
Plugging-in Visualization:
Experiences Integrating a Visualization Tool with Eclipse

Rob Lintern Jeff Michaud

Margaret-Anne Storey Xiaomin Wu

 Dept. of Computer Science
University of Victoria
Victoria, BC Canada

{rlintern, jmichaud, mstorey, xwu }@uvic.ca

Abstract

The Eclipse platform presents an opportunity to openly
collaborate and share visualization tools amongst the research
community and with developers. In this paper, we present our
own experiences of "plugging-in" our visualization tool, SHriMP
Views, into this environment. The Eclipse platform's Java
Development Tools (JDT) and CVS plug-ins provide us with
invaluable information on software artifacts relieving us from the
burden of creating this functionality from scratch. This allows us
to focus our efforts on the quality of our visualizations and, as our
tool is now part of a full-featured Java IDE, gives us greater
opportunities to evaluate our visualizations. The integration
process required us to re-think some of our tool's architecture,
strengthening its ability to be plugged into other environments.
We step through a real-life scenario, using our newly integrated
tool to aid us in merging of two branches of source code. Finally
we detail some of the issues we have encountered in this
integration and provide recommendations for other developers of
visualization tools considering integration with the Eclipse
platform.

Introduction

Many visualization tools that are developed in the research
community are customized applications that are built from
scratch. These visualization tools are dependent on having access
to information sources about the software that are both rich and
accurate. Research groups often have to write their own tools or
even beg, borrow and steal parsers, and other information
extractors to provide data for the visualization technique. These
efforts are usually disjointed and many research groups have
experienced frustration from reinvention of the wheel.
Furthermore, since the visualization tools are stand-alone
applications and do not integrate easily with the existing tools that
developers use, it is difficult to evaluate their usefulness in real
world contexts. Moreover, it is often impossible to combine
features and tools from these stand-alone applications, or to
compare them as each will offer many different features.

Over the past few years, we too initially focused on developing a
stand-alone software visualization tool to assist in program
understanding. Our tool is called SHriMP Views, which stands
for Simple Hierarchical Multi-Perspective Views. SHriMP uses a
nested graph view to display hierarchical structures in a Java
program (see Fig. 1). Composite nodes in the graph represent key
structures (for example, packages and classes) in the software.
Leaf nodes correspond to entities in the software such as methods,

and data types. Arcs in the graph show dependencies between
these artifacts and may show inheritance, composition and
association relationships. The nested interchangeable view
feature in SHriMP allows a user to look at different presentations
of information at any level of detail. A programmer can browse
source code or documentation by following hyperlinks that result
in animated panning and zooming motions over the nested graph.

Figure 1. A SHriMP View of a Java program.

Integration

Over the past year we successfully integrated SHriMP with the
open source Eclipse project (see Fig. 2). Eclipse (ww.eclipse.org)
is a general purpose platform upon which other tools can be built
as plug-ins. The JDT (Java Development Tools) are a suite of
such plug-ins, comprising a full featured Java IDE, which comes
bundled with the free download of the Eclipse platform. Many
other commercial and research groups have developed further
plug-ins for the Eclipse platform and the JDT– such as UML
tools, version control tools, team support etc.

Figure 2: SHriMP plugged into the Eclipse platform.

SHriMP Hierarchical View is shown in top left pane, SHriMP
Main View shown is shown in the bottom pane and source
code shown in top left pane, all of which are synchronized.

We refer to the integration of SHriMP with the Eclipse JDT as
“Creole”. Since Eclipse provides access to the program
repository, we now can instead focus on visualization and how it
can be further developed to provide support to the existing
features in Eclipse.

Integrating SHriMP with Eclipse has also provided access to new
information sources via existing plug-ins. Of particular interest is
the CVS plug-in which is an integrated GUI front-end for the
CVS version control system. We conjecture that visualization of
team relevant information such as CVS histories could be of
significant assistance in collaborative tasks. To explore this topic,
we integrated SHriMP with the CVS plug-in giving us the ability
to visualize information stored in the underlying CVS
repositories. We refer to this integration as “Xia”.
Our most recent work has been spent creating a composite
visualization of information from both the JDT repository and the
CVS repository. We believe that such views could be used to
reveal:

• Who is responsible for which parts of the system?

• Which parts of the system tend to change frequently?

• Which parts have been changed since a particular date?

• What are the relationships between these parts of
interest and the rest of the system?

• … and any combination of the above

Discussion

We have found the integration of SHriMP with the JDT (i.e.
Creole) to be of benefit when trying to navigate and understand
code written by other groups. It is especially powerful when we
are first exploring code and trying to get an overview of the scope
and design of a program. With respect to providing support for
collaboration and project management, we have found the
visualizations of the CVS information to be very useful despite

the fact that our tool is still at a prototype stage and is not very
robust.

There are still, however, many issues that remain from this trial
and many questions that have been raised. We are faced with
much to explore. Much more empirical work is required before
any conclusions can be drawn. We need to discover the specific
tasks that our visualizations could help with. This leads us to the
underlying question: who exactly is our user? Is it the team lead
or software designer who needs a tool to support high-level
decisions, or is it the programmer doing day-to-day programming
tasks, or is it both? We need to empirically study Creole to
determine whether or not it actually decreases cognitive load and
increases performance on specified tasks.

Another issue we have come across is one that arises with any
visualization. It is difficult to decide which view of the
information is the most useful. Our visualization depends on the
information we have at hand. In our case we have two sources of
information: the JDT and the CVS plug-ins. Through these two
plug-ins we now have easy access to reliable information, but, is
it the right information for producing visualizations that help with
the software task at hand?

Other future work will include using more animation in our
visualizations to aid in refactoring code, comparing code, and
synchronizing code with a repository, CVS repository we could
animate the evolution of a project over time.

One major issue faced in our integration with Eclipse is that its
GUI is built from a toolkit called SWT instead of using the more
widely used AWT and Swing toolkits. The major advantage of
SWT is that it uses native widgets wherever possible, increasing
speed and guaranteeing the native platform’s look and feel. This
departure has been a major hurdle for our integration; SHriMP
relies heavily on a zooming library based on AWT and Swing,
making it difficult for us to create an SWT only version of our
software. The approach taken to embed Swing and AWT widgets
inside of SWT widgets is still problematic and results in some
screen flickering, missing popup menus, and other GUI glitches.
Furthermore, this UI integration currently only works on the
Windows platform, and is not encouraged or officially supported
by OTI (OTI are the primary developers of Eclipse).

Despite the work required to redesign aspects of our architecture,
and issues integrating Swing and SWT widgets, the effort
required to do the integration was not that arduous, especially
when we consider what we have gained as a tool developer. The
biggest issue that we have faced doing research in the largely non-
validated area of software visualization, is trying to evaluate our
own work. This has in part been hampered by not being able to
evaluate how the visualization techniques work when they are
used as part of the normal tools used by developers. By
integrating with Eclipse, we can now continue with these
evaluations, and furthermore, combine features from our tool with
other visualization tools for further feedback and comparison.

More Information

http://shrimp.cs.uvic.ca/

