
Visualization for Software Risk Assessments

Jordi Vidal Rodrı́guez
jordi@software-improvers.com

Tobias Kuipers
tobias.kuipers@software-improvers.com

Software Improvement Group
www.software-improvers.com

1. Introduction

The Software Improvement Group performs so-called
Software Risk Assessments (SRAs) [10]. An SRA is per-
formed to identify the risks inherent in a software system.
The types of risks that are identified during an SRA can be
varied, depending on the system and the requirements of the
customer.

Risks can be identified with respect to maintainability,
performance, operational costs, and so on. The systems the
SRAs are performed onvary widely in size, technology and
complexity. They can be web applications consisting of 20
forms, or multimillion lines-of-code Cobol legacy systems.

An SRA consists roughly of two parts: A first part where
the stakeholders in the system are interviewed and docu-
mentation about the system is analysed. In the second part
of the assessment the source code of the system is analysed
using various tools that we have developed at the Software
Improvement Group.

The Software Analysis Toolkit (SAT) that has been de-
veloped at the Software Improvement Group routinely cal-
culates a number of metrics for the system under assess-
ment. Furthermore it calculates a graph structure that con-
tains all the dependencies in the system. The various depen-
dencies in the system are typed and can be data dependen-
cies from a specific module to a specific view on a database,
which in turn is dependent on a specific table in a database,
which in turn triggers a stored procedure in the database
(and so on). Effectively using the information in this graph
depends largely on the ability to interactively view (parts
of) the graph, and relating those parts to specific locations
in the source code, and to metrics about those parts of the
source code.

An example graph of all dependencies in a 150,000 line
web application is given in figure 1.

1.1. Scenarios

Visualization needs during an assessment are twofold:
first of all, visualization should facilitate the understand-

ing of the system. This initially requires visualizing the
overall structure of the system: control dependencies be-
tween modules, and data dependencies between modules
and databases. Afterwards, when a general understanding of
the system is reached, the visualization should provide de-
tailed views to validate ideas that have occurred about the
functioning of the system.

Interactively manipulating the view on the software sys-
tem is key in both phases. As an example, consider the fol-
lowing scenarios.

Scenario 1

A system consisting of 3,000,000 lines of Cobol is anal-
ysed using the SAT. This results in a graph containing all the
dependencies. (More about the data representation that re-
sults from the SAT analysis in section 3). The first visualiza-
tion shows that there are 20 database tables in the system,
and that only about 10 modules (out of 1200) access these
tables. Closer inspection of the 10 modules shows that these
are so-called utility modules, and that all modules that call
these utilities can be considered to perform database access.
The view should than be adjusted to remove the database
utilities, and replace them with direct edges from the mod-
ules that called the utilities to the database tables.

Since these systems typically use different technologies
to access persistent data, the view needs to be adjusted to ac-
commodate for that fact: for gaining a general understand-
ing of the system database access through DB2 should be
visualized in the same way as, say, access through IMS.
However, when looking at detailed IMS usage DB2 should
obviously be removed from the view.

Scenario 2

As an example of a more detailed view consider the sys-
tem displayed in figure 1. This is a web application built us-
ing Microsoft Active Server Pages. After a first inspection,
and interviews with the developers of the system the consul-
tant performing the assessment comes up with the following



hypothesis: All asp files in the system include a standard “li-
brary” file, and a single file that contains the non-dynamic
portion of the page. In order to validate this hypothesis she
looks at the graph in figure 1. Obviously there is nothing to
see there, since there are far too many edges and nodes.

The graph needs to be interactively filtered to first show
only the asp files, and their includes. If there are too many to
immediately see whether the above hypothesis holds, than
a threshold needs to be set to show only asp files with less
than two includes: if they exist then the hypothesis does not
hold.

1.2. Graph Visualization Requirements

The assessments described in the scenarios above could
be performed using an interactive graph browser that sup-
ports a number of operations. The operations we currently
are looking for in a graph visualization tool are: abstrac-
tions (leading to nested graphs), searching, filtering, undo
facility, and automatic layout. For instance, the set of oper-
ations should enable us to replace a node by direct edges be-
tween all its sibling nodes. These operations will be applied
on large graphs (up to 100,000 nodes). Finally, an script-
ing facility to enable automatization and an annotation fa-
cility to store comments on findings are seen as crucial for
efficiently carrying out SRAs.

1.3. Position

Our position is that in spite of good tools solving partly
SRA’s requirements, there is still missing a general tool
to handle all SRA aspects smoothly, embracing from data
model, visualization to reporting.

In the next section, we give an overview of the various
software visualization tools that we are currently using, or
have tried in the past.

In section 3 we describe the data model that we use for
our assessments, and how it relates (both in theory and in
practice) to our visualization tooling. Section 4 discusses
the various challenges we see when using existing visual-
ization tooling.

We end the paper asking ourselves whether we should
start to produce our own visualization software...

2. Related Tools

The most common techniques for software system com-
prehension are graph visualization and a combination of
browsing/navigation/query. Specialized instances of these
techniques are scattered among tools. The most relevant and
inspiring tools for our activities are described next.

Rigi [7] uses a nested graph model. However the graph’s
levels are displayed using multiple windows. It has basic

graph operations for name pattern search, selection and ab-
straction. Visualization and interaction can often be cum-
bersome.

SHriMP [9] is a nested graph navigation tool, lacking
any graph manipulation feature. It complements Rigi. It
maintains context and focus via a modified fish-eye algo-
rithm.

Dalı́ [6] is a workbench that supports extraction and fu-
sion of architectural views. It highlights the need to fuse
views from different source extractions, leaving the data
gathering to other tools for the purporse. It is an open ap-
proach to integrate tools and uses a common data reposi-
tory.

Portable Bookshelf [5] is aimed at re-engineering and
migration, mainly as a navigation tool by means of directed
graphs. Software landscapes visualize the main part of the
system and keep context with neighbouring subsystems.

Code Crawler [3] is a tool that combines object oriented
software metrics into some predefined such graph models
like tree, matrix correlations and histograms. The nodes (or
entities) can distinguish up to 3 data dimensions, visualized
as x, y size and colour.

CIAO [2] is a flexible navigator that can visualize graph
models and query the system at source code level. It can be
used in any project by specifying a new data model.

SPOOL [8] is a tool set to bridge to other comprehension
tools. It allows browsing of high level constructs, query the
design and structural searching, but lacks abstraction oper-
ations. Other helper tools are used for source code analysis.
It aims to integrate several tools to allow flexibility in creat-
ing user-defined views of any system.

As the above descriptions reveal, these tools do not sat-
isfy all requirements as stated in section 1.2. Consequently
we looked at graph layout libraries such as Dot, aiSee, GVF,
JViews and Tom Sawyer, which offer advanced features.
Dot is not an interactive tool, although there are some li-
braries containing dot that alleviate this problem. aiSee was
found to offer good layout algorithms but with an unfriendly
user interface. The last two are powerful graph libraries al-
lowing nested, multiple layouts.

3. Model Requirements

The tools above demonstrate the usefulness of the vari-
ous features they were developed for, but fail to satisfy the
complete list of features we need to perform Software Risk
Assessments.

During assessments we need to contrast different views
at different abstraction level of the system, subsystem or a
slice of source code. Due to the variety of systems that can
be analysed, no specialized tool fully suits the purposes. In-
stead an open, extensible tool should be created to cope with
the business demands.



In general data is gathered during the assessment process
into a generic data model (in similar fashion as FAMIX [4]).
From it we generate three generic types of views: Di-
rected graphs, charts and source code. The visualization tool
should be able to display these three views, their relations,
and navigate effortlessly between them.

The model we generate views from are described below.

3.1. Data Model

The are two main aspects the data model must meet.
Fisrt, it have to allow navigation from one view to another,
this is, regardless of the inspection starting point we can
navigate to any related view forth and back even at differ-
ent abstraction level.

Current tools attempt to provide such functionality (i.e.
SHriMP, SPOOL) but limited to a pair of views with their
own data model. On the other side, (commercial) source
navigators (such as Eclipse [1]) provide excellent features
but miss high level views.

Second, it holds data from three subareas: the artifacts’
relations, visualized as a directed graph; the software met-
rics, visualized in charts; and the source code, visualized as
enhanced text.

The model must be able to support any programming
language, as in the case of large legacy systems. Thus
object–oriented, procedural, functional and scripting lan-
guages must all be supported transparently. Only the arti-
fact gathering tool is tailored to the target language.

Next, we describe what features both the data model and
each view should provide support.

3.2. Graphs

Most of our interest is on exploring large and highly con-
nected hierarchical typed directed graphs and derive some
knowledge. We have seen there is no single tool that sup-
ports all required features for effective exploration: nested
graphs (SHriMP), abstraction operations (Rigi), incremen-
tal layout, context keeping (SHriMP, PBS) and annotations.
Instead each tool supports one or few of these.

3.3. Source Code

Source code inspection is a common practise in software
assessment. Either beginning from source code or from a
model, we are interested in obtaining alternative views of
the same set of artifacts.

When inspecting a piece of source code, the correspond-
ing subgraph and a set of related metrics should be dis-
played. Similarly, when pointing to either a graph or a chart
entity, the related piece of source code would show marked
up.

Figure 1. A graph containing all the depen-
dencies of a system under assessment



Figure 2. Complexity of systems versus their
size

Figure 3. Complexity of systems versus func-
tion points and lines of code

3.4. Metrics

Software metrics gathering, at different granularity lev-
els, is routine in our assessments. Currently we visualize
them as independent charts (i.e. bar charts, pie charts, bub-
ble charts).

Metrics are valuable to quickly point out measurable fea-
tures such as complexity and size among other source code
attributes.

Linking the metrics with the other views also aids in in-
specting. For instance, selecting a complex system’s pro-
gram and then browsing its source code. We also realize it
is helpful to merge metric information into the graph model
as in [3].

4. Visualization Challenges

To carry out SRA we actually use practises from reverse
engineering, software metrics measurements and automatic
generation of documentation. Currently we are using a set
of independent tools for the purpose. These tools are inte-
grated by our Software Analysis Toolkit. The visualization
part currently consists of graphs visualized using dot, charts
displayed using JFreeChart, and marked up source code us-
ing a purpose built system. We browse the source code and
make annotations manually.

We have conducted experiments with some tools men-
tioned in related work section. Other tools were dismissed
after checking the list of features or after seeing the de-
mos. The tools we have experimented with did not serve our
goals. Most tools perform a single task well, but not oth-
ers. Furthermore, we had problems integrating these tools
within the Software Analysis Toolkit, and the usability for
some of these tools is so terrible that we wonder whether
they are used at all.

Our wished features for graph visualization tools are as
follows:

4.1. Focus and Context

Usually we focus on a small part of the large system.
When zooming in, the involved nodes should be placed
close to each other to fit one screen while maintaining its
context (i.e. its immediate neighbours). The context may be
essential to identify possible erroneous relations. Solutions
like nested graphs, multiple views, fish-eye views and show-
ing neighbours seem feasible.

4.2. Annotations

The assessment process produces large amounts of re-
sults referencing both the detailed and the coarse level. Cru-
cial is the reproducibility of the assessments, for updated
versions of the system, and retrieval of old assessment re-
sults for comparison. This opens the way to trend analysis.

Even rudimentarily supported, by saving views and other
data files, an integrated annotation tool would increase pro-
ductivity. The Film strip feature in SHriMP, or the Saving
View in Rigi are both promising methods. Structured stor-
age would help in the report writing phase.

4.3. Layout

The graph layout reveals important relations that can be
spotted by a quick visual inspection. However, obtaining a
good layout is not trivial, not to mention that for large graph
no layout has given satisfactory results.



Therefore, using the focus+context to reduce the graph
size to display, layout algorithms can be used again. Nev-
ertheless, it is also of importance to keep the mental map
as the exploration proceeds. For instance, smooth transis-
tions and minimal alterations to the graph structure should
be enough. Animation cues are not discarded at all.

A not less important aspect is labeling. Labels should be
readable at any zoom factor. Although if the node is too
small, there is no need to show its label. SHriMP [9] ap-
proach seems the most advanced approach so far.

4.4. Graph Operations

During the understanding process we manipulate the
graph by, for instance, grouping (abstraction) common arti-
facts into subnodes (hence nested graphs). Other operations
are: navigation, search, filtering and selection. We are cur-
rently not convinced that this list is exhaustive, but more ex-
periments are needed.

Navigation should allow to track the visited elements.
Different approaches could be: a) list visted nodes in a sep-
arate view; b) move visited nodes close each other; c) not
alter the layout. Options a), b) maintain context, while c) is
adequate when only the final target is necessary.

The search space can be textual or structural. Locat-
ing certain names of artifacts is textual. Locating chains of
node types and edge types is structural. Questions like “Is
database X accessed directly or indirectly by any program in
Y?” should be answered by a structural search. This search
involves textual and structural search combined.

Abstraction as supported by Rigi merged with the
SHriMP capabilities of nested graphs would be a nice start.

We have pointed out the importance of keeping focus and
context while carrying operations that affect the graph struc-
ture. When having to understand small portions of large
graphs, these operation features help raise model compre-
hension by reducing confusion by sudden changes of the
layout.

5. Conclusions

A number of tools exist that partly solve the complex re-
verse engineering task of Software Risk Assessment.

Projects like SPOOL try to go further, providing envi-
ronments were multiple tools collaborate to tackle as much
of the reverse engineering tasks as possible in an elegant,
clear way.

A standarized, integrated environment would allow users
to access simultaneously a broad set of tools with the advan-
tage that they could tightly collaborate each other, result-
ing in a productivity boost. The diverse techniques could
be tried under a single environment allowing to more ef-
ficiently compare, investigate, create new research tech-

niques benefiting from the already developed helper tools.
For instance, to try a new visualization technique, only the
view has to be programmed.

We have been developing a generic data repository to
hold all data we derive from large software systems to per-
form assessments. We currently can visualize aspects of this
data in various ways.

Our search for an interactive graph viewer that suits our
needs has so far been interesting, but has not led to the tool
we want. We have listed our wishes regarding such a tool.

Nevertheless, we are currently contemplating building
the tool ourselves. We would like to invite the software visu-
alization community to challenge our ideas, to tell us such a
tool already exists, to tell us everything we know is wrong,
and finally, to collaborate with us to build a system that
would perfectly suit our needs.

References

[1] The Eclipse project. http://www.eclipse.org.
[2] Y.-F. R. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wal-

lach. Ciao: A graphical navigator for software and docu-
ment repositories. In Proc. Int. Conf. Software Maintenance,
ICSM, pages 66–75. IEEE Computer Society, 1995.

[3] S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse
Engineering Approach Combining Metrics and Program Vi-
sualization. In Proceedings of the Working Conference on
Reverse Engineering, pages 175 – 186, 1999.

[4] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is
not universal. UML shortcomings for coping with round-trip
engineering. In Proceedings UML’99 (The Second Inter-
national Conference on The Unified Modeling Language),
1999.

[5] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, , and
K. Wong. The Software Bookshelf. In IBM Systems Jour-
nal, volume 36, pages 564–593, 1997.

[6] R. Kazman and S. J. Carriere. View Extraction and View
Fusion in Architectural Understanding. In Proceedings of
the 5th International Conference on Software Reuse, Victo-
ria, B.C., 1998.

[7] H. Müller. Rigi. http://rigi.cs.uvic.ca.
[8] S. Robitaille, R. Schauer, and R. K. Keller. Bridging Pro-

gram Comprehension Tools by Design Navigation. In Pro-
ceedings of the International Conference on Software Main-
tenance, pages 22–31, October 2000.

[9] M.-A. Storey. SHriMP. http://shrimp.cs.uvic.ca.
[10] A. van Deursen and T. Kuipers. Source-Based Software Risk

Assessment. In Proceedings of the International Conference
on Software Maintenance, 2003.


