

1

 Position Paper:
Challenges in Visualizing and Reconstructing Architectural Views

Juergen Rilling
Concordia University,
QC, Canada, H3G1M8
rilling@cs.concordia.ca

Michel Lizotte
Defence R&D Canada
QC, Canada, G3J 1X5

Michel.Lizotte@drdc-rddc.gc.ca

Abstract
A common approach to cope with software
architecture comprehension is to provide higher
levels of abstraction of lower level system
information. Architectural recovery tools provide
such high-level views by extracting and abstracting
a subset of the software entities. In this research
we are focusing on challenges in visualizing and
reconstructing architectural views. In particular
we are looking into issues related to the
applicability of current visualization
representations generated by architectural
recovery tools to support views and products
specified by the C4ISR architecture framework.

1. Introduction

One aid to improve the understanding of large
programs is to reduce the amount of detail a
programmer sees by using a higher level of
abstraction to represent a program. Over the last
decade, programs became larger and more
complex, causing new challenges to the
programmer in visualizing these complex and large
source code structures. Different techniques and
approaches have been developed and validated
with users. However, providing different levels of
abstraction might not be sufficient since users
might be still dealing with a large amount of
information and data. Not every visualization
technique is equally usable in displaying a
particular dataset. The visualization technique
might lack an appropriate navigation support or
may not allow the effective reduction of the
amount of information displayed through a choice
of distinct views.

Software visualization can be described as
analyzing a subject system (a) to identify the
system’s components and their interrelationships,
(b) to create representations of a system in another
form at a higher level of abstraction and (c) to
understand the program execution and the
sequence in which it occurred. It would be ideal to
be able to simultaneously view and understand
detailed information about a specific activity in a
global context at all times for any size of program.

As Ben Shneiderman explains in [12], the main
goal of every visualization technique is: “Overview
first, zoom and filter, then details on demand”. This
means that visualization should first provide an
overview of the whole data set then let the user
restrict the set of data on which the visualization is
applied, and finally provide more details on the
part the user is interested in. Software visualization
of source code can be further categorized in static
views and dynamic views. The static views are
based on a static analysis of the source code and its
associated information and provide a more generic
high-level view of the system and its source code.
The dynamic view is based on information from
the analysis of recorded or monitored program
execution. Based on their available run-time
information, dynamic views can provide a more
detailed and insightful view of the system with
respect to a particular program execution. As
Mayhauser [9] illustrated, dynamic and static views
should be regarded as complementary views rather
than being mutually exclusive. Users tend to apply
an opportunistic approach, using both static and
dynamic views to achieve a specific task. The
software visualization techniques used by recovery
tools are in most cases a carry over from the more
traditional reverse engineering tool domain. With
the majority of tools providing support for UML
visualization based techniques or procedural
orientated visuals, like call-graphs, tree structures.
Ideally, the high-level views provided by these
tools should be organized in a hierarchical/layered
fashion, allowing users to navigate through
different layers of abstraction.

Software Architecture

Software architecture has been defined as a
structure composed of components and rules
characterizing the interaction of these components
[13]. In [11] it has been defined as elements, form,
and rationale. Another definition is presented in [6]
where it was defined as components, connectors,
and configurations [6]. C4ISR AF is using a
definition, not limited to software, based on the
IEEE STD 610.12 and established by the DoD

2

Integrated Architecture Panel in 1995 [7]. They
define “architecture” as “the structure of
components, their relationships, and the principles
and guidelines governing their design and
evolution over time.” One of the earliest definitions
of software architectures, by Perry and Wolf [6],
has remained one of the most insightful.

Architecture Recovery

Architecture recovery can be seen as a
discipline within the reverse engineering domain
that is aimed at recovering the software
architecture of a system [2]. It can be described as
the process of recovering up-to-date architectural
information from existing software artefacts [2,
16]. The rational of system architectural recovery
and comprehension is to provide reasoning behind
the software architecture or high-level system
organization of a system. There may be little or no
documentation available and the documentation
that does exist probably does not resemble the
current system due to drift and erosion [3]. The
application of system understanding tools goes
beyond mere object identification - it includes a
generation of (interactive) documentation, quality
assessment, and introducing novice programmers
to a legacy application. Architectural recovery is
motivated by (re)generate coherent abstractions of
existing systems to guide analysts during the
comprehension of large existing systems and to
provide some reasoning about the system
architecture.

Motivation

The presented research is conducted under a
project of the Defense Research and Development
Canada (DRDC) at Valcartier. The focus of this
project is the visualization support for the various
products described in the US Department of
Defense (DoD) Architectural Framework (AF),
better known as the Command, Control,
Communications, Computers, Intelligence,
Surveillance, and Reconnaissance (C4ISR)
Architecture Framework (AF) [10]. As part of this
research, we extended a previously performed
survey of current reverse and architectural recovery
tools, with a focus on visualization support for
C4ISR AF, its views and products. Tools should
provide adequate visualization support, by
providing on the one hand users with views and
information abstraction that are beneficial for the
recovery process, as well as visualization
techniques that are required by architectural
frameworks to document the architecture.

The remainder of this article is organized as
follows. Section 2 introduces provides a brief

overview and background C4ISR architectural
framework. Section 3 maps and discusses the
applicability of the surveyed tools to the C4ISR
AF. Section 4 provides a discussion about
challenges and pitfalls of current visualization
techniques in supporting architectural views.

2 The DoD Architecture Framework
The purpose of the DoD AF is to improve

capabilities by enabling the synthesis of
requirements with sound investments leading to the
rapid employment of improved operational
capabilities, and enabling the efficient engineering
of warrior systems. This framework formerly
called the Command, Control, Communications,
Computers, Intelligence, Surveillance, and
Reconnaissance (C4ISR) Architecture Framework
[10] is intended to ensure that the architecture
descriptions developed by the Commands,
Services, and Agencies are inter-relatable between
and among each organization’s operational,
systems, and technical architecture views, and are
comparable and able to integrate across Joint and
combined organizational boundaries. It provides
the rules, guidance, and product descriptions for
developing and presenting architecture descriptions
that ensure a common denominator for
understanding, comparing, and integrating
architectures. This section is based on the C4ISR
Architecture Framework (Version 2.0 as published
by the AWG)

Figure 1: C4ISR Architecture Framework

The operational architecture view is a
description of the tasks and activities, operational
elements, and information flows required to
accomplish or support a military operation. It
contains descriptions (often graphical) of the
operational elements, assigned tasks and activities,
and information flows

The systems architecture view is a description,
including graphics, of systems and
interconnections. For a domain, the systems
architecture view shows how multiple systems link
and interoperate, and may describe the internal
construction and operations of particular systems
within the architecture.

3

For an individual system, the systems
architecture view includes the physical connection,
location, and identification of key nodes (including
materiel item nodes), circuits, networks,
warfighting platforms, etc., and specifies system
and component performance parameters (e.g.,
mean time between failure, maintainability,
availability). The systems architecture view
associates physical resources and their performance
attributes to the operational view and its
requirements per standards defined in the technical
architecture.

The technical architecture view is the minimal
set of rules governing the arrangement, interaction,
and interdependence of system parts or elements,
whose purpose is to ensure that a conformant
system satisfies a specified set of requirements.

In what follows, we present a case study based
on a survey of 23 architectural recovery and
reverse engineering tools (see appendix) that was
performed as part of this project and map their
capabilities in supporting the visualization products
described in the C4ISR system view. The other two
views described in the C4ISR, the operational and
technical view were not considered in this survey,
since these views are mostly based on domain
knowledge, rather than information that can be
recovered by analyzing program artifacts.

3. Case study – C4ISR Capability matrix

The motivation for the presented case study
and the resulting C4ISR visualization support
capability matrix are two-fold. The first objective
was to analyze the current state of the art support
of architectural views and visualization techniques
provided by recovery tools and their applicability
in support for the different visualization products
described in the system view of the C4ISR
architectural framework. Secondly, the resulting
capability matrix can serve as guidance for
directing future research, by addressing
shortcomings of current tools.

Visualization techniques supporting system view
products

The system view products described within the
C4ISR architecture framework suggest certain
visualization and diagrammatic techniques that
should be provided to document an existing
architecture. One intend of the C4ISR AF was to
guide tool developers by providing templates for
suitable/expected visualization and representation
techniques, to support the various system view
products. The suggested templates are not
compulsory and can be replaced by other

visualization techniques. There is a currently a
tendency in applying the standard UML notations
to document software architectures within the
C4ISR framework. This approach has both
advantages and disadvantages.

Advantages can be found in using a well-
known standard notation, in reducing the learning
overhead that might be caused by introducing new
visualization techniques and their notations.
Furthermore, over the last several years, UML
established itself as a viable approach for
documenting various aspects of the requirement,
specification and design phase

One of the major disadvantages of the UML
standard notation is its limited expressiveness with
respect to architectural aspects. Firstly, its notation
does not provide enough expressive power to
describe the specific requirements of architectural
artifacts. Secondly, the levels of abstraction
provided by UML might not be sufficient to
provide some of the required views.

The open framework approach of the C4ISR
AF with respect to visual representations
encourages tool developers to explore new avenues
and derive new visualization techniques that might
lead to more intuitive and architectural specific
representations. In particular tool developers are
facing during architectural recovery additional
challenges having no or only limited domain
knowledge available to derive the visual
abstractions.

Figure 2: System interface description

Figure 2 and 3 illustrate this situation, with

figure 2 abstracting the system interfaces in a high-
level view (using a non UML notation), which can
easily be understood by both novice and experts.
Comparing this with the UML view of the system
interface description (Figure 3), the differences in
both the capabilities, abstractions and applicability
of the visualization becomes evident.

The following are some of the visualization
techniques templates described in the C4ISR
standard document that should be created to
document system view specific products.

4

With current recovery tools focusing on the
structural analysis of existing system artifacts, one
of the challenges can be found in the reconstruction
of visual abstractions is their lack of domain
knowledge. Figure 2 is an example for domain
knowledge based visualization. The graphic
requires not only specific annotations, but also
domain specific representations of the objects (e.g.
different types of airplanes) involved in the system
and their intercommunication.

Figure 3: System interface description (UML

 based)
Figure 3 on the other hand is based solely on

structural analysis through lexical and semantic
parsing of existing system source code. This
information can almost completely automatically
be extracted, without any prior domain knowledge.

Some other visualization challenges include
the support for building traceability matrixes.
These traceability matrixes are an essential part of
architectural documentation and re-documentation
not only within the C4ISR architectural framework
but also within other frameworks (e.g. Zachmann).
Matrixes are used widely by the following products
within the system view (C4ISR):

System Performance Matrix: Depict current

performance of each system, and the expected or
required performance characteristics at specified
times in the future (soft and hardware).

Operational Activity to System Function
Traceability Matrix: Maps operational activities to
system functions in the form of a matrix (Figure 4)

Figure 4: Operational Activity to System Function
 Traceability Matrix

System Information Exchange Matrix: Shows the
data exchange among nodes in different systems in
the form of a matrix.

Systems Matrix: The product focuses on the flow
of data among system functions, and on the
relationships between systems or system functions
and activities at nodes.

Behavioral modeling
Within the C4ISR architectural framework the
importance of documenting and being able to trace
the dynamic and behavioral system aspects is
reflected by the following system behavior
modeling products.

? Systems Rules Model: A rule base for actions
occurring as part of the trace. The rule base
applies for the different visualization
techniques within the system activity product.

? Systems State Transition Description: State
transition descriptions describe system
responses to sequences of events. Events may
also be referred to as inputs, transactions, or
triggers (Figure 5).

Figure 5: State transition diagram
? Systems Event/Trace Description: The system

event trace describes the timing and behavior
(based on the rule model) between nodes, as
well as the interaction among these nodes. The
standard UML sequence diagram notation can
be applied to capture the behavior (Figure 6).

Figure 6. Modeling dynamic behavior within the

C4ISR AF

5

Physical Data Model: Describes the physical
implementation of the logical data model from an
operational view point. The product is supported in
the form of standard E/R diagrams, etc.

Capability matrix

Table 1 shows a capability matrix (based on
the survey of 23 architectural recovery and reverse
engineering tools) and maps their overall capability
to the products and their visual representations as
described by the C4ISR architecture framework.
The matrix provides a general summary of the
overall tool capabilities rather than focusing on the
specifics of a particular tool.

System view product Visualization
Support

System Performance Parameters Matrix Partially

Systems Functionality Description Partially

Operational Activity to System Function
Traceability Matrix

No

System Information Exchange Matrix No

System Interface Description Partially

Systems Communications Description Partially

Systems Matrix Partially

System Evolution Description No

System Technology Forecasts No

Systems Rules Model No

Systems State Transition Description Partially

Systems Event/Trace Description No

Physical Data Model Fully

Table 1: Visualization Capability
Partial visualization support is achieved if

at least one or more tools provide capabilities
required by the particular system view product.
The capabilities are often limited and do not exist,
because of a lack of domain knowledge, that is
necessary to re-create these views and products.

4. Discussion: Challenges and Pitfalls

Larger software systems place an enormous
cognitive load on users and humans are limited in
the density of information they can resolve and
comprehend [5,8]. Visualization facilitates the
discovery of new science by revealing hidden
structures and behaviours in model output. It is in
the areas of insight and understanding that
visualization plays a central role [8]. Many reverse
engineering tools have been built to help the
comprehension of large software systems. Software
visualizations are one approach being investigated

worldwide to provide some assistance in program
understanding. It should be recognized that
visualization is a complementary technique and is
to be used in conjunction with other program
understanding techniques such as software
inspection, metrics, static and dynamic source code
analysis, etc.

Throughout a software product’s life cycle,
many different people are responsible for
understanding the design details of the software
code. Learning the structure of code developed by
others is especially time consuming and effort
intensive during the software maintenance phase.
From an architectural recovery perspective the
challenges becomes even more aggravating,
because the maintainer has to create a mental
model of a larger system that might include several
subsystem and the interaction among these
subsystems.

One of the shortcomings of current
architectural recovery tools is their lack of
supporting architectural views and abstractions.
Architectural views require often notations other
than the ones provided by current reverse
engineering tools In particular traditional
visualization techniques are limited by their
available notations and their ability to map between
visualization elements and architecture components
(e.g. throughput, dynamic linked information, etc.).
Other factors are the lacking support for
architectural views that match the more traditional
architectural views (e.g. 4+1 or C4ISR AF). The
creation of architectural views requires often
additional user domain knowledge, architectural
design decisions and analysis support in form of
grouping/clustering have also to be considered.

The majority of the surveyed tools focus on
the visualization of static system structures rather
than dynamic interaction aspects. System
architectures are often based on distributed and
dynamic systems that take run-time behaviour into
consideration. In particular the mapping of these
dynamic architectural aspects to the static
visualization techniques is often difficult, because
these techniques do not support natively graphical
notations for representing these dynamic aspects.
Examples are their lack of support for e.g. remote
connectors, throughput, performance, resource
requirements, etc. Furthermore, in visualizing
architectures there exists an explicit need for views
and visualization techniques that are based on
dynamic tracing and profiling aspects. This aspect
are addressed and acknowledged for example by
the System Activity Sequence and Timing product
in the C4ISR Architecture Framework. For

6

architectural recovery tools to be able to manage
and display dynamic behaviour, often a large
amount of data has to be processed. Additionally,
the tools have to facilitate notations that support
the visualization of these dynamic aspects.

Figure 7 Moving to 3D worlds

Furthermore visualization techniques should
take advantage of 3D [5], virtual reality [8],
multimedia to provide intuitive and meaningful
representations of the underlying architectural
structure, its behaviour and relationships. In the
context of the C4ISR framework there are further
needs to provide views that combine system views
with operational views, as well as the technical
with the system view. Feature extraction and
concept analysis techniques have to be integrated
to facilitate this. Clustering and grouping requires
application–specific data and domain knowledge,
as well as source code analysis techniques. It is
important to note that clustering can be used for
functions such as filtering and search. Scripting
support is also essential to create abstract views on
the underlying repository

Different levels of granularity are required,
often not facilitate in the current tools, e.g. UML
does not provide enough meaningful levels of
abstraction. Navigation and context switching has
to be further improved to help the architects and
maintainers to navigate through the recovered
information.

6. References

1. Ball T., Eick Stephen G., “Software Visualization in

the Large”. IEEE Computer 29(4): 33-43 (1996).
2. O'Brien, L., Stoermer, C., Verhoef, C. 2002.

Software Architecture Reconstruction: Practice
Needs and Current Approaches ; CMU/SEI-2002-
TR-024 ADA407795

3. Clements, P., Bachmann, F.; Bass, L.; Garlan, D.;
Ivers, J.; Little, R.; Nord, R.; & Stafford, J. 2002.
Documenting Software Architectures: Views and
Beyond. Boston, MA: Addison-Wesley.

4. Deursen van A. 2002.Software Architecture
Recovery and Modelling. ACM Applied Computing
Review 10(1):4-7.

5. Feijs, L.M.G. & de Jong, R.P. 1998. 3D
Visualization of Software Architectures.
Communications of the ACM 41, 12 (December
1998): 73-78.

6. Garlan, D. and M. Shaw, An introduction to
software architecture, in: V. Ambriola and G.
Tortora, 1993, Advances in Software Engineering
and Knowledge Engineering, World Scientific
Publishing Company, 1993 pp. 1--39.

7. Institute of Electrical and Electronics Engineers.
IEEE Std 1471-2000. Piscataway, NJ: IEEE
Computer Press.

8. Knight C., Munro M., 2001. Visualising the non-
existing”, IASTED International Conference:
Computer Graphics and Imaging, Hawaii, USA..

9. Mayrhauser A., A. M. Vans, “Program
Understanding Behavior During Adaptation of
Large Scale Software”, Proceedings of the 6th Intl.
Workshop on Program Comprehension., IWPC ‘98,
pp. 164-172, Italy, June 1998.

10. Office of the Secretary of Defense Working Group.
1997 C4ISR Architecture Framework, Version 2.0.
Washington, DC.

11. Perry D. E. and Wolf A. L. 1992, Foundations for
the study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17:40--52, October
1992.

12. Shneiderman, Ben, “Tree Visualization with Tree-
Maps: A 2-D Space-Filling Approach”. In ACM
Trans. of Computer-Human Interaction, vol. 11, no.
1, 1992, pp. 92-99.

13. Shaw M. and Garlan D. 1996. Software
architecture: Perspectives on an emerging
discipline, Prentice-Hall.

14. Sneed, H. M. 1998.Architecture and Functions of a
Commercial Software Reengineering Workbench.
2-10. Proceedings of the Second Euromicro
Conference on Maintenance and Reengineering.
Florence, Italy, March 8-11. Los Alamitos, CA:
IEEE Computer.

15. Storey M.-A., Fracchia F. and Müller H..,
“Cognitive Design Elements to support the
Construction of a Mental Model During Software
Exploration, Journal of Software Systems, special
issue on Program Comprehension, v 44, pp.171-
185, 1999

16. Trevors A. and Godfrey M.W., 2002. Architectural
Reconstruction in the Dark, Position paper,
Workshop on Software Architecture Reconstruction
collocated with WCRE '02, Richmond, VA,
October 2002

7

Appendix A: Tool survey

1. Argo/UML : http://argouml.tigris.org/servlets/ProjectSource

2. Bauhaus: http://www.informatik.uni-
stuttgart.de/ifi/ps/bauhaus/

3. CIAO http://www.research.att.com/~ciao/

4. CodeCrawler:
http://www.iam.unibe.ch/~lanza/CodeCrawler/codecrawler

5. CodeSurfer:http://www.grammatech.com/home/index.htm

6. Columbus/CAN : http://www.frontendart.com/

7. CONCEPTwww.cs.concordia.ca/CONCEPT

8. The Dali Architecture Reconstruction Workbench.
http://www.sei.cmu.edu/ata/products_services/dali

9. Fujaba: http://www.uni-paderborn.de/cs/fujaba/

10. GSEEhttp://www-adele.imag.fr/~jmfavre/GSEE/

11. Headway: http://www.headwaysoft.com/index.htm

12. Imagix4Dhttp://www.imagix.com/index.html

13. KLOCworkinSight. www.klocwork.com/products/inSight.

14. ManSARThttp://www.mitre.org/pubs/edge/january_98/first

15. Rational http://www.rational.com/index.jsp

16. Red Hat Source-Navigatorhttp://sourcenav.sourceforge.net/

17. Refine/C Illuma: http://www.frontendart.com/

18. SniFF++: http://www.takefive.com/

19. SoftArch: http://www.cs.auckland.ac.nz/~john-
g/projects.html#softarch

20. Soloway E. and Ehrlich K.,1994. Empirical studies of
programming knowledge, IEEE Transactions on Software
Engineering, SE-10, 595--609 (1984).

21. SWAG tool kit: http://swag.uwaterloo.ca/pbs/

22. Understand for C++: http://www.scitools.com/ucpp.html

23. Visual Paradigm :http://www.visual-paradigm.com/index.php

