortunately these algorithms are usu-
ally not implemented in CASE tools so far. The large vari-
ety of model elements available for use in UML class dia-
grams are not respected by most of the algorithms proposed
so far [6, 9, 8, 16, 17]. These algorithms mainly focus on

Figure 5. NoMagic MagicDrawUML 7.0 beta
(best layout and UML conformity award)

classes, inheritance relations and association relations but
not on nested package and class structures and more so-
phisticated model elements like association classes, higher
associations or constraints.
The following listing is a brief description of our current
(revised) approach. Detailed descriptions and relations be-
tween the algorithm and the aesthetic rules mentioned in
section 3 can be found in [3, 5, 7].

1. Identify a pseudohierarchy by heuristics or by respect-
ing a user defined hierarchy.

2. Perform a semantic ordering to release implicit de-
pendencies between the sequence of definitions of the
model elements in the input and the layout result.

3. Insert containment relations of model elements as hi-
erarchical edges.

4. Compress association classes and their edge connector
nodes into compound nodes.

5. Convert annotations and connected model elements to
compound nodes.

6. Remove reflexive associations in order to simplify
the implementation. Represent the edge information
within the connected classes in order to be drawn as
edges later on.

7. Transform the graph to an acyclic graph.

8. Guarantee a virtual root.

9. Calculate the ranking of the hierarchically connected
nodes in one step, calculate the layer positions of only



non-hierarchically connected nodes in a second step.
Optimize the layered structure of the graph for UML
class diagram layout.

10. Calculate edge crossing minimization on hierarchical
and non hierarchical edges by an incremental crossing
reduction approach. Respect cluster and containment
relations in this step.

11. Remove containment information.

12. Calculate the coordinates of nodes and edges. Con-
tained model elements are treated in the same step in
order to respect non-hierarchical edges.

13. Expand compound nodes for association classes.

14. Expand and layout notes.

Preserving the the mental map [11] is extremely impor-
tant when iteratively changing class diagrams while anal-
ysis and design phase as well as in roundtrip-engineering.
To implement incremental layout, phases for compressing
and preserving the positions of unchanged nodes can be in-
serted at the beginning and the end of the algorithm. As

Figure 6. The test diagram from [4] drawn
by SugiBib. Visualization of coupling and
cohesion is enforced (the shaded area is a
non-UML feature and drawn for demonstra-
tion purpose only), the relative complexity of
classes is shown as a decorative stereotype.
Notes are not implemented so far.

a proof of concept the algorithm has been implemented as

Figure 7. Part of the relations between differ-
ent Java library packages and a simple graph-
ical user interface implementation.

a prototypical framework written in pure Java. The fig-
ures 6 to 8 show different results produced by our algo-
rithm. Current information on SugiBib can be obtained
from www.sugibib.de.

4.1. Conclusions

In this paper we have shown that the current imple-
mentations of CASE tools neither implement an appro-
priate version of the UML nor provide layout algorithms
which represent the state-of-the-art in drawing class dia-
grams. The first restricts the user to software models which
are implementation-specific and far away from the desired
level of abstraction. Defining an own subset of the UML
restricts the usability and conformance to future standards
like MDA [12]. The second requires more manual ad-
justments, requires more time and disables effective engi-
neering techniques like reverse-engineering and roundtrip-
engineering. Since designing layout algorithms is not one
of the core competences of a CASE tool vendor, it is ad-
visable to disable their individual algorithms (especially if
the undo function is not fully functional) or to implement
a warning message as long as more appropriate algorithms
are implemented.
Since different algorithms may produce different draw-
ings which might be nice to different individuals, a UML
based standard for diagram layout and interchange aesthet-
ics should be proposed. We have shown a subset of our pro-
posal for aesthetic principles for class diagrams. As a con-
sequence of applying these principles the readablility and
understandability is enhanced.
Finally we have mentioned the problems of the other ap-
proaches to realize the automatic layout of class diagrams.
Most of the other algorithms extend the topology-shape-
metrics approach without a description on how to realize



Figure 8. A class hierarchy (respecting inher-
itance relations). The nodes are colored and
grouped according to package containment
without showing the packages itselves.

the more complex situations which arise from using more
sophisticated model elements. Sometimes other hierarchi-
cal or even force-directed approaches are mentioned in lit-
erature but usually only the layout of classes and simple
relations is respected.
Since most tool vendors do not fully implement older ver-
sions of the UML it will be a long road for a complete re-
alization of the new UML version 2.0 Since the complex-
ity of most diagrams has increased, most of the traditional
algorithms (only working on structure not on semantics)
like flow-layout for activity diagrams are not appropriate
any more. For class diagrams at least component classifiers
(class-like model elements furtherly structured by classes or
components) and the graphical representation for provided
and required interfaces/components have to be respected by
a layout algorithm. Since our algorithm is capable of work-
ing on nested and structured elements it can easily be up-
dated. Even if it is known, that adding more constraints to
an algorithm the runtime is increased and low-quality re-
sults (if even a result can be computed) is the risk we be-
lieve, that this can be respected by introducing additional
criteria into the new edge crossing reduction algorithm. Ad-
ditionally a slight update to our set of aesthetic principles is
necessary.

References

[1] R. Castello, R. Mili, and I. G. Tollis. Automatic layout of
statecharts. Software – Practice and Experience, 32(1):25–
55, 2002.

[2] R. Castello, R. Mili, and I. G. Tollis. A framework for the
static and interactive visualization of statecharts. Journal of
Graph Algorithms and Applications, 6(3):313–351, 2002.

[3] H. Eichelberger. Aesthetics of class diagrams. In Proceed-
ings of the First IEEE International Workshop on Visualiz-
ing Software for Understanding and Analysis, pages 23–31.
IEEE, IEEE, 2002.

[4] H. Eichelberger. Evaluation-report on the layout facilities
of UML tools. TR 298, Institut für Informatik, Univer-
sität Würzburg, jul 2002. Institut für Informatik, Universität
Würzburg.

[5] H. Eichelberger. Sugibib. In P. Mutzel, M. Jünger, and
S. Leipert, editors, Proc. Graph Drawing, 9th International
Symposium, GD ’02, volume 2265 of Lecture Notes in Com-
puter Science, pages 467–468. Springer, Springer, 2002.

[6] H. Eichelberger. Nice class diagrams admit good design?
In Proceedings of the 2003 ACM symposium on Software
visualization, pages 159–ff. ACM, ACM Press, 2003.

[7] H. Eichelberger and J. W. von Gudenberg. On the visual-
ization of Java programs. In S. Diehl, editor, Software Vi-
sualization, State-of-the-Art Survey, volume 2269 of Lec-
ture Notes in Computer Science, pages 295–306. Springer,
Springer, 2002.

[8] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert,
and P. Mutzel. Caesar automatic layout of UML class dia-
grams. In P. Mutzel, M. Jünger, and S. Leipert, editors, Proc.
Graph Drawing, 9th International Symposium, GD ’02, vol-
ume 2265 of Lecture Notes in Computer Science, pages 461–
462. Springer, Springer, 2002.

[9] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert,
and P. Mutzel. A new approach for visualizing UML class
diagrams. In Proceedings of the 2003 ACM symposium on
Software visualization, pages 179–188. ACM, ACM Press,
2003.

[10] C. Kobryn. Modeling components and frameworks with
UML. Communications of the ACM, 43(10):31–38, 2000.

[11] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout ad-
justment and the mental map. Journal of Visual Languages
and Computing, 6(2):183–210, 1995.

[12] OMG. Model driven architecture specification. Version 1.0,
May 2003 via http://www.omg.org.

[13] H. Purchase, J.-A. Allder, and D. Carrington. User prefer-
ence of graph layout aesthetics: A UML study. In J. Marks,
editor, Graph Drawing - 8th Internation Symposium, vol-
ume 1984 of Lecture Notes in Computer Science, pages 5–
18. Springer, Springer, 2001.

[14] H. Purchase, J.-A. Allder, and D. Carrington. Graph layout
aesthetics in UML diagrams: User preferences. Journal of
Graph Algorithms and Applications, 6(3):255–279, 2002.

[15] H. Purchase, M. McGill, L. Colpoys, and D. Carrington.
Graph drawing aesthetics and the comprehension of UML
class diagrams: an empirical study. Proceedings of the Aus-
tralian Symposium on Information Visualisation, 9, 2001.

[16] D. Spinellis. On the declarative specification of models.
IEEE Software, 20(2):94–96, 2003. March/April.

[17] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Vi-
sualization and automatic layout of graphs. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Proc. Graph Drawing,
9th International Symposium, GD ’02, volume 2265 of Lec-
ture Notes in Computer Science, pages 453–454. Springer,
Springer, 2002.


