
Exploring the Many Architectures
of a Very Large Component-based Software

Jean-Marie Favre, R. Sanlaville, J. Estublier

Adele Team, Laboratoire LSR-IMAG
University of Grenoble, France

http://www-adele.imag.fr/~jmfavre

Abstract
This paper describes the OMVT, an exploration tool

specifically designed to explore the architecture of CATIA,
a multi-million LOC software based on a component
technology. This software is developed concurrently by
more than 1000 software engineers. It can be dynamically
extended and changed by third parties without any
recompilation. Many techniques are used to deal with these
very strong requirements on software architecture.
Architectural concepts are however implicit in the source
code or are represented by means of very low level
techniques. The OMVT enables to cope with this problem by
providing stakeholders the architectural views they need at
the appropriate level of abstraction. Though the views
presented are specific to Dassault Systèmes, the meta-
model driven approach we took can be applied in other
contexts.

1. Architecture at Dassault Systèmes

Dassault Systèmes (DS) is the CAD/CAM world leader
and is one of the largest software editors in Europe. CATIA
is one of its best-known software product. In the mid 90s,
when DS initiated the development of CATIA V5, it was
rapidly discovered that OO technology has serious
limitations when developing very large scale software. C++
alone did not satisfy DS’ strong requirements. As a result
DS developed a proprietary component technology called
the OM. DS is indeed with Microsoft one of the pioneers in
componen-based software engineering.

All concepts provided by the OM, are implemented in
terms of C++ entities or by means of other low level
techniques. The mapping from architectural concepts to
implementation is not one to one. For instance the
realization of a single OM entity can produce a very large
set of C++ entities. Moreover, for a given conceptual entity
there are many implementation choices: to improve
performance and address other non-functional
requirements, DS designed and tested a wide range of
realization techniques. All these techniques allow to build
very efficient component-based software. But at the same

time developing and maintaining large amount of
components is quite difficult (CATIA is based on more than
60000 classes and about 8000 OM components). A major
issue was that the architectural level was implicit and that
software engineers had no tool to visualize the component
they develop. The problem was even more accute since
many people in different teams and sometimes in different
companies collaborated to the development of a single
component by adding extensions. What was missing was an
architectural viewpoint suited to this specific component
technology. The collaboration between the ADELE team
and Dassault Systèmes lasted 7 years and during this period
various other kinds of architecture were identified as well.
This includes for instance the physical architecture, but also
the collaborative architecture and the commercial
architecture[1]. It is now widely recognized that the notion
of software architecture greatly depends on the perspective
considered and the stakeholders needs [2]. To formalize the
various stakeholder needs and the many architectural
concepts used within DS, we took a meta-model driven
approach for architectural reconstruction [3]. According to
the terminology defined by the IEEE standard [2] each
viewpoint is a subset of the global meta-model, while each
view is an instance of a viewpoint for a particular portion of
the software considered.

2. OMVT: a specific exploration tool

In parallel with the definition of the architectural meta-
model, we provided a graphical notation for the logical
architecture. This notation was cautiously designed to be
compatible with existing habits used internally during
informal communications [4]. This notation provided the
syntax to express architetural views on CATIA. Thanks to a
reverse engineering process, architectural views are
automatically extracted from CATIA source code as well as
many other sources of information.

The need to use many sources of information in
recovering the architecture of component-based software is
also described in [5]. While the tool described in [5] was
applied on a toy example, the OMVT was successfully

applied on the whole CATIA software which is made of
more than 6 millions LOC. Though the OMVT was initially
developped to explore the logical architecture and focused
on DS proprietary component technology, support for many
other architectural viewpoints were later added to this tool
in order to explore the many other facets of software
architecture at Dassault Systèmes. In total 27 viewpoints
were defined to support the specific needs of various
stakeholders. Some example of views derived from some
viewpoints are represented in the figure below.

3. Scenario

Describing the whole features of the OMVT is
impossible here, in particular because some features relie on
proprietary architectural concepts such as medias, solutions,
or frameworks. The figure below represents a typical OM
component displaying some OM interfaces (1). This
component is based on one “base implementation” (2) and
other “extensions” (rectangles). Contrarily with the COM
technology, component inheritance is supported as depicted
on the top of window (1). The view depicted in window (3)
provides more information about the implementation
technique actually used to realize the component. For
instance it is possible to distinguish extensions from single
to multiple instanciation (3). As shown in (5) contextual
pull-down menus are available for each entity displayed to
further continue the exploration. A “troubleshooter”
viewpoint was implemented. to automatically detect anti-

patterns that could potentially lead to errors. In window (6)
icons and colors indicate possible inconsistencies. A single
click on the warning icon (7) opens window (8). Similarily
a click on (9) displays window (10). These windows display
only the subgraph of the component graph that reveal the
existence of the anti-pattern. Inheritance relationships are
shrinked to improve the reading of the figures and increase
the usability for the stakeholders directly interested in
correcting the error. Window (11) depicts a complement of
information that improve the quality of the diagnosis. Note
that all the views mentionned above correspond to the
logical architecture. The stakeholder can switch very easily
to alternative viewpoints on other kinds of architecture. For
instance, a view on the physical architecture for the same
component is displayed in window (12). This view shows
that this simple component is actually implemented by more
than 80 CPP classes spread in more 20 DLLs contained in
more than one dozen of distinct frameworks.

4. References

[1] J. Estublier, J.M. Favre, Y. Ledru, R. Sanlaville, “Architectural facts in the
concurrent development of a Very Large Software“, submitted to IEEE
Software

[2] IEEE Architecture Working Group. “IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems” . IEEE Std 1471-
2000, October 2000.

[3] J.M. Favre, “Meta-Model Driven Reverse Engineering“, submitted to WCRE
2003

[4] R. Sanlaville, “Software Architecture: An Industrial Case Study within
Dassault Systèmes”, PhD dissertation in french, Univeristy of Grenoble, 2002

[5] M. Pinzger, J. Oberleitner, H. Gall, “Analyzing and Understanding
Architectural Characteristics of COM+ Components”, IWPC 2003

1

2 4

3

5

7

6

89

10
11

12

