

SSeeccoonndd IIEEEEEE IInntteerrnnaattiioonnaall WWoorrkksshhoopp oonn
VViissuuaalliizziinngg SSooffttwwaarree ffoorr UUnnddeerrssttaannddiinngg

aanndd AAnnaallyyssiiss

2222nndd SSeepptteemmbbeerr 22000033
AAmmsstteerrddaamm,, NNeetthheerrllaannddss

Editors: Arie van Deursen, Claire Knight, Jonathan I. Maletic, and Margaret-Anne Storey

Sponsored by NWO Also sponsored by the IEEE Computer Society Technical
Committee on Visualization and Graphics (TCVG) and the

IEEE Computer Society Technical Council on Software
Engineering (TCSE), and the IEEE Computer Society.

 ii

WWeellccoommee

We would like to extend a warm welcome to the 2nd International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT 2003)! This exciting event gathers
software visualization researchers from all over the world. The goal of this workshop is to
showcase state-of-the-art research in software visualization and be a breeding ground for
new advances.

This one-day working event is organized to help promote interaction, investigation, and
collaboration among participants. We are very happy to start the day with a keynote
tutorial from Professor Colin Ware. Professor Ware is a leading researcher in information
visualization. Following his talk, a set of short presentations relating to tools and
techniques for software visualization will be presented. The afternoon will start with a
number of hands-on tool demonstrations. This session will have a free format and we
encourage everyone to explore and discuss these working research efforts. A half hour
will be set aside for a group discussion concerning the demonstrations and the morning
talks. The remainder of the afternoon will be organized into short talks with group
discussion at the end of each session. These sessions focus on a number of key issues
and broader challenges for software visualization.

We are indebted to Hans van Vliet and ICSM 2003 who agreed to our co-located event
and we thank them for their help. We are also indebted to NWO, the Netherlands
Organization for Scientific Research, for covering the costs of the keynote tutorial by Colin
Ware.

We sincerely hope you find this event to be stimulating and rewarding and that you have a
very enjoyable stay in Amsterdam!

Arie van Deursen, Claire Knight, Jonathan I. Maletic, and Margaret-Anne Storey

Organisers

 iii

TTaabbllee ooff CCoonntteennttss

Welcome ___ii
Table of Contents ___ iii
Agenda___v
Tutorial/Keynote ___1
Thinking with Interactive Visualization ___2
 Colin Ware

Workshop Part I __29
UML Class Diagrams – State of the Art in Layout Techniques____________________________30
 Holger Eichelberger and Jurgen Wolff von Gudenberg

Techniques for Reducing the Complexity of Object-Oriented Execution Traces ______________35
 Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge

ADG: Annotated Dependency Graphs for Software Understanding ________________________41
 Ahmed E. Hassan and Richard C. Holt

Exploring the Many Architectures of a Very Large Component-Based Software ______________46
 Jean-MarieFavre, R. Sanlaville, and J. Estublier

AutoCode: Using Memex-like Trails to Improve Program Comprehension___________________48
 Richard Wheeldon, Steve Counsell, Kevin Keenoy

Hands-on Collaborative Demo___53
Exploring the Many Architectures of a Very Large Component-Based Software ______________46
 Jean-MarieFavre, R. Sanlaville, and J. Estublier

CodeCrawler – A Lightweight Software Visualization Tool _______________________________54
 Michele Lanza

AutoCode: Using Memex-like Trails to Improve Program Comprehension___________________56
 Richard Wheeldon, Steve Counsell, Kevin Keenoy

Demonstration of Advanced Layout of UML Class Diagrams by SugiBib____________________58
 Holger Eichelberger and Jurgen Wolff

GENISOM: Self-Organizing Maps Applied in Visualising Large Software Collections __________60
 James Brittle and Cornelia Boldyreff

Source Viewer 3D (sv3D): A System for Visualizing Multi Dimensional Software Analysis Data __62
 Andrian Marcus, Louis Feng, Jonathan I. Maletic

Plugging-in Visualization: Experiences Integrating a Visualization Tool with Eclipse___________64
 Robert Lintern, Margaret-Anne Storey, Xiaomin Wu, Jeff Michaud

Workshop Part II __66
Program Visualization Support for Highly Iterative Development Environments ______________67
 Michele Lanza

Challenges in Visualizing and Reconstructing Architectural Views ________________________73
 Juergen Rilling and Michel Lizotte

Visualization to Support Version Control Software: Suggested Requirements________________80
 Xiaomin Wu, Adam Murray, Margaret-Anne Storey, Robert Lintern

 iv

Visualization for Software Risk Assessments ___87
 Jordi Vidal Rodriguez and Tobias Kuipers

MetaViz – Issues in Software Visualizing Beyond 3D___________________________________92
 Juergen Rilling, Jianqun Wang, and S. P. Mudur

KScope: A Modularized Tool for 3D Visualization of Object-Oriented Programs ______________98
 Timothy A. Davis, Kenneth Pestka, and Alan Kaplan

Self-Organizing Maps Applied in Visualising Large Software Collections __________________104
 James Brittle and Cornelia Boldyreff

The end of the line for Software Visualisation?_______________________________________110
 Stuart M. Charters, Nigel Thomas, and Malcolm Munro

CFB: A Call for Benchmarks – for Software Visualization ______________________________113
 Jonathan I. Maletic and Andrian Marcus

Notes __117

 v

AAggeennddaa

8:30-8:45 Welcome/Coffee
8:45-
10:15

Tutorial/Keynote

Thinking with Interactive Visualization
by Dr. Colin Ware, Data Visualization Research Lab. University of New Hampshire.

This talk will outline a theory of how reasoning can be augmented with visualizations of data. According to
current cognitive theory both visual and verbal-logical processes rely on limited capacity working memories.
Active attention is a core process guiding problem solving through a set of nested cognitive control loops. To
take advantage of visualizations, problems are converted into visual hypotheses in the form of prototypical
patterns. Active attention, "grasps" relevant patterns from the visual display to test hypotheses and find
solutions. In addition visual symbols extend our memory capacity by evoking verbal/logical constructs
causing them to be loaded into non-visual working memory. This theory is elaborated with examples from
the way people work with maps and software diagrams.

10:30-
11:00

Coffee Break

11:00-
12:00

Workshop Part I: Short presentations
Tools & Techniques
Chair: Arie Van Deursen, CWI, The Netherlands

UML Class Diagrams-State of the Art in Layout Techniques
Holger Eichelberger and Jurgen Wolff von Gudenberg, Wurzburg University, Germany

Techniques for Reducing the Complexity of Object-Oriented Execution Traces
Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge
School of Information Technology and Engineering (SITE), University of Ottawa

ADG: Annotated Dependency Graphs for Software Understanding
Ahmed E. Hassan and Richard C. Holt, Software Architecture Group (SWAG), University of Waterloo

Exploring the Many Architectures of a Very Large Component-Based Software
Jean-MarieFavre, R. Sanlaville, and J. Estublier,
Adele Team, Laboratoire LSR-IMAG, University of Grenoble, France

AutoCode: Using Memex-like Trails to Improve Program Comprehension
Richard Wheeldon, Steve Counsell, Kevin Keenoy, Dept of Computer Science, University of London

12:00-
2:00

Hands-on Collaborative Demo (with a short Break for Lunch)

Exploring the Many Architectures of a Very Large Component-Based Software
Jean-MarieFavre, R. Sanlaville, and J. Estublier,
Adele Team, Laboratoire LSR-IMAG, University of Grenoble, France

CodeCrawler - A LightweightSoftwareVisualizationTool
Michele Lanza, Software Composition Group-University of Bern, Switzerland

AutoCode: Using Memex-like Trails to Improve Program Comprehension
Richard Wheeldon, Steve Counsell, Kevin Keenoy , Dept of Computer Science, University of London

Demonstration of Advanced Layout of UML Class Diagrams by SugiBib
 Holger Eichelberger and Jurgen Wolff von Gudenberg, Wurzburg University, Germany

GENISOM: Self-Organizing Maps Applied in Visualising Large Software Collections
 James Brittle and Cornelia Boldyreff, Dept. of Computer Science, University of Durham

Source Viewer 3D (sv3D): A System for Visualizing Multi Dimensional Software Analysis Data
Andrian Marcus, Louis Feng, Jonathan I. Maletic , Affiliation: Kent State University

 vi

Integrating A Visualization Tool with Eclipse
Robert Lintern, Margaret-Anne Storey, Xiaomin Wu, Jeff Michaud, CHISEL Group, University of Victoria

2:00-2:30 Discussion on Hands on tool demonstration
Tool users and participants will be invited to share their insights and observations from the tool
demonstrations.

2:30-3:30 Workshop Part II
Requirements and Challenges for Software Visualization
Chair: Arie Van Deursen

Program Visualization Support for Highly Iterative Development Environments
Michele Lanza, Software Composition Group-University of Bern, Switzerland

Challenges in Visualizing and Reconstructing Architectural Views
Juergen Rilling and Michel Lizotte
Department of Computer Science, Concordia University and Defense R&D, Canada

Requirements for Visualizing Version Control Information
Xiaomin Wu, Adam Murray, Margaret-Anne Storey, Robert Lintern, University of Victoria

Visualization for Software Risk Assessments
Jordi Vidal Rodriguez and Tobias Kuipers, Software Improvement Group

Discussion

3:30-4:00 Break
4:00-4:45 Session: Visualizing Software in 3D -- When Should We?

Chair: Colin Ware, University of New Hampshire

MetaViz – Issues in Software Visualizing Beyond 3D
Juergen Rilling, Jianqun Wang, and S. P. Mudur, Department of Computer Science, Concordia University

KScope: A Modularized Tool for 3D Visualization of Object-Oriented Programs
Timothy A. Davis, Kenneth Pestka, and Alan Kaplan, Clemson University and Panasonic Technologies Inc

Self-Organizing Maps Applied in Visualising Large Software Collections
James Brittle and Cornelia Boldyreff, Dept. of Computer Science, University of Durham

Discussion

4:45-5:30 Session: Improving Software Visualization -- How Can We?
Chair: Susan Sim, University of California at Irvine

The end of the line for Software Visualisation?
Stuart M. Charters, Nigel Thomas, and Malcolm Munro, Visualisation Research Group, Durham University

CFB: A Call For Benchmarks - for Software Visualization
Jonathan I. Maletic and Andrian Marcus, Kent State University

Discussion

5:30-5:45 Wrap-up and summary discussion
6:00-9:00 Dinner

Drinks at 6pm; Dinner at 7pm

Liefhebber Restaurant,
Kloveniersburgwal 5,
1011 JT Amsterdam
http://www.liefhebber.com/
Tel. +31 20 4200418

Tutorial/Keynote

1

Thinking with Interactive
Visualization

Colin Ware
Data Visualization Research Lab

University of New Hampshire

Outline
The problem solving system
Pre-attentive (what is low cost)
Patterns
2D vs 3D?
Visual thinking and the cost of knowledge

Architecture for visual thinking

Display
Features

Proto-objects and
Patterns

Visual
Working
Memory

GIST

Visual
Query

Verbal
Working
Memory

Egocentric object and
Pattern map

Interaction Loop

10+ billion neurons
Parallel, automatic

2

Pre-Attentive Processing

897390570927940579629765098294
08028085080830802809850- 802808
567847298872t y4582020947577200
21789843890r 455790456099272188
897594797902855892594573979209

Color is Pre-Attentive (Pops out)

897 90570927940579629765098294
080280850808 0802809850- 802808
567847298872t y4582020947577200
2178984 890r 455790456099272188
89759479790285589259457 979209

3
3

3
3

Generic Pre-Attentive Experiment

3 6 12
Number of distractors

500

700

900 Number of irrelevant
items varies
Pre-attentive 10 msec
per item or better.

3

Preattentive popout cues

Color
Shape
Motion
Size
Simple Shading
Conjunctions do not popout

Conjunctions of motion and
shape do pop out. (color also?)

McLeod, P., Driver, J. and Crisp, J. (1988)
Visual search for a conjunction of movement
and form is parallel. Nature 332, 154-155.

Driver, J., MacLeod, P. and Dienes, Z. (1992)
Motion coherence and conjunction search:
Implications for guided search theory.
Perception and Psychophysics. 51, 1, 79-85.

MEGraph: Experimental system

Allows for various topological range
highlighting methods

4

Stage 2 Pattern perception

Gestalt principles
Proximity
Continuity
Connectedness
Closure

Proximity
Emphasize
relationship by
proximity

Spatial
Concentration

x

a

b

Connectedness

Connectedness assumed in Continuity
a b

c d

5

Continuity

Visual entities tend to be smooth and
continuous

a b c

Neural basis

Field Hayes and Hess

Continuity in Diagrams

Connections using smooth lines

a b

6

Closure

Prefer closed contours
a b

Closure (cont.)

Closed contours to show set relationship
A

B

C

D

Extending the Venn-Euler
Diagram

7

Patterns in Diagrams
Entities – objects
Relationships – links, color, etc

a
b

c
d

A causal graph

Michotte’s Causality Perception

100 200

50%

100%

Time (msec.)

Direct Launching
Delayed launching
No causality

8

Visual Causal Vectors

3D pattern perception

Use 3D?

GraphVisualizer3D

0

10

20

30

40

50

0 50 100 150 200 250 300

Number of Nodes

Stereo head coupled perspective

Stereo head coupled perspective
2D

2D
Stereo perspective
Head coupled perspective

Ster
eo

+60
%

Motion +130%

Stere
o + Motion

+200%

Pe
rc

en
t E

rr
or

SIZE OF STRUCTURE (Nodes)

9

Issues

Can see a larger graph
Must have stereo and motion
But consider the cost of interaction

Another form of 3D
Structured Object Perception

3D Primitives “Geons”
Structural skeleton

Shape from shading
is also primitive

Color and texture are
Secondary attributes

Geon Diagram (Pourang Irani)
Major entities should be represented with simple 3D
shape primitives
Links can be represented by connecting geons (the
structural skeleton)
Geons should be shaded to make 3D shape visible
Secondary attributes -> color and surface texture
Layout of structure should be primarily in 2D plane

10

Structure diagrams (UML)

Pattern finding
& Recognition

13% errors: 4.3 sec
sub-structure

26% errors 7.1 sec
sub-structure

42% memory
errors

22% memory
errors

3D versus 2D

34% memory
errors

20% memory
errors

21% errors 5.1 sec
sub-structure

11.4% errors 3.7 sec
sub-structure

11

Natural semantics
Instances Dependency

Strength of Relationship Multiplicity

Company

Departments
EmployeesManagers

PayrollPaycheck

Mission statement

Staff

Geon Diagram with semantics

UML MODELING

12

Geon Diagrams

Geon Diagrams

Advantages
More memorable
Easier to interpret

Disadvantages
Do not work well with
text
Inflexible wrt layout

Architecture for visual thinking

Display
Features

Proto-objects and
Patterns

Visual
Working
Memory

GIST

Visual
Query

Verbal
Working
Memory

Egocentric object and
Pattern map

Interaction Loop

10 billion neurons
Parallel, automatic

13

Dual Coding Theory
Verbal-Propositional Information Visual Structural

Information

Verbal
Working
Memory

Baddeley
Visual

Working
Memory

Central
Executive

Visuo-Spatial
Sketchpad

Verbal input Visual input

Words and symbols

Pictures and Words

When should we use a visual display?
What is a visual language?
Dual coding theory?
How to integrate images and words

Consider that hieroglyphs gave
way to more abstract symbols

Why turn back the clock?

x ∝ ϖ
1

∞

∫
λi∏
Ψ∫λ

∫

14

Imagens

Pavio’s dual coding theory

Visual
System

Auditory
System

Verbal

Visual
Image
Information

Information
From speech

Text Information

Associate structure

Logogens Verbal
responses

Non-verbal
responses

Theory: Graphics and Words

Graphics for structural logic
Words for procedural logic: conditionals,
qualifiers, if-then else, while.

The nature of language

Chomsky, innate deep structures.
Common to computer languages
Critical period for language development
But being verbal is not essential to
language development
Sign languages for the deaf are the most
perfect examples of visual language

15

What is language

Description
Communication of intention
The ability to communicate procedures
and sequences of operations – including
logic – if, but, causes, do a then b then c

Thus far we have only dealt with
description

Sign languages

Are true languages
Developed spontaneously
Developed independently
Start as representations
Become more abstract over time

Can there be a true visual
language?

Production
Yes,
But not for most of us!!

Wernicke
BrocaUnderstanding

Production

A critical period

Consider verbal language

Abstraction, logic
(if, while, perhaps)

Based on speech

Sign languages are true
Visual languages

16

To be fluent in visual language
we should be trained from early in
life

The visual system gives us

Visual processing and
visual recognition

Rapid recognition and pattern finding

Abstraction Pattern

Jane is Jim’s boss
Jim is Joe’s boss
Anne works for Jane
Mark works for Jim
Anne is Mary’s boss
Anne is Mike’s boss

Joe Mary

Jane

Mike

Jim

Mark

Anne

17

Visual and verbal pseudo-code

While letters in stack
Take a letter
Put a stamp on it
Put it in the ‘out tray’

Visual programming
languages have a history
of failure

get line of text
from input file
change characters
to upper case
write line to output
file

more input? yes

no

Data flow diagrams are defunct

Integrated pictures and words more
Effective: Chandler and Sweller 1991

Working memory capacities ~ 3
Verbal-Propositional Information Visual Structural

Information

Verbal
Working
Memory

Baddeley
Visual

Working
Memory

Central
Executive

Visuo-Spatial
Sketchpad

Verbal input Visual input

Words and symbols

18

Capacity of verbal working
memory

Used to be though of a 7 +/- 2
It is now thought of as more a duration of
proto-verbal codes.

Capacity of visual working
memory (Vogal, Woodman, Luck,
2001)
Task – change detection
Can see 3.3 objects
Each object can be complex

1 second

Sequential comparison task
1 sec delay

19

Change Blindness

Triesman serial processing of non-pre-
attentive object (40 msec/item)
Kahneman and Triesman “object files”
Rensink - Fingers of attention reach into pro-
object flux

20

Other components of working
memory

Object File

Egocentric Coordinate Map

Object File

Object File

Gist Semantic content

Visual search

Visual
Search or
Monitoring
Strategy

Eye
Movement
Control

Useful Visual
Field of View

Eye movements

Two or three a second
Preserves Context

The screen is a kind of buffer for visual
ideas – we cannot see it all at once but we
can sample it rapidly

21

Architecture for visual thinking

Display
Features

Proto-objects and
Patterns

Visual
Working
Memory

GIST

Visual
Query

Verbal
Working
Memory

Egocentric object and
Pattern map

Interaction Loop

10 billion neurons
Parallel, automatic

Thinking visually
Embedded processes

Define problem and steps to solution
Formulate parts of problem as visual
questions/hypotheses

Setup search for patterns
Eye movement control loop

IntraSaccadic Scanning Loop
(form objects from proto-object flux

22

Problem

Trip Port Bou- Calais (5 days 3 citise)
Visual Problem Mayor Highways

– Distance < 1.2 min = red smooth path
Eye movements to identify major candidate pathways

Pattern Identification: smooth, red, connected
segments / reject non-red-wrong direction

Part solutions into vwm – spatial markers
Parts may be handed to verbal wm

Software Engineering
Example - with
Graph Representation

Segment Big Module into parts
High Cohesion (semantics)
Low Coupling

Find highly connected subgraphs with minimal links
Scan for candidate patterns

Look for Low connectivity
Look for Semantic similarity (symbols)

Important question: what are relevant pattern
that can fit in vwm

Cost of Knowledge

How do we navigate.
Intra-saccade (0.04 sec)
An eye movement (0.5 sec)
A hypertext click (1.5 sec but loss of context)
A pan or scroll (3 sec but we don’t get far)
Walking (30 sec. we don’t get far)
Flying (faster can be tuned)
Zooming, fisheye, DragMag

23

Walking Flying (30 sec +)
Naïve view that does not take perception or

the cost of action into account.

How to navigate large 21/2D
spaces?
Zooming Vs Multiple Windows

Key problem: How can we keep focus
and maintain context.
Focus is what we are attending to now.
Context is what we may wish to attend to.

2 solutions: Zooming, multiple windows

When is zooming better than
multiple windows (Matt Plumlee)

Key insight: Visual working memory is a
very limited resource. Only 3 objects

GeoZui3D

24

Task: searching for target patterns that match

Cognitive Model (grossly
simplified)

Time = setup cost + number of visits*time
per visit

Number of visits is a function of number of
objects (& visual complexity)

When there are too many multiple visits
are needed

Predictions

As targets (and visual working memory load) increases, multiple
Windows become more attractive.

Time =

25

Prediction Results

Critical issues: Cognitive costs

Clickless queries and cognitive costs
Medium level – pattern perception
High level vwm and cognitive costs

Assumption: topologically close nodes are
more important

Need low cost and low cognitive
cost interactions

Constellation: Hover queries (Munzer)

26

Lessons for design

Low level- what stands out
Medium level – pattern perception
High level vwm and cognitive costs

A large high resolution screen may be the
best alternative - because of eye
movement

Interactive techiques hold promise

Implications for design of
information spaces

Design for pattern perception, three chunk
patterns
Consider attention
Implications for navigation

Make all navigation devices visible.
Do not ever make people walk
Maintain context
Minimize cognitive load of navigation
Use multiple linked views for more complex pattern
integration

Research topic
What are easy visual queries

Easy= single object comparison in vwm

27

Architecture for visual thinking

Display
Features

Proto-objects and
Patterns

Visual
Working
Memory

GIST

Visual
Query

Verbal
Working
Memory

Egocentric object and
Pattern map

Interaction Loop

Cognitive Systems

Humans with cognitive tools functioning
groups
Visualization for pattern finding
Coding for pre-filtering
Slogan: “Tighten the loop”

Large displays – interactive diagrams

Acknowledgements

NSERC (Canada)
NSF (USA)
NOAA
ARDA

Workshop Part I

UML Class Diagrams - State of the Art in Layout Techniques

Holger Eichelberger
chair of computer science II

Würzburg University
Am Hubland, 97074 Würzburg, Germany

eichelberger@informatik.uni-wuerzburg.de

Jürgen Wolff von Gudenberg
wolff@informatik.uni-wuerzburg.de

Abstract

Even if the standard for specifying software, the Unified
Modeling Language, is known in different versions to every-
body, CASE tool vendors did not implement all basic fea-
tures. Even with class diagrams, many features of the stan-
dard are ignored. Applying the layout algorithms of these
CASE tools to the user defined diagrams, usually horrible
results are produced, because state-of-the-art techniques in
drawing these diagrams are not respected by the vendors,
too.
In this paper we give an overview on the current UML
tool implementations, the research in the field of drawing
class diagrams automatically and the efforts in convincing
the community of an agreement on basic aesthetical princi-
ples for UML class diagrams in order to simplify reading
and understanding of standardized visualization of static
aspects of software.

1. Introduction

In software engineering the Unified Modeling Language
(UML) has advanced as the standard for graphically specify-
ing static and dynamic aspects of software. In 2003 the Ob-
ject Management Group (OMG) released the version 2.0 of
the UML. The number of different diagram types increased
from 9 to 13, new types of diagrams have been introduced
and some of the older types have significantly increased in
complexity. In [4] we compared the implementations of
the UML features and the automatic layout facilities of 42
current computer aided software engineering (CASE) tools
and agree to the informal statements of others, that most of
the CASE tools have not reached the conformity of UML
versions older than 1.3 Regarding the automatic layout fea-
tures, the tools usually produce horrible results by trans-
forming the layout and implicitely and accidentally chang-
ing the semantics of the complete diagram.
In the next section we summarize the results of the CASE

tool overview, then we mention the set of basic aesthetic
principles which we advocate as a set of basic rules to be
respected by software engineers as well as tool vendors and
finally we present the results of state-of-the-art graph draw-
ing algorithms for class diagrams. References to other work
are included in the individual sections.

2. UML Tools - an Overview

”For more then one decade vendors have under deliv-
ered the promises of object modeling technologies. As a re-
sult, object modeling tools are in disrepute in many develop-
ment organizations.”[10] ”As for modeling tools, the author
knows of none that fully implements the UML 1.1 seman-
tics and notation (adopted three years ago), let alone one
that completely or correctly implements the current UML
1.3 specification (which was adopted a year ago)” [10, oc-
tober 2000]. As shown in [4] even in July 2002 the sit-
uation on UML conformity and implementation of layout
algorithms was nearly the same.
For our test, we tried to use the diagram shown in figure 1
as input to the tools and then applied the automatic layout
mechanisms if present. First problems arised while trying
to define the test diagram within the tool:

1. Most tools are too implementation-specific. Model el-
ements visualizing abstract concepts which cannot be
directly realized in a programming language like as-
sociation classes, higher associations, constraints and
even comments are not present. Since most tools are
not able to correctly produce code for the different re-
sponsibilities of associations, these tools should omit
at least associations, too.

2. A lot of tools implement packaging mechanisms as
logical view only. It is not possible to use classes
within packages (extremely useful when visualizing
coupling and cohesion or applying the facade design
pattern). The alternative concept, the anchor edge, is

Note

Note

class 1

class 2

class 3 class 4

class 5

class 6 class 7

class 8 class 9 class 10

class 11

testsub

Figure 1. The test diagram in [4] which shows
classes within a package, relations across
package borders, two association classes in
further relations, a ternary association, two
nodes and two reflective associations.

usually not present. Other package-like elements like
subsystems or models are not present in most tools, ei-
ther.

3. Nearly each tool implements its own input philosophy
- as a users wish to the vendors we propose the speci-
fication of a user interface standard for CASE tools in
order to increase usability and to simplify the use of
multiple tools.

A tool which claims to be conformant to the UML in
any given version should realize the complete specification
without any restrictions!
The result of applying the automatic layout mechanism on
individual tools is depicted in the figures 2 to 5. Applying
the layout mechanism twice or more times sometimes pro-
duced different results. Screenshots of the entire screen are
shown in [4].

3. Rules for the Layout of a Class Diagram

Unfortunately most layout algorithms on class diagrams
do not adhere to any aesthetic principles. Different sur-
veys [13, 14, 15] on class diagrams have been published
but most of them rely on aesthetical principles taken from
graph drawing without respecting the underlying semantics.
The latest results show that there is not a uniform user pref-
erence on the regarded aesthetic principles.
In [3, 6] we discussed basic issues for semantic based aes-
thetic criteria in order to provide intuitive rules for drawing

Figure 2. Rational AnalystStudio 2002.05.20

Figure 3. Popkin System Architect 8.5.16

class diagrams. The rules are validated by references to the
UML specification, to HCI results and results from software
engineering. Some of the rules are mentioned below in a
compressed form:

1. Enforce hierarchy as the most appropriate ordering cri-
terion for edges in a class diagram. Since software
engineers are used to thinking hierarchically, contain-
ment, inheritance, realization, aggregation, composi-
tion and user defined hierarchies should be taken into
account. Even the latest publications on other layout
algorithms [6, 9] adhere to that principle.

2. Respect spatial relationships to encode coupling, cohe-
sion and importance of parts of the diagram.

3. Visualize the natural clustering of nodes according to
semantical reasons like containment, n-ary associa-
tions and patterns.

4. Avoid crossings and overlappings of model elements.

Figure 4. TNI OpenTool 3.2.15 (poor layout
award) - part of the diagram was cutted of
due to space limitations (red line)

5. Center position of selected nodes (n-ary associations,
pattern nodes).

6. Respect the vicinity of association classes, notes and
constraints.

7. Clearly assign adornments to edges and reflective as-
sociations to the connected classes.

8. With the minimum priority respect other graph draw-
ing criteria.

Intuitively these rules lead to readable diagrams and there-
fore can reduce the cost of communication when inter-
changing software development diagrams. Additionally
these rules can be used as definition of a measurement
framework for the objective comparison of tool features and
layout algorithms. Unfortunately validating these rules by
user experiments is a hard task: high degree of freedom in-
duced by the number of criteria, the need for qualified and
experienced software engineers instead of UML-novice stu-
dents as users to be questioned and low UML tool support
so far since no standardized diagram exchange format for
UML diagrams was defined.

4. Drawing a Class Diagram

For other UML diagrams like activity diagrams (flow
layout) and state charts [2, 1] appropriate algorithms have
been proposed but unfortunately these algorithms are usu-
ally not implemented in CASE tools so far. The large vari-
ety of model elements available for use in UML class dia-
grams are not respected by most of the algorithms proposed
so far [6, 9, 8, 16, 17]. These algorithms mainly focus on

Figure 5. NoMagic MagicDrawUML 7.0 beta
(best layout and UML conformity award)

classes, inheritance relations and association relations but
not on nested package and class structures and more so-
phisticated model elements like association classes, higher
associations or constraints.
The following listing is a brief description of our current
(revised) approach. Detailed descriptions and relations be-
tween the algorithm and the aesthetic rules mentioned in
section 3 can be found in [3, 5, 7].

1. Identify a pseudohierarchy by heuristics or by respect-
ing a user defined hierarchy.

2. Perform a semantic ordering to release implicit de-
pendencies between the sequence of definitions of the
model elements in the input and the layout result.

3. Insert containment relations of model elements as hi-
erarchical edges.

4. Compress association classes and their edge connector
nodes into compound nodes.

5. Convert annotations and connected model elements to
compound nodes.

6. Remove reflexive associations in order to simplify
the implementation. Represent the edge information
within the connected classes in order to be drawn as
edges later on.

7. Transform the graph to an acyclic graph.

8. Guarantee a virtual root.

9. Calculate the ranking of the hierarchically connected
nodes in one step, calculate the layer positions of only

non-hierarchically connected nodes in a second step.
Optimize the layered structure of the graph for UML
class diagram layout.

10. Calculate edge crossing minimization on hierarchical
and non hierarchical edges by an incremental crossing
reduction approach. Respect cluster and containment
relations in this step.

11. Remove containment information.

12. Calculate the coordinates of nodes and edges. Con-
tained model elements are treated in the same step in
order to respect non-hierarchical edges.

13. Expand compound nodes for association classes.

14. Expand and layout notes.

Preserving the the mental map [11] is extremely impor-
tant when iteratively changing class diagrams while anal-
ysis and design phase as well as in roundtrip-engineering.
To implement incremental layout, phases for compressing
and preserving the positions of unchanged nodes can be in-
serted at the beginning and the end of the algorithm. As

Figure 6. The test diagram from [4] drawn
by SugiBib. Visualization of coupling and
cohesion is enforced (the shaded area is a
non-UML feature and drawn for demonstra-
tion purpose only), the relative complexity of
classes is shown as a decorative stereotype.
Notes are not implemented so far.

a proof of concept the algorithm has been implemented as

Figure 7. Part of the relations between differ-
ent Java library packages and a simple graph-
ical user interface implementation.

a prototypical framework written in pure Java. The fig-
ures 6 to 8 show different results produced by our algo-
rithm. Current information on SugiBib can be obtained
from www.sugibib.de.

4.1. Conclusions

In this paper we have shown that the current imple-
mentations of CASE tools neither implement an appro-
priate version of the UML nor provide layout algorithms
which represent the state-of-the-art in drawing class dia-
grams. The first restricts the user to software models which
are implementation-specific and far away from the desired
level of abstraction. Defining an own subset of the UML
restricts the usability and conformance to future standards
like MDA [12]. The second requires more manual ad-
justments, requires more time and disables effective engi-
neering techniques like reverse-engineering and roundtrip-
engineering. Since designing layout algorithms is not one
of the core competences of a CASE tool vendor, it is ad-
visable to disable their individual algorithms (especially if
the undo function is not fully functional) or to implement
a warning message as long as more appropriate algorithms
are implemented.
Since different algorithms may produce different draw-
ings which might be nice to different individuals, a UML
based standard for diagram layout and interchange aesthet-
ics should be proposed. We have shown a subset of our pro-
posal for aesthetic principles for class diagrams. As a con-
sequence of applying these principles the readablility and
understandability is enhanced.
Finally we have mentioned the problems of the other ap-
proaches to realize the automatic layout of class diagrams.
Most of the other algorithms extend the topology-shape-
metrics approach without a description on how to realize

Figure 8. A class hierarchy (respecting inher-
itance relations). The nodes are colored and
grouped according to package containment
without showing the packages itselves.

the more complex situations which arise from using more
sophisticated model elements. Sometimes other hierarchi-
cal or even force-directed approaches are mentioned in lit-
erature but usually only the layout of classes and simple
relations is respected.
Since most tool vendors do not fully implement older ver-
sions of the UML it will be a long road for a complete re-
alization of the new UML version 2.0 Since the complex-
ity of most diagrams has increased, most of the traditional
algorithms (only working on structure not on semantics)
like flow-layout for activity diagrams are not appropriate
any more. For class diagrams at least component classifiers
(class-like model elements furtherly structured by classes or
components) and the graphical representation for provided
and required interfaces/components have to be respected by
a layout algorithm. Since our algorithm is capable of work-
ing on nested and structured elements it can easily be up-
dated. Even if it is known, that adding more constraints to
an algorithm the runtime is increased and low-quality re-
sults (if even a result can be computed) is the risk we be-
lieve, that this can be respected by introducing additional
criteria into the new edge crossing reduction algorithm. Ad-
ditionally a slight update to our set of aesthetic principles is
necessary.

References

[1] R. Castello, R. Mili, and I. G. Tollis. Automatic layout of
statecharts. Software – Practice and Experience, 32(1):25–
55, 2002.

[2] R. Castello, R. Mili, and I. G. Tollis. A framework for the
static and interactive visualization of statecharts. Journal of
Graph Algorithms and Applications, 6(3):313–351, 2002.

[3] H. Eichelberger. Aesthetics of class diagrams. In Proceed-
ings of the First IEEE International Workshop on Visualiz-
ing Software for Understanding and Analysis, pages 23–31.
IEEE, IEEE, 2002.

[4] H. Eichelberger. Evaluation-report on the layout facilities
of UML tools. TR 298, Institut für Informatik, Univer-
sität Würzburg, jul 2002. Institut für Informatik, Universität
Würzburg.

[5] H. Eichelberger. Sugibib. In P. Mutzel, M. Jünger, and
S. Leipert, editors, Proc. Graph Drawing, 9th International
Symposium, GD ’02, volume 2265 of Lecture Notes in Com-
puter Science, pages 467–468. Springer, Springer, 2002.

[6] H. Eichelberger. Nice class diagrams admit good design?
In Proceedings of the 2003 ACM symposium on Software
visualization, pages 159–ff. ACM, ACM Press, 2003.

[7] H. Eichelberger and J. W. von Gudenberg. On the visual-
ization of Java programs. In S. Diehl, editor, Software Vi-
sualization, State-of-the-Art Survey, volume 2269 of Lec-
ture Notes in Computer Science, pages 295–306. Springer,
Springer, 2002.

[8] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert,
and P. Mutzel. Caesar automatic layout of UML class dia-
grams. In P. Mutzel, M. Jünger, and S. Leipert, editors, Proc.
Graph Drawing, 9th International Symposium, GD ’02, vol-
ume 2265 of Lecture Notes in Computer Science, pages 461–
462. Springer, Springer, 2002.

[9] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert,
and P. Mutzel. A new approach for visualizing UML class
diagrams. In Proceedings of the 2003 ACM symposium on
Software visualization, pages 179–188. ACM, ACM Press,
2003.

[10] C. Kobryn. Modeling components and frameworks with
UML. Communications of the ACM, 43(10):31–38, 2000.

[11] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout ad-
justment and the mental map. Journal of Visual Languages
and Computing, 6(2):183–210, 1995.

[12] OMG. Model driven architecture specification. Version 1.0,
May 2003 via http://www.omg.org.

[13] H. Purchase, J.-A. Allder, and D. Carrington. User prefer-
ence of graph layout aesthetics: A UML study. In J. Marks,
editor, Graph Drawing - 8th Internation Symposium, vol-
ume 1984 of Lecture Notes in Computer Science, pages 5–
18. Springer, Springer, 2001.

[14] H. Purchase, J.-A. Allder, and D. Carrington. Graph layout
aesthetics in UML diagrams: User preferences. Journal of
Graph Algorithms and Applications, 6(3):255–279, 2002.

[15] H. Purchase, M. McGill, L. Colpoys, and D. Carrington.
Graph drawing aesthetics and the comprehension of UML
class diagrams: an empirical study. Proceedings of the Aus-
tralian Symposium on Information Visualisation, 9, 2001.

[16] D. Spinellis. On the declarative specification of models.
IEEE Software, 20(2):94–96, 2003. March/April.

[17] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Vi-
sualization and automatic layout of graphs. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Proc. Graph Drawing,
9th International Symposium, GD ’02, volume 2265 of Lec-
ture Notes in Computer Science, pages 453–454. Springer,
Springer, 2002.

Techniques for Reducing the Complexity of Object-Oriented Execution Traces *

* This research is sponsored by NSERC

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge
University of Ottawa

SITE, 800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

{ahamou, tcl}@site.uottawa.ca

Abstract

Understanding the behavior of object-oriented systems

is almost impossible by merely performing static analysis
of the source code. Dynamic analysis approaches are
better suited for this purpose. Run time information is
typically represented in the form of execution traces that
contain object interactions. However, traces can be very
large and hard to comprehend. Visualization tools need
to implement efficient filtering techniques to remove
unnecessary data and present only information that adds
value to the comprehension process. This paper
addresses this issue by presenting different filtering
techniques. These techniques are based on removing
utility methods and the use of object-oriented concepts
such as polymorphism and inheritance to hide low-level
implementation details. We also experiment with 12
execution traces of an object-oriented system called
WEKA and study the gain attained by these filtering
techniques

Keywords:

Reverse engineering, program comprehension, dynamic
analysis, object-oriented systems, and software
visualization.

1. Introduction
Understanding object-oriented systems is a challenging

task. Such systems are designed with the idea of
interactions between objects in mind and in order to fully
understand them we need to analyze these interactions
rather than merely performing static analysis of the source
code.

Information about the execution of an object-oriented
system is typically represented in the form of traces of
object interactions. Figure 1 shows an example of a very
simple trace of method calls where specific objects are
substituted by their class type – the term trace of class
interactions would be more appropriate in this case. An

alternative representation consists of labeling the edges
with the messages and nodes with object identifiers or
class names.

However, traces can be very large and hard to
understand. This is due to the fact that important
interactions are mixed with low-level implementation
details. To overcome the size explosion problem, many
visualization tools and techniques [1, 2, 4, 5] proceed by
detecting repeated sequences of object interactions as
distinct patterns of execution, which are then rendered in a
way that helps a software analyst notice them easily and
explore their content.

Screen.init()

Shape.Shape()

Shape.update()

Shape.draw()

Shape.refresh()

Figure 1. Trace of method calls. Objects are
substituted with their class type

In this paper we present a set of techniques that aim at
filtering the trace by removing unnecessary data with
respect to program comprehension. We call this process:
Trace Compression. For example, utility methods can be
removed safely if the goal of the maintenance activity is to
understand the overall design of the system, which in turn,
can be very useful for design recovery.

Our approach consists of three main steps. First, we
preprocess the trace by removing repeated interactions
due to loops. Then we detect different types of utilities
and remove them. Finally, we use object-oriented
concepts, namely, polymorphism and inheritance to hide
low-level implementation details.

We also present an experiment that we conducted on
12 execution traces of an object-oriented system called
WEKA to estimate the compression gain attained by these
techniques.

 The rest of this paper is organized as follows; the next
section discusses the size problem of the traces. In section
3, we present the compression techniques. In Section 4,
we describe the experiment and discuss the results.

2. The Size Problem
Although traces can be very large, a closer analysis of

their content shows that they contain many redundancies.
From the comprehension perspective, a software engineer
needs to understand a repeated sequence of calls only
once and reuse this knowledge whenever it occurs.
Therefore, a more accurate way of reasoning about the
size problem of a trace should be based on analyzing
distinct subtrees of calls instead of the number of lines.
We refer to each distinct subtree as a comprehension unit.

Figure 2a. shows a trace T (the class and method
names are represented with one letter to avoid cluttering)
that contains 9 calls but only 6 comprehension units as
shown in Figure 2b.

Figure 2. a. The trace T has 9 calls. b. an acyclic
graph that represents the compact form of T and

shows 6 comprehension units. Note that the crossing
line represents the order of calls

In order to reduce the trace overhead problem, we need
to find ways to group different subtrees as instances of the
same comprehension units. The compression techniques1
presented in this paper aim at accomplishing this.

There are different ways for measuring the
compression gain. In this paper, we use a compression
ratio and we define it as follows:

- Let T1 be the original trace such as T has CU1
comprehension units.

- Let T2 be the resulting trace after compressing T1 and
CU2 is the number of comprehension units of T2

- The compression ratio R is:

R = 1 – CU2/CU1

1 We are not talking about data compression in the conventional

sense (which results in unintelligible output), but rather,
compression of the visible output so that it can be more easily
understood.

This means that the higher the ratio the better the
compression we get.

3. Trace Compression Techniques
3.1 Trace preprocessing

The first step consists of preprocessing the trace by
removing contiguous repetitions of method calls or
sequences of method calls that are due to loops. However,
consider the trace of Figure 3, the two sequences rooted at
B are not identical but can be considered similar from the
comprehension point of view if the number of repetitions
of C of the first subtree is ignored.

Figure 3. The subtrees rooted at B can be considered
the same if number of repetitions is ignored

Therefore, we expand the preprocessing stage to
consider two contiguous subtrees as the same even though
the number of contiguous repetitions of their nodes is not
exactly identical. This will result in a better compression
ratio without a considerable loss of the trace content.
Other matching criteria such as the ones presented by
DePauw et al. [3] can also be used

3.2 Removing utilities:
The following are some criteria that can be used to rate

the extent to which a method is a utility.

Constructors and destructors:

Constructors and destructors are used simply to create
and delete objects, rather than to implement the core
system operations. Therefore, it may be best to ignore
them while trying to understand the behavior of a specific
scenario. However, if the maintenance task involves such
things as performance analysis or detecting memory leaks,
then preserving constructors and destructors would be
important.

Accessing methods:

Accessing methods are methods that return or modify
directly the values of member variables. Accessing
methods are used as a means to reinforce information
hiding. Although, software engineers tend to follow the
same naming convention for accessing methods, which
consists of prefixing them with “get/set” followed with the
name of the variable, it might be necessary to perform
data flow analysis of the class that defines them to
automatically detect them.

A

B

B

D

C

C

C

D

B

C D

E

F

A

b.

A

E

F

D

B

C

B

C

 D

a.

Utility classes:

It is a common practice for software developers to
create utility classes that can be used by other classes of
the system. If those classes are already known by the
software maintainer then she or he can remove them from
the trace. There may also be a need to automatically
detect such classes. For this purpose, the class
dependency graph can be of assistance. Utility classes
correspond usually to the graph nodes with a very large
number of incoming edges and a very small number of
outgoing edges [8].

3.3 Techniques based on OO concepts:
Polymorphic methods:

T. Lethbridge and R. Laganière define polymorphism
as “a property of object-oriented software by which an
abstract operation may be performed in different ways,
typically in different classes” [7]. The methods that
implement the operation need to have the same name
although they might have different signatures.
Polymorphism is typically implemented using method
overloading and inheritance.

Although the semantics of these methods should be the
same, the execution trees that derive from them can be
significantly different due to the way they are
implemented. However, it is unlikely that the software
maintainer will need to look inside the encapsulation to
see the implementation details if only an abstract view of
the design is needed, which leads to an opportunity to
remove these details (since they merely implement an
abstract operation). Removing such details can result in a
significant compression. This concept applies to interfaces
as well since an interface is considered as a pure abstract
class.

4. Experiment
4.1 Description and settings

We experimented with an object-oriented system
called WEKA version 3.0.6 [9]. WEKA is a tool that
implements several data mining and machine learning
algorithms including classification algorithms, association
rules generators and clustering techniques. In addition to
that, WEKA implements several filters that transform the
input datasets in different ways such as adding or
removing attributes, removing instances from the dataset
and so on. WEKA is implemented in Java and contains
around 160 classes and over 1680 methods. For more
information about WEKA, please refer to [9].

We used our own instrumentation tool that is based on
BIT [6] to add probes at each entry and exit point of the
system public methods. Constructors are considered as
regular methods. However, private methods are not
instrumented to reduce the amount of processing time.

Traces are generated as the system runs and saved in a
text file. Although WEKA comes with a GUI version,
every WEKA algorithm and feature can be executed from
the command line. We favored the command line
approach over the GUI to avoid encumbering the traces
with GUI components. A trace file contains the following
information: Thread name; full class name (e.g.
weak.core.Instance); method name and a nesting level that
maintains the order of calls

We noticed that all WEKA algorithms use only one
thread. Therefore, the thread name information is useless
for this experiment. However, in case of a multi-threaded
system, one needs to break the trace into different threads
and apply the compression techniques to each of them.

Table 1. The traces used in this experiment

Trace Algorithm or Filter Description
1 Cobweb Clustering algorithm
2 IBk Classification algorithm
3 OneR Classification algorithm
4 Decision Table Classification algorithm
5 J48 (C4.5) Classification algorithm
6 Apriori Association algorithm
7 Attribute Filter Filter
8 Add Attribute Filter
9 Merge Two Values Filter
10 Instance Filter
11 Swap Attribute Values Filter
12 Split Dataset Filter

The main objective of this experiment is to estimate
the gain attained by the compression techniques. We
chose to analyze 12 execution traces of WEKA. Table 1.
describes the algorithms and filters that correspond to
each trace.

4.2 Experiment Design
The compression techniques presented in this paper

can be combined in different ways. Each combination will
eventually result in a different compression ratio. We
narrow down all the possible results to the following:

- Initial information about the trace such as the number
of lines, the number of comprehension units, etc.

- The gain attained after preprocessing the trace.

- The gain attained after removing constructors from the
preprocessed trace

- The gain attained after removing accessing methods
from the preprocessed trace. For this purpose, we
noticed by inspecting the source code that WEKA
follows the “set/get” naming style.

- The gain attained after removing utility classes from
the preprocessed trace. For this purpose, we analyzed
WEKA documentation to discover eventual utility
classes. We found that WEKA contains a class called

Utils where many utility methods such as
doubleToString, eq, etc are defined

- The gain attained after removing the details of
polymorphic methods from the preprocessed trace. In
this paper, we focus on overriding only. Overloaded
methods that are defined in the same class are
considered identical since we do not take into account
the arguments list. However, methods that are
overloaded in different classes are not considered in
this paper for simplicity reasons.

- Finally, we also combine these techniques together to
show the gain attained after removing all utilities
(constructors, accessing methods…) and removing
details of polymorphic methods from the resulting
trace. However, this is not the only approach to
combining. Future research can focus on other
possibilities.

Table 2. summarizes the variables used to describe the
results in a more precise way:

4.3 Results and discussion

Table 3 shows general information about the traces.
Although some traces contain over 100 000 lines (e.g.
Trace 6), we notice that they do not contain a lot of
distinct methods (e.g. only 65 methods in trace 6). The
number of comprehension units is also low. This means
that there are many repetitions in the trace that are either
due to loops or the presence of the same sequences of
calls all over the trace. The preprocessing stage reduces
considerably the size of most of the traces although
Traces 4, 5 and 6 are still considerably large. We also
notice that Trace 5 has a very large number of
comprehension units, which might imply that it is the most
complex trace. It is also interesting to see that ignoring
repetitions when removing contiguous repetitions of
sequences of calls results in a higher reduction of the
number of comprehension units for large traces compared
to small traces. For example, Trace 10 and 12 still keep
the same number of comprehension units although the
number of lines is considerably smaller after the
preprocessing stage.

Table 4. shows the results of removing utilities and the
call hierarchies that are derived from polymorphic calls.
We notice that removing the constructors for large traces
(Traces 1 to 6) results in a higher reduction compared to
removing accessing methods. This is due to the fact that
most of these methods were already removed during the
preprocessing stage. Another reason is that, these traces
use a large number of objects. On the other hand, small
traces do not use a lot of objects and removing
constructors might not be that important, which explains
why removing accessing methods still gives a slightly

better compression ratio. Removing the methods of the
class Utils seems to give almost the same result for all the
traces.

Table 2. Variables used to represent the results

Variable Description
Ninit The number of calls of the initial trace
CUinit The number of comprehension units of the

initial trace
Classes The number of distinct classes of the system

that the initial trace contains
Methods The number of distinct methods of the system

that the initial trace contains
Nprep The number of calls of after preprocessing the

initial trace. Let us call the resulting trace Tprep
CUprep The number of comprehension units of Tprep
Rprep Compression ratio = 1 - CUprep / CUinit
Nconst The size of the resulting trace after removing

constructors from Tprep (preprocessed trace)
CUconst The number of its comprehension units
Rconst = 1 – CUconst / CUprep
Naccess The size of the resulting trace after removing

accessing methods from Tprep
CUaccess The number of its comprehension units
Racces = 1 – CUaccess / CUprep
Nutil The size of the resulting trace after removing

the methods of the class Utils from Tprep
CUutil The number of its comprehension units
Rutil = 1 – CUutil / CUprep
Npoly The size of the resulting trace after removing

the details of polymorphic methods
CUpoly The number of its comprehension units
Rpoly = 1 – CUpoly / CUprep
Poly_Meth Number of polymorphic methods
Ncum-utils The size of the resulting trace (let us call it

Tutil) after removing all utilities (constructors,
accessing methods…).

CUcum-utils The number of its comprehension units
Rcum-utils = 1 – CUcum-utils / CUprep
Ncum-poly The size of the resulting trace after removing

polymorphic calls details from Tutil
CUcum-poly The number of its comprehension units
Rcum-poly = 1 – CUcum-poly / CUprep

On the other hand, removing the details of
polymorphic methods reduces considerably the size of
Trace 1 but reduces its comprehension units by only
45.77% as shown in Table 4. The analysis of Trace 1
showed that the method buildClusterer() is the main cause
behind this high reduction. WEKA implements two
clustering algorithms and both of them consist of classes
that override the method buildClusterer(). Building
clusters might involve going through the dataset several
times to find relationships between them. This usually
generates very large hierarchies of calls, which explains
the significant reduction when these details are hidden.

Table3: General information about the trace and the results of preprocessing them

Trace Classes Methods Ninit CUinit Nprep CUprep Rprep

1 10 63 193121 108 6015 79 27%

2 12 92 37882 185 3719 113 39%

3 10 89 27554 223 4557 124 44%

4 19 150 154185 305 29576 224 27%

5 23 152 95118 469 25933 306 35%

6 9 65 156792 317 19810 127 60%

7 11 76 1902 83 281 83 0%

8 10 71 2534 80 351 80 0%

9 10 73 2245 84 752 83 1%

10 10 68 1248 73 247 73 0%

11 10 73 2256 83 374 82 1%

12 10 71 1398 79 289 79 0%

Similarly, Traces 3 and 5 represent two classification

algorithms represented by two classes that override the
buildClassifier() method. This method also generates
large hierarchies of method calls. The results presented
here go along with the idea of abstracting out the trace to

extract high-level interactions. For example, a software
engineer might only want to know that, at this point of
time, a classifier or a clusterer is being built without
having to go into the details.

Table 4: Removing utilities and details of polymorphic methods from the preprocessed traces

T Nconst CUconst Rconst Naccess CUaccess Raccess Nutil CUutil Rutil Npoly CUpoly Rpoly Poly.
Meth

1 5305 67 15.19% 6009 75 5.06% 6008 73 7.59% 289 46 41.77% 4

2 3329 91 19.47% 3409 99 12.39% 3599 104 7.96% 1973 95 15.93% 2

3 3898 106 14.52% 4260 115 7.26% 4449 116 6.45% 1253 80 35.48% 3

4 27039 183 18.30% 28068 186 16.96% 27759 213 4.91% 20916 158 29.46% 5

5 21408 275 10.13% 25124 290 5.23% 24297 286 6.54% 1633 99 67.65% 5

6 18880 113 11.02% 19610 116 8.66% 19771 119 6.30% 19810 127 0.00% 0

7 228 70 15.66% 252 65 21.69% 267 79 4.82% 227 68 18.07% 3

8 299 68 15.00% 329 68 15.00% 332 75 6.25% 285 65 18.75% 3

9 674 70 15.66% 718 68 18.07% 721 78 6.02% 626 66 20.48% 3

10 208 61 16.44% 219 52 28.77% 232 69 5.48% 192 61 16.44% 3

11 316 69 15.85% 350 68 17.07% 355 77 6.10% 274 66 19.51% 3

12 242 67 15.19% 262 63 20.25% 271 74 6.33% 245 72 8.86% 3

Trace 4 represents an algorithm that creates a decision

table and generates classifiers out of it. Although some
polymorphic methods were found, the number of lines is
still very large; this might be due to the complexity of this
algorithm.

It is interesting to notice that the number of overridden
methods that appear in the traces as indicated by the
variable Poly_Meth is low. Trace 6, for example, does
not contain any polymorphic method. In fact, Trace 6
corresponds to the only association algorithm that is
implemented in WEKA, called Apriori. The class Apriori

is created to build association rules which are an
important part of this algorithm. However, this class does
not have a superclass, which explains why polymorphism
was not used here. This result is very interesting because
it shows the limitations of using polymorphism (based on
overriding) to hide details and requires investigating other
means for hiding these details. Perhaps, a more general
definition of utility methods can lead the way.

Finally, Table 5 shows the cumulative results of
removing utility methods and removing polymorphic
methods from the resulting trace. The table shows higher

compression ratios in terms of the number of
comprehension units and very high reduction of the
number of lines. The compression ratio of all the traces
has increased expect for Trace 6 because it does not have
polymorphic methods. Different combination of these

techniques will lead to different compression ratios.
However, future work needs to involve the users in order
to discover which combinations suit them the best.

Table 5: Cumulative results

T Ncum-utils CUcum-utils Rcum-utils Ncum-poly CUcum-poly Rcum-poly
1 5296 59 25.32% 202 30 62.03%
2 2925 71 37.17% 1320 61 46.02%
3 3514 92 25.81% 734 52 58.06%
4 23770 138 38.39% 17048 96 57.14%
5 19047 247 19.28% 1006 68 77.78%
6 18645 96 24.41% 18645 96 24.41%
7 190 48 42.17% 173 44 46.99%
8 264 53 33.75% 227 45 43.75%
9 615 52 37.35% 540 44 46.99%
10 173 38 47.95% 132 32 56.16%
11 279 52 36.59% 216 44 46.34%
12 205 48 39.24% 180 44 44.30%

Conclusions and future directions
Dynamic analysis is very useful for understanding the

behavior of object-oriented systems. The analysis of
traces of object interactions can bridge the gap between
low level implementation details and high level domain
concepts, if effective filtering techniques exist.
Interactions between objects are typically depicted in
traces of method calls. In this paper, we presented many
techniques that can help hide implementation details and
reveal only important interactions. The experiment
showed several results that can be used by tool builders to
improve their tools. First, we showed that the number of
calls in the trace is not the major factor of complexity.
Traces can be very large but have few comprehension
units. Another interesting result is that traces always need
to be preprocessed. Although, using these compression
techniques separately might result in a good compression
ratio, they work best when combined.

Future work should focus on several areas such as
considering a broader definition of utility methods. We
also need to experiment with many other software systems
to understand how to combine the compression techniques
in order to extract the most important interactions that
many software designers agree about.

References
[1] W. De Pauw, D. Kimelman, and J. Vlissides, “Modeling

Object-Oriented Program Execution”, In Proc. 8th
European Conference on Object-Oriented Programming,
Bologna, Italy, 1994, pp. 163-182.,

[2] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides,
“Visualizing the Behavior of Object-Oriented Systems”, In
Proc. 9th Conference on Object-Oriented Programming
Systems, Languages, an Applications, Portland, Oregon,
USA, Oct. 1994, pp. 326-337

[3] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented Visualization.", In
Proc. of the 4th USENIX Conference on Object-Oriented
Technologies and Systems, COOTS, 1998, pp. 219-234

[4] D. Jerding, S. Rugaber, "Using Visualization for
Architecture Localization and Extraction." In Proc. 4’th
Working Conference on Reverse Engineering, Amsterdam,
Netherlands, Oct. 1997

[5] D. Jerding, J. Stasko, T. Ball, “Visualizing Interactions in
Program Executions”, In Proc. of the International
Conference on Software Engineering (ICSE), 1997, pp.
360-370

[6] H. B. Lee, B. G. Zorn, “BIT: A tool for Instrumenting Java
Bytecodes”, USENIX Symposium on Internet Technologies
and Systems, Monterey, California, 1997, pp. 73-82

[7] T. C. Lethbridge, R. Laganière, Object-Oriented Software
Engineering: Practical Software Development using UML
and Java, McGraw Hill, 2001

[8] H. A. Müller, M. A. Orgun, S. Tilley, J. Uhl, “A Reverse
Engineering Approach To Subsystem Structure
Identification”, Journal of Software Maintenance:
Research and Practice, Vol 5, No 4, December 1993, pp.
181-204

[9] I. H. Witten, E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 1999

ADG: Annotated Dependency Graphs for Software Understanding

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa,holt }@plg.uwaterloo.ca

ABSTRACT
Dependency graphs such as call and data usage graphs are
often used to study software systems and perform impact
analysis during maintenance activities. These graphs show
the present structure of the software system (e.g. In a com-
piler, anOptimizer function calling aParser function).
They fail to reveal details about the structure of the system
that are needed to gain a better understanding. For exam-
ple, traditional call graphs cannot give the rationale behind
anOptimizer function callingParser function.

In this position paper, we advocate a new view on de-
pendency graphs – Annotated Dependency Graphs (ADG).
ADG can assist maintainers understand better the current
structure of large software systems. We show an example
of using an ADG to studyPostgres, a large DBMS open
source software system.

1 INTRODUCTION
To aid in software understanding tasks, documentation is
used to narrate different aspects in the life cycle of a software
system. Unfortunately software developers are not interested
in documenting their work. Documentation rarely exists. If
it does it is usually incomplete, inaccurate, and out of date.
Faced with the lack of sufficient documentation, developers
choose alternative understanding strategies such as search-
ing or browsing the source code. The source code in many
cases represents the definitive source of accurate informa-
tion about the system [11]. Developers search the code using
tools such asgrep . They browse the code using simple text
editors or cross-reference code browsers such asLXR, which
permit jumping between variables/functions usage and vari-
ables/functions declarations while browsing the source files.

Dependency graphs have been proposed and used in many
studies and maintenance activities to assist developers in un-
derstanding large software systems before they embark on
modifying them to meet new requirements or to repair faults.
Call graphs and data usage graphs are the most commonly
used dependency graphs.

The rationale behind the existence of dependencies between
two nodes in a dependency graph are usually based on
domain and system knowledge. For example, based on
our knowledge of the reference architecture of a compiler,

we can reason about the rationale behind the dependencies
shown in the graphs [10]. For domains that are not well un-
derstood that may not be clear and may prove to be a chal-
lenging and daunting task. Moreover, for well understood
architectures such as compilers, we may find unexpected de-
pendencies that indicate, for example, that anOptimizer
function depends on aParser function. As a maintainer of
such a system, the rationale behind such unexpected depen-
dency is not clear - Are there valid reasons for such depen-
dency? Or was it due to laziness or ignorance of the devel-
oper that introduced the dependency?

Much of the knowledge about the design of a system, its ma-
jor changes over the years and its troublesome subsystems
live only in the brains of its developers. Such live knowl-
edge is sometimes calledwet-ware. When new developers
join a team, mentoring by senior members and informal in-
terviews are used to give them a better understanding of the
system. Leveraging this knowledge may not always be pos-
sible as the software may have been bought from another
company, its maintenance outsourced, or its senior develop-
ers are no longer part of the company. Thus, answering ques-
tions about unexpected dependencies and other discoveries
as developers study dependency graphs becomes a challeng-
ing and time consuming task. Traditional dependency graph
are only capable of giving us a current view of the software
system without details about the rationale, the history, or the
individuals behind the dependency relations.

In this paper, we propose to extend dependency graphs – An-
notated Dependency Graphs (ADG) – to attach more details,
in an attempt to assist developers in understanding and study-
ing software systems. In an ideal world, if each developer
attached a sticky note to each added dependency to record
their name, the rationale behind the addition or removal of
the dependency then the job of the maintainer will be much
easier. In the fast paced world of software development with
tight schedules and short time to market, this is neither pos-
sible nor practical. Thus in addition to proposing these ex-
tended dependency graphs, we present a technique to build
such graphs automatically without any input from the devel-
opers of the system.

Organization of Paper
The paper is organized as follows. Section 2 highlights sev-

eral problems associated with traditional dependency graphs
and proposes Annotated Dependency Graphs (ADG) to ad-
dress these shortcomings. Section 3 gives an overview of
how to build an ADG. Section 4 presents a short case study
of an ADG forPostgres, a large open source database man-
agement system (DBMS). Section 5 describes related work.
Finally section 6 draws conclusions from our work and pro-
poses future directions.

2 SHORTCOMINGS OF DEPENDENCY GRAPHS
As maintainers prepare to modify a software system to add
features or repair bugs, they start off by examining any avail-
able documentation, and consulting senior developers. Then
they browse the source code and use tools to generate depen-
dency graphs such as call and data usage graphs. Following
these steps in an iterative manner, maintainers start gaining
a better understanding of the software system. Using their
newly acquired understanding, they form an internal cogni-
tive model of the software [12]. Dependency graphs assist
maintainers in gradually piecing together the software puz-
zle. Unfortunately, dependency graphs fall short in the fol-
lowing areas:

1. Rationale: They do not indicate the reasons behind
the introduction or removal of dependencies between
source code entities.

2. Time: They do not indicate how long a dependency has
existed for or how long ago has it been removed.

3. Inter-dependency patterns: They fail to show patterns
of dependencies. For example, in a compiler system it
is hard to deduce from a call graph that once a function
depends on thepopulate symbol table() function, it
will also depend onsymbol table entry data type.

4. Creator: They fail to show the name of the developer
that introduced the dependency.

In the following subsections, we elaborate on the benefits of
each area for software understanding.

Rationale
In a compiler, when a dependency between anOptimizer
function and aParser function is discovered, the maintainer
puzzled by the unexpected dependency can contact the se-
nior developer to get a better understanding of the rationale
behind the introduction of such a dependency. The senior
developer may be too busy or may not recall the rationale.
Furthermore the developer who introduced the dependency
may no longer work on the software system. Then the main-
tainer has to examine the source code closer and spend hours
trying to understand the rationale behind such unexpected
dependency. In some cases the added dependency may be
justified due to, for example, optimizations or code reuse;
or not justified due to, developer ignorance, or pressure to
market.

Another popular usage of dependency graphs is the discov-
ery of dead code. Dead code is code which no other enti-
ties in the software system depends on. Again dependency
graphs are able to locate the dead code such as unused func-
tions and unused data types, but fail to indicate the reason
for the death of the code. A maintainer would like to know
if the dead code has been replaced by an optimized or bet-
ter piece of code capable of performing the same functional-
ity, replaced by a more general piece of code that encourages
more reuse, or even decommissioned as the system no longer
supports the functionality offered by the dead code.

These two aforementioned examples are some of the many
situations where theRationale for the appearance or dis-
appearance of dependencies is essential in aiding maintain-
ers of large software systems. Unfortunately, attaching the
Rationale for each dependency would require many re-
sources and is time consuming. Consequently an automated
technique to annotate each dependency with its rationale
would be very beneficial.

Time
Current dependency graphs only provide a single current
view of the software system. As pointed out in the previ-
ous section this prevents the dependency graph from helping
developers understand the evolution of dependencies in the
software system. Determining the evolution of dependencies
for a dead piece of code is a good example. For example, the
developer may want to know whether the dead function was
introduced in the previous release to go around a bug and the
bug is now fixed yet the functions isn’t removed or whether
the dead function has been around for many releases.

Inter-dependency patterns
The ability to determine that adding a dependency to one en-
tity entails adding dependencies to other entities is a very
valuable information that can be used in building tools to
assist developers in maintaining large complex software sys-
tems. This knowledge would help developers guide devel-
opers to other entities in the source code that may require
modifications.

Creator
In some cases, the creator of a dependency may pose a con-
cern. The creator is a good indicator of the validity and trust-
worthiness of unexpected dependencies. For example an un-
expected dependency created by a developer that was junior
when the dependency was created is a strong sign that the
dependency may be an invalid one.

3 BUILDING ANNOTATED DEPENDENCY
GRAPHS

Entity A
(eg. function)

Entity B
(eg. function,

data type)

Dependency

Figure 1: Schema for a Traditional Dependency Graph

To overcome the shortcomings highlighted in the previous
sections, we propose Annotated Dependency graph (ADG).
Whereas a traditional dependency graph would consist of en-
tities and edges, as shown in Figure 1, an ADG would have
several attributes attached to the nodes and the edges. Fig-
ure 2 shows the attributes that are attached. These attributes
address shortcomings of traditional dependency graphs.

Entity A
(eg. function)

Entity B
(eg. function,

data type)

Dependency

1. Rational
2. Time
3. Related Depedencies and Entities
4. Creator

Figure 2: Schema for a Annotated Dependency Graph

Although, The ADG can be created manually by developers
as they update the source code, this is not a practical solution
for the following reasons:

1. It requires developers of large established software
projects to go through a traditional dependency graph of
the software system and try to populate the ADG. This
is a time consuming and erroneous task. In many cases
the developer may no longer recall the reasons for the
dependencies and in most cases won’t recall the details
for the other attributes in an ADG.

2. Another alternative would be to use the ADG at the start
of a new project and make sure developers always an-
notate any new or removed dependencies. Again this is
extra work which most developers would not be inter-
ested in doing.

Instead of building the ADG manually, we chose to use the
change records stored in the source control repository such as
RCS [13] or CVS [3, 5].The repository contains details about
the development history of each file in the software system.
The repository stores the creation date of the file, its initial
content and a record of each modification done to the file.
A modification recordstores the date of the modification,
the name of the developer that performed the changes, the
line numbers that were changed, the actual lines of code that
were added or removed, and a detailed message entered by
the developer explaining the rationale behind the change.

Source control systems store the details of the modification
at the line level of a file which is not sufficient to build the
ADG which has as functions and data types as nodes. Thus,
we first need to preprocess the modification records to map
the changes to the appropriate source code entities (i.e. func-
tions or data types). Then we build the Annotated Depen-
dency Graph and annotate it with details from the modifica-

tion records such as time, and rationale. Due to size limita-
tions, we will not discuss the details of the ADG building as
it is detailed elsewhere [7].

4 CASE STUDY
To validate the usefulness of our approach we show a small
case study onPostgres. Postgresis a sophisticated open-
source Object-Relational DBMS supporting almost all SQL
constructs. Its development started in 1986 at the University
of California at Berkeley as a research prototype. Since then
it has become an open source software with a globally dis-
tributed development team. It is being developed by a com-
munity of companies and people co-operating to drive the
development of one the world’s most advanced Open Source
database software (DBMS).

In our case study we build an ADG using data beginning with
1996 when Postgres became an open source project. Build-
ing the ADG for Postgres requires 2 hours and 30 mins on a
1.8 Pentium 4 CPU. Luckily building the ADG needs to be
done only once, then we can use it to generate graphs as re-
quired. All graphs shown in this section have been generated
in under 5 seconds once the ADG was generated.

Figure 4: Zoomed-In Low-Level (Function) Call Graph for
Postgres Optimizations

Using an ADG, we can generate a call graph similar to tra-
ditional call graphs generated by parsing the latest source
code. Instead we chose to generate a more interesting call
graph that showcases the benefits of using an ADG. Figure 3
shows an example of such graph. The displayed call graph
shows changes to the call graph that

• occurred in the last month,
• and which were due to optimizations work done to

speed up the database.

Each oval represents a function. Blue ovals indicate func-
tions that have been removed from the source code, pink
ovals indicate functions that have been added to the source
code, and yellow ovals indicate functions that been modi-

Figure 3: Low-Level (Function) Call Graph for Postgres Optimizations

fied in the last month. Also, blue arrows indicate function
calls that have been removed and red arrows indicate func-
tion calls that have been added in the last month.

The graph shown in Figure 3 is too small to distinguish its
various details. In Figure 4, we show a small zoomed-in sec-
tion of the larger graph to give a better idea of the changes.
A developer visualizing the call graph can focus on their area
of interest using their visualization software.

Alternatively, we can lift the details of the graph from the
function level to the subsystem level [6]. For each function
in the call graph we locate the file that defines it, then the
subdirectory in which that file resides. We use the subdi-
rectory as the node in that lifted visualization instead of the
function. The lifted visualization is shown in Figure 5 where
each node represents a subdirectory. The new visualization
is much clearer but does not have as much details. If more
details are required then the function level visualization can
be used.

5 RELATED WORK
The work presented in this paper addresses two main streams
of research in particular, visualizing the evolution of source
code and locating features in the source code.

Visualizating Evolution
In [8] and [14], two approaches are presented to tackle
the issue of visualizing software structural changes. Both
approaches are based on studying the changes between re-
leases on a software system instead of basing their study on
changes that occurred in the source control system, which
are more granular and more detailed. They are only capa-
ble of comparing changes from one release to the next in-
stead of being able to compare on a calendar basis or even
comparing changes relative to other changes (such as ex-
amining changes that occurred before or after a particular
change). Furthermore, they do not provide techniques to fil-
ter the changes and categorize them according to their ratio-
nale.

Locating Feature in Source Code
Chen et al. have shown that comments associated with
source code modifications provide a rich and accurate index-
ing for source code when developers need to locate source
code lines associated with a particular feature [2]. We ex-
tend their approach and map changes at the source line level
to changes in the source code entities, such as functions and

data structures. Furthermore, we map the changes to depen-
dencies between the source code entities.

Murphy et al. argued the need to attach design rationale
and concerns to the source code [1, 9]. They presented ap-
proaches and tools to assist developers in specifying and at-
taching rationale to the appropriate source code entities. The
processes specified in their work is a manual and labor in-
tensive process, whereas our approach uses the source code
comments and source control modification comments to au-
tomatically build a similar structure to assist developers in
maintaining large code bases. Moreover as our approach is
automated, developers do not need to worry about maintain-
ing the outcome of the process in addition to maintaining
their source code, a challenge faced by the aforementioned
processes.

Finally, Eisenbarthet al. presented an approach to locate
features in the source code based on the integration of static
and dynamic dependencies graphs [4]. Their approach uses
a set of test cases to exercise features in the source code, then
the static and dynamic call graphs for the specific test are an-
alyzed to locate areas in the code that implement the feature.
Whereas their approach uses a combination of static and dy-
namic source code and a suite of test cases, we only use the
source code and the source code repository to locate features.
Our approach will only locate features if they were specified
in some comment in the source code or the source control
system throughout the development history of the project.
Thus in some cases using a dynamic analysis such as pro-
posed by Eisenbarthet al. will be of great value and will
complement our work.

6 CONCLUSIONS AND FUTURE WORK
In this paper we presented a new view on dependency graphs
– Annotated Dependency Graphs (ADG). ADG represents a
family of graphs which can assist maintainers as they work
on gaining a better understanding of large software system.
An ADG provides maintainers with the ability to study de-
pendencies between the software entities and limit the de-
pendencies to various criteria such as to a specific period in
time, a specific change reasons, or even a specific developer.

In future work, we plan on using ADG to extract aspects
from the source code and to build wizards that assist de-
velopers by suggesting source code entities that need to be
modified once an entity has been modified based on the co-
modification history stored in the ADG.

Figure 5: High-Level (Subsystem) Call Graph for Postgres Optimizations

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the significant contribu-
tions from the members of the open source community who
have given freely of their time to produce large software sys-
tems with rich and detailed source code repositories; and
who assisted us in understanding and acquiring these valu-
able repositories.

The figures shown in this paper were generated using the
aiSee graph layout software.

REFERENCES

[1] E. L. Baniassad, G. C. Murphy, and C. Schwanninger.
Design Pattern Rationale Graphs: Linking Design to
Source. InIEEE 25th International Conference on Soft-
ware Engineering, Portland, Oregon, USA, May 2003.

[2] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang,
S. Zhang, and A. Michail. CVSSearch: Search-
ing through Source Code Using CVS Comments. In
IEEE International Conference Software Maintenance
(ICSM 2001), pages 364–374, Florence, Italy, 2001.

[3] CVS - Concurrent Versions System. Available online
at<http://www.cvshome.org>

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating
Features in Source Code.IEEE Transactions Software
Engineering, 29(3):195–209, Mar. 2003.

[5] K. Fogel.Open Source Development with CVS. Corio-
los Open Press, Scottsdale, AZ, 1999.

[6] A. E. Hassan and R. C. Holt. Architecture Recovery of
Web Applications. InIEEE 24th International Confer-
ence on Software Engineering, Orlando, Florida, USA,
May 2002.

[7] A. E. Hassan and R. C. Holt. Understanding Change
Propagation in Software Systems. InSubmitted for
Publication, 2003.

[8] R. C. Holt and J. Y. Pak. GASE: visualizing software
evolution-in-the-large. InWorking Conference on Re-
verse Engineering, pages 163–, 1996.

[9] M. P. Robillard and G. C. Murphy. Concern Graphs:
Finding and Describing Concerns Using Structural Pro-
gram Dependencies. InIEEE 24th International Con-
ference on Software Engineering, Orlando, Florida,
USA, May 2002.

[10] M. Shaw and D. Garlan.Software Architecture: Per-
spectives on an Emerging Discipline. Prentice-Hall,
Inc., Upper Saddle River, NJ., USA, 1996.

[11] S. E. Sim. Supporting Multiple Program Comprehen-
sion Strategies During Software Maintenance. Mas-
ter’s thesis, University of Toronto, 1998. Avail-
able online at<http://www.cs.utoronto.ca/
˜simsuz/msc.html>

[12] M.-A. D. Storey, F. D. Fracchia, and H. A. M̈uller. Cog-
nitive design elements to support the construction of a
mental model during software exploration. InInter-
national Workshop on Program Comprehension, pages
17–28, 1997.

[13] W. F. Tichy. RCS - a system for version control.Soft-
ware - Practice and Experience, 15(7):637–654, 1985.

[14] Q. Tu and M. Godfrey. An Integrated Approach for
Studying Software Architectural Evolution. InWork-
shop on Program Comprehension (IWPC2002), Paris,
France, June 2002.

Exploring the Many Architectures
of a Very Large Component-based Software

Jean-Marie Favre, R. Sanlaville, J. Estublier

Adele Team, Laboratoire LSR-IMAG
University of Grenoble, France

http://www-adele.imag.fr/~jmfavre

Abstract
This paper describes the OMVT, an exploration tool

specifically designed to explore the architecture of CATIA,
a multi-million LOC software based on a component
technology. This software is developed concurrently by
more than 1000 software engineers. It can be dynamically
extended and changed by third parties without any
recompilation. Many techniques are used to deal with these
very strong requirements on software architecture.
Architectural concepts are however implicit in the source
code or are represented by means of very low level
techniques. The OMVT enables to cope with this problem by
providing stakeholders the architectural views they need at
the appropriate level of abstraction. Though the views
presented are specific to Dassault Systèmes, the meta-
model driven approach we took can be applied in other
contexts.

1. Architecture at Dassault Systèmes

Dassault Systèmes (DS) is the CAD/CAM world leader
and is one of the largest software editors in Europe. CATIA
is one of its best-known software product. In the mid 90s,
when DS initiated the development of CATIA V5, it was
rapidly discovered that OO technology has serious
limitations when developing very large scale software. C++
alone did not satisfy DS’ strong requirements. As a result
DS developed a proprietary component technology called
the OM. DS is indeed with Microsoft one of the pioneers in
componen-based software engineering.

All concepts provided by the OM, are implemented in
terms of C++ entities or by means of other low level
techniques. The mapping from architectural concepts to
implementation is not one to one. For instance the
realization of a single OM entity can produce a very large
set of C++ entities. Moreover, for a given conceptual entity
there are many implementation choices: to improve
performance and address other non-functional
requirements, DS designed and tested a wide range of
realization techniques. All these techniques allow to build
very efficient component-based software. But at the same

time developing and maintaining large amount of
components is quite difficult (CATIA is based on more than
60000 classes and about 8000 OM components). A major
issue was that the architectural level was implicit and that
software engineers had no tool to visualize the component
they develop. The problem was even more accute since
many people in different teams and sometimes in different
companies collaborated to the development of a single
component by adding extensions. What was missing was an
architectural viewpoint suited to this specific component
technology. The collaboration between the ADELE team
and Dassault Systèmes lasted 7 years and during this period
various other kinds of architecture were identified as well.
This includes for instance the physical architecture, but also
the collaborative architecture and the commercial
architecture[1]. It is now widely recognized that the notion
of software architecture greatly depends on the perspective
considered and the stakeholders needs [2]. To formalize the
various stakeholder needs and the many architectural
concepts used within DS, we took a meta-model driven
approach for architectural reconstruction [3]. According to
the terminology defined by the IEEE standard [2] each
viewpoint is a subset of the global meta-model, while each
view is an instance of a viewpoint for a particular portion of
the software considered.

2. OMVT: a specific exploration tool

In parallel with the definition of the architectural meta-
model, we provided a graphical notation for the logical
architecture. This notation was cautiously designed to be
compatible with existing habits used internally during
informal communications [4]. This notation provided the
syntax to express architetural views on CATIA. Thanks to a
reverse engineering process, architectural views are
automatically extracted from CATIA source code as well as
many other sources of information.

The need to use many sources of information in
recovering the architecture of component-based software is
also described in [5]. While the tool described in [5] was
applied on a toy example, the OMVT was successfully

applied on the whole CATIA software which is made of
more than 6 millions LOC. Though the OMVT was initially
developped to explore the logical architecture and focused
on DS proprietary component technology, support for many
other architectural viewpoints were later added to this tool
in order to explore the many other facets of software
architecture at Dassault Systèmes. In total 27 viewpoints
were defined to support the specific needs of various
stakeholders. Some example of views derived from some
viewpoints are represented in the figure below.

3. Scenario

Describing the whole features of the OMVT is
impossible here, in particular because some features relie on
proprietary architectural concepts such as medias, solutions,
or frameworks. The figure below represents a typical OM
component displaying some OM interfaces (1). This
component is based on one “base implementation” (2) and
other “extensions” (rectangles). Contrarily with the COM
technology, component inheritance is supported as depicted
on the top of window (1). The view depicted in window (3)
provides more information about the implementation
technique actually used to realize the component. For
instance it is possible to distinguish extensions from single
to multiple instanciation (3). As shown in (5) contextual
pull-down menus are available for each entity displayed to
further continue the exploration. A “troubleshooter”
viewpoint was implemented. to automatically detect anti-

patterns that could potentially lead to errors. In window (6)
icons and colors indicate possible inconsistencies. A single
click on the warning icon (7) opens window (8). Similarily
a click on (9) displays window (10). These windows display
only the subgraph of the component graph that reveal the
existence of the anti-pattern. Inheritance relationships are
shrinked to improve the reading of the figures and increase
the usability for the stakeholders directly interested in
correcting the error. Window (11) depicts a complement of
information that improve the quality of the diagnosis. Note
that all the views mentionned above correspond to the
logical architecture. The stakeholder can switch very easily
to alternative viewpoints on other kinds of architecture. For
instance, a view on the physical architecture for the same
component is displayed in window (12). This view shows
that this simple component is actually implemented by more
than 80 CPP classes spread in more 20 DLLs contained in
more than one dozen of distinct frameworks.

4. References

[1] J. Estublier, J.M. Favre, Y. Ledru, R. Sanlaville, “Architectural facts in the
concurrent development of a Very Large Software“, submitted to IEEE
Software

[2] IEEE Architecture Working Group. “IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems” . IEEE Std 1471-
2000, October 2000.

[3] J.M. Favre, “Meta-Model Driven Reverse Engineering“, submitted to WCRE
2003

[4] R. Sanlaville, “Software Architecture: An Industrial Case Study within
Dassault Systèmes”, PhD dissertation in french, Univeristy of Grenoble, 2002

[5] M. Pinzger, J. Oberleitner, H. Gall, “Analyzing and Understanding
Architectural Characteristics of COM+ Components”, IWPC 2003

1

2 4

3

5

7

6

89

10
11

12

AutoCode: Using Memex-like Trails to Improve Program Comprehension

Richard Wheeldon, Steve Counsell and Kevin Keenoy
Department of Computer Science

Birkbeck College, University of London
London WC1E 7HX, U.K.�

richard,steve,kevin � @dcs.bbk.ac.uk

Abstract

This paper presents AutoCode - a system for identifying
“trails” of classes in Java programs. These trails are com-
puted with regard to five coupling relationships (Aggrega-
tion, Inheritance, Interface, Parameter and Return Type)
and are presented in a Web-based interface.

1 Introduction

In his seminal paper “As We May Think” [1], Vannevar
Bush suggested a future machine called a “memex”. In do-
ing so, he introduced the world to the concept of linked
documents and of the trail - a sequence of linked pages.
The concept of trails is well established in the hypertext
community and many systems have been built which sup-
port their construction [3].

Previous work has described a navigation engine for auto-
matically constructing trails as a means of assisting users
browsing Web sites [5]. This navigation engine was further
used to provide search and navigation facilities for Javadoc
program documentation. If JavaDoc-style program doc-
umention, derived from source code, can be indexed, it
seems logical that the source code itself should be indexed
also.

We have developed a new tool called AutoCode based upon
the navigation engine design. AutoCode provides full-text
indexing of Java source code and uses a probabilistic best-
first algorithm to identify trails in graphs of coupling-type
relationships.

2 Trails on Java Code

Classes and objects in OO systems do not work in isola-
tion. They are connected to each other by various depen-
dencies. The Java language connects classes together via
five coupling relationships - Aggregation, Inheritance, In-
terface, Parameter and Return Type [4]. Each of these cou-
pling relations can be used to construct a graph of depen-
dencies. An illustration of how these graphs can be derived
from Java source code can be seen in Figure 1. AutoCode
constructs trails on each of these five graphs and presents
them in a Web-based interface.

The NavSearch user interface used to present the trails
(Figure 2) has three main elements. At the top is a naviga-
tion tool bar comprising a trail of classes considered most
relevant (the “best trail”). On the left is a navigation tree
window showing all the trails. Whenever the mouse pointer
moves over these trails, a small pop-up appears which
shows metadata and an extract. The rest of the display is
dedicated to showing the source code of the selected class.
The original Web-site search interface on which it was
based was proven to be highly effective at allowing users
to complete information seeking tasks [2]. It is hoped the
same will apply to the AutoCode interface, a demonstra-
tion of which is available at http://nzone.dcs.bbk.ac.uk/.

Each trail is colour-coded according to the type of cou-
pling involved. This coupling type is also shown in the
pop-up for each class. Green trails denote parameter type
references, cyan trails denote return-type references, gold
trails show interface extensions, purple trails shows chains
of aggregation links and orange trails show inheritance re-
lationships from subclass to superclass.

Figure 2 shows how the trails are presented for the re-
sults to the query “zip” on the JDK 1.4 source code.
Figure 3 shows the trails more clearly. It can be easily
seen from the first trail that there is a member variable

interface StringReader {

 String readString();

}

abstract class CharSequence {

int
 getLength();

 append(String
 addme
);

}

class StringFileReader

 implements StringReader {

 String lastString;

 StringFileReader(String filename) { }

 String readString() { }

}

class String extends CharSequence{

 append(String
 addme
);

}

Interface

Parameter Type

Return Type

Aggregation

Inheritance

StringReader

StringFileReader

String

CharSequence

StringFileReader

String

StringReader
 StringFileReader

String

String

StringFileReader
CharSequence

Figure 1. Illustration of coupling types and their graph representations.

of type ZipFile in the class ZipFileInputStream.
The second and third trails start with the common root,
ZipFile. These show that one or more methods in
the ZipFile class must take ZipEntry as a parame-
ter and that ZipFile has a subclass called JarFile.
The fourth trail shows that ZipFile implements the in-
terface ZipConstants. The fifth shows that ZipOut-
putStream has a member variable of type ZipEn-
try. The sixth and seventh trails show that both Zip-
InputStream and JarFile have methods which take
ZipEntrys as parameters. The eighth trail shows that
JarInputStream has at least one method which returns
a ZipEntry and the ninth shows that ZipEntry is the
superclass of JarEntry which is, in turn, the superclass
for JarFile.JarFileEntry.

Figure 3. Trails returned for the query “zip”
on the JDK 1.4 source code.

3 Automating Trail Discovery

Given the graphs of related classes, the navigation engine
can be used to construct trails. This works in 4 stages.
The first stage is to calculate scores (using ����� �	�
�) for each
of the classes matching one or more of the keywords in
the query, and to isolate a small number of these for fu-

ture expansion, by combining these scores with a metric
called potential gain [5, 4]. The second stage is to con-
struct the trails using the Best Trail algorithm [5]. The al-
gorithm builds trails using a probabilistic best-first traver-
sal. The third stage involves filtering the trails to remove
redundant information. In the fourth and final stage, the
navigation engine computes small summaries of each class
and formats the results for display in a web browser. Jason
Shattu’s Java2HTML1 is used to present the source code,
since it provides effective syntax highlighting, has a public
API and makes links to both Javadocs and between classes
in source code.

3.1 Architecture

AutoCode indexes the Java code using a custom doclet.
Figure 4 shows how this works with the other elements of
the navigation engine. The doclet uses the class structure
to construct the five coupling graphs. It also communicates
with an external parser, which manipulates the HTML rep-
resentation of the source code to create an inverted file.
This inverted file is used by the query engine to compute
relevance scores for each class or page. The trail engine
uses these scores and the coupling graphs to compute the
trails. The NavSearch interface presents the trails as shown
in Figure 2.

4 Future Work

Object Oriented languages gain particular benefit from the
mapping between classes and Web pages. It is intended
that AutoCode be extended to support both C++ and C#. It
is also hoped that the system can be extended to allow per-
sonalized results so that programmers working on a partic-
ular field have query results tailored to their needs.

Certain compromises have been made in the development
of AutoCode, which should also be addressed in any future
development. AutoCode neither shows the relationships
between inner and outer classes nor discriminates between
static and object references.

Other graphs can be constructed through static and run-
time analysis. These include in-memory object references
graphs and call-graphs. Any such graphs could be adapted
for use with AutoCode.

AutoCode has been developed as a standalone tool oper-
ating within JavaDoc. As such it can be updated by any
tool which can control JavaDoc, notably build tools such

1 http://java2html.com/

Figure 2. Results for the query “zip” on the JDK 1.4 source code.

as Apache Ant. However, it would be beneficial to embed
the interface within a Java IDE so that identified classes
can be immediately edited.

Combining these elements would provide developers with
a much more flexible tool for identifying relevant classes
and the relationships between them.

5 Conclusions

This paper has presented AutoCode - a Web-based tool for
computing and presenting memex-like trails across cou-
pling graphs. It benefits from a simple, web-based inter-
face with a strong, well-explored metaphor for displaying
class relationships. It works well with very large programs
and libraries. For example, the JDK libraries which contain
over 6 000 classes and over 1 400 000 lines of code. Au-
toCode also benefits from platform and IDE independence
and uses indexes which can easily be updated during the
build process.

However, AutoCode is not without problems. It is re-
stricted to a single language - Java, and ignores certain
important relationships between classes. However, it is re-
stricted by a lack of editing features, meaning that identi-

fied classes cannot be manipulated without a separate edi-
tor.

References

[1] Vannevar Bush. As we may think. Atlantic Monthly,
76:101–108, 1945.

[2] Mazlita Mat-Hassan and Mark Levene. Can naviga-
tional assistance improve search experience: A user
study. First Monday, 6(9), 2001.

[3] Siegfried Reich, Leslie Carr, David De Roure, and
Wendy Hall. Where have you been from here? : Trails
in hypertext systems. ACM Computing Surveys, 31(4),
December 1999.

[4] Richard Wheeldon and Steve Counsell. Making
refactoring decisions in large-scale java systems: an
empirical stance. Computing Research Repository,
cs.SE/0306098, June 2003.

[5] Richard Wheeldon and Mark Levene. The best trail
algorithm for adaptive navigation in the world-wide-
web. In Proceedings of 1st Latin American Web
Congress, Santiago, Chile, November 2003.

JavaDoc
 Tool

Parser

Query

Engine

Web Site(s)

Index

Builder

HTML Page

Terms

tf.
id

f

Inverted File

tf.
idf

Return Type

Links

User

H
TM

L
Pa

ge

Nav

Search

HTML Page

Class Scores

Trail

Engine

Trails

Keywords

Keywords

Li
nk

s

Interface

Link
s

Links

Parameter

Links

Links

Aggregation

Li

nk
s

Links

Inheritsnce

Links

Links

Source Code

Doclet

Source

2HTML

URLs

HTML Page

Class Structure

Raw Text

Figure 4. Architecture of AutoCode. Boxes represent external data sources, open-ended boxes
represent internal data stores, circles represent processes, solid arrows represent data flow and
dotted arrows represent flows of important information (URLs and Queries). Simple keyed “get”
instructions (for example in HTTP requests) are omitted for clarity.

Hands-on Collaborative Demo

CodeCrawler - A Lightweight Software Visualization Tool

Michele Lanza (lanza@iam.unibe.ch)
Software Composition Group - University of Bern, Switzerland

Abstract

CodeCrawler is a language independent software visu-
alization tool. It is mainly targeted at visualizing object-
oriented software, and in its newest implementation it has
become a general information visualization tool. It has
been validated in several industrial case studies over the
past few years. It strongly adheres to lightweight princi-
ples: CodeCrawler implements and visualizespolymetric
views, lightweight visualizations of software enriched with
semantic information such as software metrics and source
code information.

1 Introduction

CodeCrawler is a lightweight software visualization tool,
whose first implementation dates back to 1998 and it has
been implemented as part of Lanza’s Ph.D. thesis [3]. In
the meantime it has been evolved into an information visu-
alization framework, and has been customized to work in
contexts like website reengineering and concept analysis.
It keeps however a strong focus on software visualization.
CodeCrawler is a language independent SV tool, because
it uses the Moose reengineering environment [2] which im-
plements the FAMIX metamodel [1], which among other
languages models software written in C++, Java, Smalltalk,
Ada, Python, COBOL, etc.

In Figure 1 we see CodeCrawler visualizing itself with
a polymetric view calledSystem Complexity. The metrics
used in this view are the number of attributes for the width,
the number of methods for the height, and the number of
lines of code for the color of the displayed class nodes.

2 The Principle of a Polymetric View

In Figure 2 we see that, given two-dimensional nodes
representing entities and edges representing relationships,
we enrich these simple visualizations with up to 5 metrics
on these node characteristics:
Node Size.The width and height of a node can render two
measurements. We follow the convention that the wider and

Figure 1. A screenshot of CodeCrawler visu-
alizing itself with a System Complexityview.

Figure 2. The principle of a polymetric view.

the higher the node, the bigger the measurements its size is
reflecting.
Node Color. The color interval between white and black
can display a measurement. Here the convention is that
the higher the measurement the darker the node is. Thus
light gray represents a smaller metric measurement than
dark gray.
Node Position.The X and Y coordinates of the position of
a node can reflect two other measurements. This requires
the presence of an absolute origin within a fixed coordinate
system, therefore not all layouts can exploit this dimension.

3 Example Polymetric Views

CodeCrawler visualizes three different types of polymet-
ric views:

Coarse-grained views.Such views are targeted at visu-
alizing very large systems (e.g.,over 100 kLOC to several
MLOC). In Figure 3 we see aSystem Hotspotsview of 1.2
million lines of C++ code. The view uses the number of
methods for the width and height of the class nodes. We
gather for example from this view that there are classes with
several hundreds of methods (at the bottom).

Figure 3. A System Hotspotsview on 1.2 MLOC
of C++ code.

Fine-grained views. The most prominent view is the
Class Blueprintview, a visualization of the internal struc-
ture of classes and class hierarchies [4]. In Figure 4 we see
a class blueprint view of a small hierarchy of 4 classes. The
class blueprint view helped to develop a pattern language
[3]. In the present example we see the patterns pure over-
rider, siamese twin, template method design pattern, and
template class. The limited size of this paper does not allow
us to deepen this discussion, please refer to [3] for more
details.

Evolutionary views. The most prominent view is the
evolution matrixview, a visualization of the evolution of
complete software systems [5]. In Figure 5 we see an exam-
ple of such a visualization, which again allows us to develop
a pattern language applicable in the context of software evo-
lution.

4 Features of CodeCrawler

Moreover, CodeCrawler features grouping support, cus-
tomizable views, has been industrially validated, and
is being used if software industry mainly by consul-
tants. CodeCrawler is freeware and can be obtained at
http://www.iam.unibe.ch/∼lanza/

Figure 4. A Class Blueprintview on a small hi-
erarchy of 4 classes written in Smalltalk.

Figure 5. An Evolution Matrix view on 38 ver-
sions of an application written in Smalltalk.

References

[1] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 –
the FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[2] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an ex-
tensible language-independent environment for reengineering
object-oriented systems. InProceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[3] M. Lanza. Object-Oriented Reverse Engineering - Coarse-
grained, Fine-grained, and Evolutionary Software Visualiza-
tion. PhD thesis, University of Berne, may 2003.

[4] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. InProceedings of OOPSLA 2001, pages 300–311,
2001.

[5] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. InProceedings of LMO 2002, pages 135–149, 2002.

AutoCode: Using Memex-like Trails to Improve Program Comprehension

Richard Wheeldon, Steve Counsell and Kevin Keenoy
Department of Computer Science

Birkbeck College, University of London
London WC1E 7HX, U.K.�

richard,steve,kevin � @dcs.bbk.ac.uk

1 Introduction

In his seminal paper “As We May Think” [1], Vannevar
Bush suggested a future machine called a “memex”. In do-
ing so, he introduced the world to the concept of linked
documents and of the trail - a sequence of linked pages.
The concept of trails is well established in the hypertext
community and many systems have been built which sup-
port their construction [2].

Previous work has described a navigation engine for auto-
matically constructing trails as a means of assisting users
browsing Web sites [4]. This navigation engine was further
used to provide search and navigation facilities for Javadoc
program documentation. If JavaDoc-style program docu-
mention, which is derived from source code, can be in-
dexed, it seems logical that the source code itself can be
indexed.

We have developed a new tool called AutoCode based upon
the navigation engine design. AutoCode provides full-text
indexing of the java source code and uses a probabilistic
best-first algorithm to identify trails in graphs of coupling-
type relationships.

2 Trails on Java Code

Classes and objects in OO systems to not work in isola-
tion. The classes are connected to each other by various
dependencies. The Java language connects classes together
via five coupling relationships - Aggregation, Inheritance,
Interface, Parameter and Return Type [3]. Each of these
coupling relations can be used to construct a graph of de-
pendencies. AutoCode constructs trails on each of these
five graphs and presents them in a Web-based interface.

The NavSearch user interface used to present the trails (fig-

ure 1) has three main elements. At the top is a naviga-
tion tool bar comprising of a trail of classes considered
most relevant (the “best trail”). On the left is a naviga-
tion tree window showing all the trails. Whenever the
mouse pointer moves over these trails, a small pop-up ap-
pears which shows metadata and an extract. The rest of
the display is dedicated to showing the source code of the
selected class. A demonstration of this interface show-
ing the 6000 classes of the JDK libraries is available at
http://nzone.dcs.bbk.ac.uk/.

Each trail is colour-coded according to the type of cou-
pling involved. This coupling type is also shown in the
pop-up for each class. green trails denote parameter type
references, cyan trails denote return-type references, gold
trails show interface extensions, purple trails shows chains
of aggregation links and orange trails show inheritance re-
lationships from subclass to superclass.

Figure 1 shows how the trails are presented for the re-
sults to the query “zip” on the JDK 1.4 source code.
Figure 2 shows the trails more clearly. It can be easily
seen from the first trail that there is a member variable
of type ZipFile in the class ZipFileInputStream.
The second and third trails start with the common root,
ZipFile. These show that one or more methods in
the ZipFile class must take ZipEntry as a parame-
ter and that ZipFile has a subclass called JarFile.
The fourth trail shows that ZipFile implements the in-
terface ZipConstants. The fifth shows that ZipOut-
putStream has a member variable of type ZipEn-
try. The sixth and seventh trails show that both Zip-
InputStream and JarFile have methods which take
ZipEntrys as parameters. The eighth trail shows that
JarInputStream has at least one method which returns
a ZipEntry and the ninth shows that ZipEntry is the
superclass of JarEntry which is, in turn, the superclass
for JarFile.JarFileEntry.

AutoCode indexes the Java code using a custom doclet.

Figure 1. Results for the query “zip” on the
JDK 1.4 source code.

Figure 2. Trails returned for the query “zip”
on the JDK 1.4 source code.

This communicates with an external parser and constructs
the five coupling graphs. Given the graphs of related
classes, the navigation engine can be used to construct
trails. This works in 4 stages. The first stage is to calculate
scores (using ����� �	�
�) for each of the classes matching one
or more of the keywords in the query, and isolate a small
number of these for future expansion, by combining these
score with a metric called potential gain [4, 3]. The second
stage is to construct the trails using the Best Trail algorithm
[4]. This builds trails using a probabilistic best-first traver-
sal. The third stage involves filtering the trails to remove
redundant information. In the fourth and final stage, the
navigation engine computes small summaries of each class
and formats the results for display in a web browser. Jason
Shattu’s Java2HTML1 is used to present the source code,
as it provides effective syntax highlighting, has a public
API and makes links to both Javadocs and between classes
in source code.

3 Future Work

Object Oriented languages gain particular benefit from the
mapping between classes and Web pages. It is intended
that AutoCode be extended to support both C++ and C#. It
is also hoped that the system can be extended to allow per-
sonalized results so that programmers working on a partic-
ular field have query results tailored to their needs.

References

[1] Vannevar Bush. As we may think. Atlantic Monthly,
76:101–108, 1945.

[2] Siegfried Reich, Leslie Carr, David De Roure, and
Wendy Hall. Where have you been from here? : Trails
in hypertext systems. ACM Computing Surveys, 31(4),
December 1999.

[3] Richard Wheeldon and Steve Counsell. Making
refactoring decisions in large-scale java systems: an
empirical stance. Computing Research Repository,
cs.SE/0306098, June 2003.

[4] Richard Wheeldon and Mark Levene. The best
trail algorithm for adaptive navigation in the
world-wide-web. Computing Research Repository,
cs.DS/0306122, June 2003.

1 http://java2html.com/

Demonstration of Advanced Layout of UML Class Diagrams by SugiBib

Holger Eichelberger
chair of computer science II

Würzburg University
Am Hubland, 97074 Würzburg, Germany

eichelberger@informatik.uni-wuerzburg.de

Jürgen Wolff von Gudenberg
wolff@informatik.uni-wuerzburg.de

1 Introduction

The Unified Modeling Language (UML) [7] has become the
standard for specifying object-oriented software systems.
Some of the tools are primarily designed to work on a di-
rect mapping between the design diagrams and the software
and vice versa. Since understanding the software is usu-
ally using more abstract concepts than those defined in pro-
gramming languages, restriction of the UML used in these
tools is not permissible. On the other side, visualization
of changes to the software implementation and design doc-
uments require sophisticated layout algorithms. In [2] we
have shown that most of the tools are not sufficient in that
field.

2 Layout of UML class diagrams

Obviously a UML class diagram can be described as graph
G = (V,E) with nodes V and edges E. V can then be par-
titioned into nodes of different types: packages and classes
may be nested (nested nodes might be structured accord-
ing to different criteria like coupling [3], subsystems [7]
or component classifiers in the new UML 2.0), annotations
can be attached to all model elements, association classes
(classes attached to an association can be part of other as-
sociations or generalization relations) and natural or arbi-
trary clusters (like design patterns or higher associations).
According to [1, 3] E should be partitioned into a set of
hierarchical edges EH and a set of non-hierarchical edges
EN using heuristics or user defined preferences. Different
types of edges have to be respected: Generalizations, asso-
ciations, aggregations, compositions and dependencies with
different textual and symbolic adornments. Adornments of
edges may not overlap adornments of other edges or node
boxes. Constraints concerning two or more associations
(denoted by a dashed line connecting the associations) have
to be laid out.
The layout calculated by the algorithm should be optimized
for a clear representation of a software design diagram, easy

to read, understandable and therefore a large set of crite-
ria for optimal readability according to semantical reasons
must hold beside usual graph drawing criteria like overall
number of edge crossings and bends [1, 3].
The layout algorithm is clearly explained in [1, 5].

3 Architecture of the framework

SugiBib is a pure Java framework which primarily was
designed to implement a general, highly configurable,
component-based version of the Sugiyama algorithm [10].
The components can be combined in different sequences to
implement other layout algorithms. Because of the compo-
nent architecture information hiding is preserved between
two consecutive steps. Nodes and edges of the framework
are parametrized by their individual graphical information.
SugiBib was instantiated to represent UML class diagrams
and provides interactive frontends in AWT and Swing as
well as online and batch rendering servers. Advanced fea-
tures of UML class diagrams like association classes and
annotations are treated by an extension of the Seemann al-
gorithm [9].
Currently SugiBib accepts input in UMLscript [4], a pro-
gramming language for object oriented design. The stan-
dard XML Metadata Interchange format XMI [8] is ex-
tended by different vendors with their proprietary nota-
tion for layout information. Therefore a general import
of XMI into SugiBib can be realized only by extensive
XSLT preprocessing. The current implementation is pre-
pared for the XMI version produced by MagicDrawUML
(www.nomagic.com). As an intermediary format while
processing XMI, the XML version of UMLscript called
XUMLscript is produced. Therefore SugiBib is able to ac-
cept plain XUMLscript as input, too. Additionally we are
working to read diagrams in the new UML 2.0 Diagram In-
terchange format [6] XMI[DI] or XMI[UML+DI], respec-
tively.
The output format we produce is the laid out graph and
as a proprietary textual XML representation of the internal

graph to be postprocessed by diff, e.g., currently for debug-
ging purpose only. Output of standardized XML (XMI[DI]
or XMI[UML+DI]) is planned for the near future.

Current information on SugiBib can be obtained from
www.sugibib.de.

References

[1] H. Eichelberger. Aesthetics of class diagrams. In Proceed-
ings of the First IEEE International Workshop on Visualiz-
ing Software for Understanding and Analysis, pages 23–31.
IEEE, 2002.

[2] H. Eichelberger. Evaluation-report on the layout facilities
of UML tools. TR 298, Institut für Informatik, Univer-
sität Würzburg, jul 2002. Institut für Informatik, Universität
Würzburg.

[3] H. Eichelberger. Nice class diagrams admit good design?
In Proceedings of the 2003 ACM symposium on Software
visualization, pages 159–ff. ACM Press, 2003.

[4] H. Eichelberger and J. W. von Gudenberg. UMLscript
sprachspezifikation. TR 272, Institut f̈ur Informatik, Univer-
sität Würzburg, feb 2001. Institut für Informatik, Universität
Würzburg.

[5] H. Eichelberger and J. W. von Gudenberg. On the visual-
ization of Java programs. In S. Diehl, editor, Software Vi-
sualization, State-of-the-Art Survey, volume 2269 of Lec-
ture Notes in Computer Science, pages 295–306. Springer,
Springer, 2002.

[6] OMG. UML 2.0 Diagram Interchange. Second (Fi-
nal) Revised Submission, OMG document number
ad/2002-12-20, Version 1.0, January 6, 2003, via
http://www.xml-strategie.de/files/UML2DIRevSub.pdf.

[7] OMG. Unified Modeling Language Specification. Version
1.5, March 2003 via http://www.omg.org.

[8] OMG. XML Metadata Interchange (XMI). Version 1.1, via
http://cgi.omg.org/docs/ad/99-10-02.pdf.

[9] J. Seemann. Extending the sugiyama algorithm for drawing
UML class diagrams: Towards automatic layout of object-
oriented software diagrams. Lecture Notes in Computer Sci-
ence, 1353:415–423, 1997.

[10] K. Sugiyama, S. Tagawa, and M. Toda. Methods for vi-
sual understanding of hierarchical system structures. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-
11(2):109–125, Feb. 1981.

Figure 1. A part of the static structure of a GUI
application drawn by SugiBib.

GENISOM

James Brittle and Cornelia Boldyreff
Department Of Computer Science

University Of Durham
{j.g.brittle,cornelia.boldyreff}@durham.ac.uk

Abstract

GENISOM, is an offspring component of the GENESIS
software engineering platform, incorporating the genera-
tion, maintenance and viewing of self-organizing maps. The
self-organizing map’s unsupervised clustering method has
been used to visualise a large software collection.

Key Words: Self Organizing Maps, GENISOM, software
visualisation

1 Introduction

The Self-Organizing Map (SOM),invented by Prof.
Teuvo Kohonen in the early 1980s [4], is an unsupervised,
clustering algorithm. It has been demonstrated to aid pro-
grammers in the process of reverse engineering by discover-
ing common features within legacy code [2] and to assist in
object recovery[1], although visualisation of the associated
maps is not explicitly considered in reports of this research.

A prominent problem within the field of Software Engi-
neering concerns reuse. Reusable assets are in abundance,
over the web and in libraries but it is extremely difficult
to locate reusable software artefacts that are relevant to a
particular application. The necessary organisation is often
lacking and difficult to achieve given the dynamic nature of
such software collections. This problem can also be found
where a large evolving software system consists of an ever
growing number of components and the managment and
hence the comprehension of the associated software arte-
facts tends to be increasingly difficult.

Having suitable visualisations of such software collec-
tions can mitigate the problem identified above.

2 GENISOM

GENISOM is a client/server application designed to
manage and enable viewing of SOMs. Figure 1 illustrates a
simplified architecture diagram for the GENISOM system.

TCP/IP

SERVER SIDE CLIENT SIDE

MySQL SERVER

SOM DB

WEB SERVER

GENISOM CLIENT

User Interface

SOM Trainer

SOM Viewer

WORKSTATION

GENISOM ADMINISTRATOR

SOM Viewer

User Interface

WEB BROWSER

WORKSTATION

GENISOM CLIENT

Figure 1. GENISOM architecture

The GENISOM Administrator is used to manage SOMs;
it enables their creation and maintenance. The generated
SOMs are then stored within a MySQL database, from
which the GENISOM Client can then retrieve the data and
display the generated maps. The Client is web based us-
ing Java Web Start1 to aid its accessibility to users. The
architecture of the system enables distributed software en-
gineering teams to work together.

There are two main use case scenarios for the system;
firstly the Administrator could be used by the librarian of a
reuse library and the Client by the system developers (see
Figure 2), therefore aiding them in the location of reuse can-
didates. Secondly both tools could be used by members of a
software development team to aid program comprehension,
or help in decisions regarding restructuring and reengineer-
ing of the system.

1http://www.java.sun.com/products/javawebstart/

Figure 2. Reuse infrastructure with GENISOM
system in place

3 Visualisations of Maps

The GUI for the SOM evolved through a number of
stages which resulted in the final 2D map as illustrated in
Figure 3.

Figure 3. Screenshot of 2D Map

The neural net is arranged as a grid with the inputs (e.g.
reusable artefacts) being attached to the neurons. The black
dots on grid cells (i.e. neurons) indicate that inputs have
been matched to them, with the size of the dot representing
the number of them. The green shading of the grid cells
indicates the boundaries of similar clusters of neurons.

The map is interactive allowing the user to select a par-
ticular neuron (the blue cursor indicating the selection), this
displays the neuron’s labels, five or less words that best de-
scribe the inputs matched to it. As well as displaying the
labels for a selected neuron, details of the inputs matched to
it are also displayed in a side bar though this is not depicted
in the figures.

Browsing is aided by a search system coupled to the map
which highlights the results in red for a certain search string.

Using 2D limits the amount of information that can be
visualised. Improvements to the GENISOM GUI therefore

naturally led on to the development of a 3D map using the
Cityscapes technique which has already found application
in software visualisation [3]. Using this technique in GENI-
SOM each value is plotted as a column (or ’building’). The
’buildings’ are plotted on the same horizontal plane, allow-
ing differences in height and position to be analysed. In re-
lation to a SOM, each building represents a neuron and the
height of the building relates to the number of inputs that are
matched to it. The implementation of this used Java3D2 and
in the final system the option was made available to switch
between using 2D and 3D interfaces.

Figure 4 illustrates the 3D map; the user’s view can be
rotated and zoomed in and out. Furthermore, the user can
also interact with the 3D map in the same manner as the 2D
map following the same colour scheme.

Figure 4. Screenshot of 3D Map

References

[1] A. Chan and T. Spracken. Discovering common features in
software code using self-organizing maps. InProceedings of
the International Symposium on Computational Intelligence,
Kosice Slovakia, August 2000.

[2] A. Chan and T. Spracklen. Object recovery using hierarchi-
cal self-organizing maps. InProceedings of the International
Conference on Engineering Applications of Neural Networks,
Kingston Upon Thames UK, July 2000.

[3] C. Knight. Virtual Software In Reality. PhD thesis, Durham
University, 2000.

[4] T. Kohonen. Self-Organizing Maps. Information Sciences.
Springer, second edition, 1997.

2http://java.sun.com/products/java-media/3D/

VISSOFT’03 Marcus, Feng, Maletic

Source Viewer 3D (sv3D)
A System for Visualizing Multi Dimensional Software Analysis Data

Andrian Marcus, Louis Feng, Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent Ohio 44242
amarcus@cs.kent.edu, lfeng@cs.kent.edu, jmaletic@cs.kent.edu

Abstract 2. Support for User Interaction
Source Viewer 3D is a software visualization

framework that uses a 3D metaphor to represent
software system and analysis data. The 3D
representation is based on the SeeSoft pixel metaphor. It
extends the original metaphor by rendering the
visualization in a 3D space. New, object-based
manipulation methods and simultaneous alternative
mappings are available to the user.

We focus here on the types of user tasks and
interactions that are supported by sv3D. While this is not
directly related to solving/visualizing specific software
engineering tasks it is prerequisite for a software
visualization tool.

One of the strongest features of sv3D is its overview
features. The underlying 2D visualization construct used
in designing the poly cylinder containers is the pixel bar
chart [5], which generalizes the concept used by SeeSoft.
Thus sv3D can show large amounts of source code in one
view just as the SeeSoft metaphor. Figure 1 shows a 3D
overview of a small system with 30 C++ source code
files and approximately 4000 lines of code. Each file is
mapped to one container. Each container is made up of a
number of poly cylinders. Each poly cylinder represents
a line of source code. In this simple example shading
(color) is used to represent the type of control structure a
statement is in and the height is used to represent the
nesting level. On top of each container the name of the
associated file is visible. When manipulating a container
in the 3D space, the name of the file always faces the
camera.

1. Description

Source Viewer 3D (sv3D) is a software visualization
framework that builds on the SeeSoft [1, 2] metaphor. It
brings a number of enhancements and extensions over
SeeSoft-type representations. In particular it creates 3D
renderings of the raw data and various artifacts of the
software system and their attributes can be mapped to the
3D metaphors at different abstraction levels. It
implements improved, object-based user interactions, is
independent of the analysis tool, and it accepts a simple
and flexible input in XML format. The output of
numerous analysis tools can be easily translated to sv3D
input format and the design and implementation of our
system is extensible. sv3D supports zooming and panning at variable

speeds. This is especially important because the
visualization space can be quite large. Each container in
the visualization can be manipulated individually (rotate,
scale, translate). The user can also zoom in and out on
the entire space. Files can be brought into a closer view
and manipulated for a better camera angle.

SeeSoft-like tools have a variety of uses in assisting
the user solving software engineering and comprehension
tasks. sv3D can be used for all these tasks such as: fault
localization [4], visualization of execution traces [6],
source code browsing [3], impact analysis, evolution,
complexity, and slicing [1], etc. In addition, by allowing
visualization of additional information (via 3D), sv3D
can be used for solving other more complex tasks. For
example, in the case of Tarantula [4], using height
instead of brightness would improve the visualization and
make the user’s task easier.

At this point sv3D directly supports a number of
filtering methods. Un-interesting units can be filtered
through their attributes or by direct manipulation.
Transparency is used to deal with both occlusion and
filtering. The user can chose various degrees of
transparency on each class of cylinder, based on their
attributes (color, shape, or texture). With semi-
transparency the global context is preserved and heuristic
information is retained. Elevation can also be used to
filter out un-interesting units by lifting them into separate
levels.

Most software engineering tasks during maintenance
and evolution require understanding of various elements
of the software system and also of data resulted from
analysis. The main features of sv3D, namely, advanced
user interactions and usage of the 3D space for
visualization directly support the user in achieving a
better understanding of analysis data. This process, in
turn, directly supports a variety of tasks.

Currently our emphasis with regard to details-on-
demand is for simplicity. It is important to be able to

VISSOFT’03 Marcus, Feng, Maletic

sup
imp
and
the
val

the
sup
sha
as
rela
con
link
gra

trac
gra
and
can
sna
the
sv3

3.

inte
ww
dow

wit

Figure 1. Overview in the 3D space of the mailing system. Color represents control structure and height represents
nesting level. Two files have active manipulators (handle box for scaling on the left and track ball for rotating on the

right). For a color view see www.sdml.cs.kent.edu
port user interaction, therefore performance is
ortant. Two types of 3D manipulators (i.e., track ball
 handle box) are available to the user to interact with
 visualization. An information panel displays the data
ues on selected items.
The relationships between items are shown through
 elements of the visualization that do not directly
port representation of quantitative data (such as
pe, texture, and position). The other elements (such
color and height) can also be used to show
tionships. The 3D space allows arranging the
tainers in any place. We are investigating ways to use
s between the 3D containers and arrange them in a

ph layout.
The user can take snapshots of the current view to
k a history. The current view is described by a scene
ph, which is composed by the attributes of the camera
 all 3D objects. These snapshots of the scene graph
 be saved and reviewed. A sequence of such
pshots can be played, thus representing a path within
 visualization. More than that, we intend to build into
D change tracking based on individual users.

 Current and Future Work

sv3D is implemented in C++ and uses Qt for the user
rfaces and Open Inventor for 3D rendering. See
w.sdml.cs.kent.edu for additional information and
nloads.

In the future versions of sv3D, position of the cylinder
hin a container can represent another type of

information (or dimension). We need to define these
visual attributes very carefully to ensure their usefulness.
Containers in the 3D space can possibly be connected by
edges to form a 3D graph. This will allow representation
of hierarchical data and also diagrammatic visualizations
(e.g., UML class diagrams). A number of user
experiments to evaluate this system are being planned.

This work was supported in part by grants from the
Office of Naval Research N00014-00-1-0769 and the
National Science Foundation CCR-02-04175.

4. References

[1] Ball, T. and Eick, S., "Software Visualization in the Large",
Computer, vol. 29, no. 4, April 1996, pp. 33-43.
[2] Eick, S., Steffen, J. L., and Summer, E. E., "Seesoft - A
Tool For Visualizing Line Oriented Software Statistics", IEEE
TSE, vol. 18, no. 11, November 1992, pp. 957-968.
[3] Griswold, W. G., Yuan, J. J., and Kato, Y., "Exploiting the
Map Metaphor in a Tool for Software Evolution", in
Proceedings of ICSE'01, Toronto, 2001, pp. 265-274.
[4] Jones, J. A., Harrold, M. J., and Stasko, J. T., "Visualization
for Fault Localization", in Proceedings of ICSE 2001 Workshop
on Software Visualization, Toronto, 2001, pp. 71-75.
[5] Keim, D. A., Hao, M. C., Dayal, U., and Hsu, M., "Pixel bar
charts: a visualization technique for very large multi-attribute
data sets", Information Visualization, vol. 1, no. 1, March 2002,
pp. 20-34.
[6] Reiss, S. P., "Bee/Hive: A Software Visualization Back
End", in Proceedings of ICSE 2001 Workshop on Software
Visualization, Toronto, 2001, pp. 44-48.

Plugging-in Visualization:
Experiences Integrating a Visualization Tool with Eclipse

Rob Lintern Jeff Michaud

Margaret-Anne Storey Xiaomin Wu

 Dept. of Computer Science
University of Victoria
Victoria, BC Canada

{rlintern, jmichaud, mstorey, xwu }@uvic.ca

Abstract

The Eclipse platform presents an opportunity to openly
collaborate and share visualization tools amongst the research
community and with developers. In this paper, we present our
own experiences of "plugging-in" our visualization tool, SHriMP
Views, into this environment. The Eclipse platform's Java
Development Tools (JDT) and CVS plug-ins provide us with
invaluable information on software artifacts relieving us from the
burden of creating this functionality from scratch. This allows us
to focus our efforts on the quality of our visualizations and, as our
tool is now part of a full-featured Java IDE, gives us greater
opportunities to evaluate our visualizations. The integration
process required us to re-think some of our tool's architecture,
strengthening its ability to be plugged into other environments.
We step through a real-life scenario, using our newly integrated
tool to aid us in merging of two branches of source code. Finally
we detail some of the issues we have encountered in this
integration and provide recommendations for other developers of
visualization tools considering integration with the Eclipse
platform.

Introduction

Many visualization tools that are developed in the research
community are customized applications that are built from
scratch. These visualization tools are dependent on having access
to information sources about the software that are both rich and
accurate. Research groups often have to write their own tools or
even beg, borrow and steal parsers, and other information
extractors to provide data for the visualization technique. These
efforts are usually disjointed and many research groups have
experienced frustration from reinvention of the wheel.
Furthermore, since the visualization tools are stand-alone
applications and do not integrate easily with the existing tools that
developers use, it is difficult to evaluate their usefulness in real
world contexts. Moreover, it is often impossible to combine
features and tools from these stand-alone applications, or to
compare them as each will offer many different features.

Over the past few years, we too initially focused on developing a
stand-alone software visualization tool to assist in program
understanding. Our tool is called SHriMP Views, which stands
for Simple Hierarchical Multi-Perspective Views. SHriMP uses a
nested graph view to display hierarchical structures in a Java
program (see Fig. 1). Composite nodes in the graph represent key
structures (for example, packages and classes) in the software.
Leaf nodes correspond to entities in the software such as methods,

and data types. Arcs in the graph show dependencies between
these artifacts and may show inheritance, composition and
association relationships. The nested interchangeable view
feature in SHriMP allows a user to look at different presentations
of information at any level of detail. A programmer can browse
source code or documentation by following hyperlinks that result
in animated panning and zooming motions over the nested graph.

Figure 1. A SHriMP View of a Java program.

Integration

Over the past year we successfully integrated SHriMP with the
open source Eclipse project (see Fig. 2). Eclipse (ww.eclipse.org)
is a general purpose platform upon which other tools can be built
as plug-ins. The JDT (Java Development Tools) are a suite of
such plug-ins, comprising a full featured Java IDE, which comes
bundled with the free download of the Eclipse platform. Many
other commercial and research groups have developed further
plug-ins for the Eclipse platform and the JDT– such as UML
tools, version control tools, team support etc.

Figure 2: SHriMP plugged into the Eclipse platform.

SHriMP Hierarchical View is shown in top left pane, SHriMP
Main View shown is shown in the bottom pane and source
code shown in top left pane, all of which are synchronized.

We refer to the integration of SHriMP with the Eclipse JDT as
“Creole”. Since Eclipse provides access to the program
repository, we now can instead focus on visualization and how it
can be further developed to provide support to the existing
features in Eclipse.

Integrating SHriMP with Eclipse has also provided access to new
information sources via existing plug-ins. Of particular interest is
the CVS plug-in which is an integrated GUI front-end for the
CVS version control system. We conjecture that visualization of
team relevant information such as CVS histories could be of
significant assistance in collaborative tasks. To explore this topic,
we integrated SHriMP with the CVS plug-in giving us the ability
to visualize information stored in the underlying CVS
repositories. We refer to this integration as “Xia”.
Our most recent work has been spent creating a composite
visualization of information from both the JDT repository and the
CVS repository. We believe that such views could be used to
reveal:

• Who is responsible for which parts of the system?

• Which parts of the system tend to change frequently?

• Which parts have been changed since a particular date?

• What are the relationships between these parts of
interest and the rest of the system?

• … and any combination of the above

Discussion

We have found the integration of SHriMP with the JDT (i.e.
Creole) to be of benefit when trying to navigate and understand
code written by other groups. It is especially powerful when we
are first exploring code and trying to get an overview of the scope
and design of a program. With respect to providing support for
collaboration and project management, we have found the
visualizations of the CVS information to be very useful despite

the fact that our tool is still at a prototype stage and is not very
robust.

There are still, however, many issues that remain from this trial
and many questions that have been raised. We are faced with
much to explore. Much more empirical work is required before
any conclusions can be drawn. We need to discover the specific
tasks that our visualizations could help with. This leads us to the
underlying question: who exactly is our user? Is it the team lead
or software designer who needs a tool to support high-level
decisions, or is it the programmer doing day-to-day programming
tasks, or is it both? We need to empirically study Creole to
determine whether or not it actually decreases cognitive load and
increases performance on specified tasks.

Another issue we have come across is one that arises with any
visualization. It is difficult to decide which view of the
information is the most useful. Our visualization depends on the
information we have at hand. In our case we have two sources of
information: the JDT and the CVS plug-ins. Through these two
plug-ins we now have easy access to reliable information, but, is
it the right information for producing visualizations that help with
the software task at hand?

Other future work will include using more animation in our
visualizations to aid in refactoring code, comparing code, and
synchronizing code with a repository, CVS repository we could
animate the evolution of a project over time.

One major issue faced in our integration with Eclipse is that its
GUI is built from a toolkit called SWT instead of using the more
widely used AWT and Swing toolkits. The major advantage of
SWT is that it uses native widgets wherever possible, increasing
speed and guaranteeing the native platform’s look and feel. This
departure has been a major hurdle for our integration; SHriMP
relies heavily on a zooming library based on AWT and Swing,
making it difficult for us to create an SWT only version of our
software. The approach taken to embed Swing and AWT widgets
inside of SWT widgets is still problematic and results in some
screen flickering, missing popup menus, and other GUI glitches.
Furthermore, this UI integration currently only works on the
Windows platform, and is not encouraged or officially supported
by OTI (OTI are the primary developers of Eclipse).

Despite the work required to redesign aspects of our architecture,
and issues integrating Swing and SWT widgets, the effort
required to do the integration was not that arduous, especially
when we consider what we have gained as a tool developer. The
biggest issue that we have faced doing research in the largely non-
validated area of software visualization, is trying to evaluate our
own work. This has in part been hampered by not being able to
evaluate how the visualization techniques work when they are
used as part of the normal tools used by developers. By
integrating with Eclipse, we can now continue with these
evaluations, and furthermore, combine features from our tool with
other visualization tools for further feedback and comparison.

More Information

http://shrimp.cs.uvic.ca/

Workshop Part II

Program Visualization Support for Highly Iterative Development Environments

Michele Lanza
lanza@iam.unibe.ch

Software Composition Group
University of Bern, Switzerland

Abstract

Software Visualization is, despite the many publications
and advances in this research field, still not being consid-
ered by mainstream software industry: currently very few
integrated development environments offer (if at all) only
limited visualization support, and in general it can be said
that software visualization is being ignored at a profes-
sional level by the average software developer. Moreover,
even relatively successful software visualization tools (such
as Rigi, Shrimp, JInsight, etc.) are seldom being used ex-
cept by their developers themselves. In this position paper,
based on our own experience and an analysis of the current
state and possible future trends of integrated development
environments, we put up a non-exhaustive list of features
that software visualization tools should possess in the future
to have more consideration by mainstream development.

1 Introduction

Software visualization is a fairly recent research field
dating back to the 1960’s, and started to become an estab-
lished research field in the 1980’s. The main benefit that
software visualization (as a specialization of the more gen-
eral field of information visualization) brings, is that it “pro-
vides an ability to comprehend huge amounts of data” and
“allows the perception of emergent properties [of the data]
that were not anticipated” [28]. Despite these and other
benefits of software visualization, the contributions that this
field has made to mainstream software industry are barely
noticeable and largely ignored.

In this position paper we want to analyze this research
field from different points of view, investigate and discuss
some of the reasons that make software visualization still a
“secondary” research domain, and put up a non-exhaustive
list of features that need to be implemented by the devel-
opers of software visualization tools, should they want to
propagate their research into an industrial context.

2 Software Visualization

“Software visualization is [..] the use of the crafts
of typography, graphic design, animation, and
cinematography with modern human-computer
interaction and computer graphics technology to
facilitate both the human understanding and ef-
fective use of computer software.” [20]

Software visualization is a specialization ofinformation
visualization, whose goal is to visualize any kind of data,
while in software visualization the sole focus lies on visual-
izing software. Information visualization is defined as “the
use of computer-supported, interactive, visual representa-
tions of abstract data to amplify cognition.” [3]. It derives
from several communities. Starting with Playfair (1786),
the classical methods of plotting data were developed. In
1967, Jacques Bertin, a French cartographer, published his
theory inthe semiology of graphics[2]. This theory identi-
fies the basic elements of diagrams and describes a frame-
work for their design. A few decades later Edward Tufte
published a theory of data graphics that emphasized max-
imizing the density of useful information and minimized
recurrent errors in data visualization [25, 26, 27]. Both
Bertin’s and Tufte’s theories have influenced the various
communities that led to the development of information vi-
sualization.

The goal of information visualization is tovisualize any
kind of data. Note that the above definition by Cardet al. of
information visualization does not necessarily imply the use
of vision for perception: visualizing does not only involve
visual approaches, but any kind ofperceptiveapproach.
Data can be perceived by a person by using the senses at
his/her disposition,e.g.,apart from seeing the data, a person
can also hear it (information auralization) and/or touch it
(by using virtual reality technology). However, most infor-
mation visualization systems currently use computer graph-
ics which render the data using 2D- and/or 3D-views of the
data. Applications in information visualization are so fre-
quent and common, that most people do not notice them:

examples include metereology (weather maps), geography
(street maps), geology, medicine (computer-aided displays
to show the inner of the human body), transportation (train
tables and metro maps), etc.

In short, information visualization is about visualizing
any kind of data, while software visualization is about visu-
alizing software.

According to Staskoet al. the field of software visual-
ization can be divided into two separate areas [20]:

1. Program visualizationis the visualization of actual
program code or data structures in either static or dy-
namic form. Most of the present approaches deal with
static code visualization, because the source source
code is visualized by using only information which can
bestaticallyextracted without the need to actually run
the system.

2. Algorithm visualizationis the visualization of higher-
level abstractions which describe software. A good ex-
ample isalgorithm animation, which is the dynamic
visualization of an algorithm and its execution. It is
used to explain the inner working of algorithms like
sort-algorithms. In the meantime this discipline has
lost importance, mainly because the advancement in
computer hardware and the possibility to use standard
libraries containing such algorithms have shifted the
focus away from the implementation of such algo-
rithms.

In this paper we concentrate ourselves on program vi-
sualization, because most software visualization tools be-
long to this category, and because algorithm visualization
has greatly lost importance in the past two decades, except
for educational contexts (e.g., teaching algorithms to stu-
dents).

3 The Mission

The overall mission of program visualization is to visual-
ize the static structure or the dynamic behavior of a software
system.

In that sense software visualization researchers are trying
to visualize an immaterial construct (software has no physi-
cal limits, no notion of proximity or distance) like software
the way it is, although this is (by definition) not feasible:
there is no unique and correct way of visualizing software.
Taking an ambitious stance, we claim that the ultimate goal
of a good visualization is to become the preferred way of
developers of looking at software. We do not claim that
software visualization could replace the most important and
still most used way of perceiving software: code reading.
We rather suggest that software visualization should have a
symbiotic relationship with the practice of code reading by

pointing the viewer to the location in the system where he
should read and/or modify the code. According to the pro-
gram cognition model vocabulary proposed by Littmanet
al. [15] we propagate an approach of software understand-
ing that isopportunisticin the sense that it is not based on a
systematicline-by-line understanding butas needed.

Moreover, software visualization has become relevant in
the reverse engineering research community. Software re-
verse engineering is defined by Chikosfky and Cross as “the
process of analyzing a subject system to identify the sys-
tem’s components and their relationships, and to create rep-
resentations of the system in another form or at a higher
level of abstraction” [4]. The goal is thus toconstruct a
mental modelof a software system. Storeyet al. have high-
lighted in various papers that a good software visualization
is a powerful asset in the building of such a mental model
[23, 21, 22].

Although software visualization is at least in a reverse
engineering context of great importance (as shown by the
number of publications on software visualization in the re-
verse engineering community), this could lead to a detri-
mental distinction between a forward and a reverse engi-
neering phase. This view is not up-to-date anymore: an
evolutionary view of software is taking its place, putting for-
ward a notion of continuous iterative development including
tasks such as code editing, refactoring, reverse engineering,
and (in a larger context) reengineering.

Of course software visualization tools cannot ignore the
current evolutionary/highly iterative view of software, even
less so because they could be the key to propagate this view
by combining and compressing large amounts of informa-
tion into simple, yet expressive, visualizations.

Based on the assumption that such an evolutionary
view of software will be predominant in the next years or
decades, we want to briefly highlight some characteristics
and features that software visualization tools of the future
should possess to propagate such a view:

Symbiotic relationship with the development environ-
ment. The best way to propagate software visualiza-
tion is to infiltrate existing development environments
and complement the existing functionalities. We do
not think that standalone software visualization tools
would be used extensively, mainly because working
people dislike changing their habits: a separate visu-
alization tool introduces a disruptive latency between
what one is seeing and what one is editing and/or ma-
nipulating. The market, represented by a few million
programmers on this planet, will only adapt itself if
there are evident technical, cognitive, and ultimately
financial benefits provided by the software visualiza-
tion facilities.

Refactoring support. Code refactoring, originally intro-

duced by Opdyke at the beginning of the 1990s [16],
has become an issue in software development since its
first mainstream appearance in the book of Fowleret
al. which comes up with a list of dozens of ways
to manipulate object-oriented software [9], most of
which can preserve the behavioral semantics of the
manipulated software,i.e., it is certain that the sys-
tem will still work after the manipulations. Such ma-
nipulations include renaming a class/method/attribute,
pushing up and down methods/attributes from/to a
subclass/superclass, transforming temporary variables
into instance variables, etc. A few years ago, elegant
and powerful implementations of software refactoring
engines have made their way into existing develop-
ment environments such as the Visualworks Smalltalk
Refactoring Browser [19, 18] and the refactoring en-
gine plugin of the IDE developed by the OpenSource
Eclipse project1. It is clear that if a software visual-
ization tool is to become a preferred way of looking
at software, the manipulations must be possible as part
of the software visualization tool and should be ren-
dered visually, if only by updating the view given by
the visualization tool. However, a technical problem is
given if the source code of the development environ-
ment or the refactoring engine cannot be obtained and
understood by the visualization tool makers.

Multi-user support. Complex software systems are being
designed and developed by many people concurrently.
To support a cooperative view as can be done with col-
laborative/versioning tools (such as the concurrent ver-
sions system CVS2, Microsoft SourceSafe3, and Visu-
alWorks Store4), a good visualization tool would cer-
tainly need to visually render the current point of inter-
est (i.e., the position) of the developers and their most
recently changed software artifacts.

Evolution analysis support. Software systems are con-
stantly being evolved (at whatever pace) to cope with
new requirements and to integrate bug fixes. The study
of the past, present, and future of software systems is
the research focus of the expanding and increasingly
interesting field of software evolution research [14]. It
would be useful for the developers to be able to re-
play the past lifetime of a class or a group of classes.
This could provide an important source of information
for decision making. Moreover, it could also help to
identify costly parts (e.g., if a class is changed over
and over again, it is costing more than other parts in

1See http://www.eclipse.org/ for more information.
2See http://www.cvshome.org/ for more information.
3See http://msdn.microsoft.com/ssafe/ for more information.
4See http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/

for more information.

the system) or obsolete parts (e.g., if a class is never
changed, it is either dead code or good code). A thor-
ough knowledge of the history of a system represents
important information about that system.

Unification of information sources. There is a great spec-
trum of different sources of information about a soft-
ware system. Apart from the primary one, the source
code itself, one can also take into account documenta-
tion, bug reports, comments in the source code, UML
diagrams, CRC Cards, user stories, unit tests, etc. Soft-
ware visualization is an ideal vehicle to unify all these
sources into one data pool which can then be visual-
ized. Of course most of these data sources come with-
out a formal definition and must be formalized before
they can be integrated into any visualization. A sim-
ple example are comments in the source code: in the
Java programming language the tool JavaDoc parses
the declarations and documentation comments in a set
of source files and produces a group of cross-linked
HTML pages describing the software artifacts. An at-
tempt to formalize these comments to use them for re-
verse engineering purposes has for example been pro-
posed by Torchiano [24]. A visualization tool could
display the comments for example as tool tips when
the point of attention of the viewer is moving around.
The benefits of these formalizations is that several
of these informal sources of information could enrich
the already present visualizations, thus augmenting the
amount of information transmitted by them. The tech-
nical problems involved with such a unification are not
to be underestimated, and even a standardization of the
information sources (e.g.,with XML [7, 8]) will only
solve part of the problems. An example of an open
problem is keeping the various sources synchronized.

Spectrum of views. Various software visualization tools
visualize software in different ways. Some of the tools
propose views residing at different/complementary
levels of granularity and visualize also different kinds
of information (classes, applications, collaboration,
subsystems, etc.). A good software visualization tool
should not only propose good/complementary views,
but also keep the views synchronized between them
and allow the user to easily define new views. This
is important in a reverse engineering context where a
software visualization tool must be specialized to take
case study-specific aspects into account.

Real-world validation. A crucial test that software vi-
sualization tools must undergo is certainly the indus-
trial validation: the real world has many challenges,
such as scaling up, being able to even parse the system
or extract whatever information which can be fed into

the visualization tool. Through repeated confrontation
with real case studies, one will also remark where the
tool still needs general improvements or where there
is need for specialization. A simple example of such
a specialization are the acronyms often present within
class names, which convey hidden semantic informa-
tion about which subsystem or subarea of the system
the class belongs to from the developer’s point of view.
After repeatedly encountering this kind of information
one quickly wants to get an elegant way of modeling
and handling it, for example by encoding it into nomi-
nal colors.

4 An Example

In this section we want to give a simple example of how
some of the previous features can be achieved without a
huge effort, although we do not want to minimize the tech-
nical difficulties that some of these points involve and which
we still did not solve yet.

In Figure 1 we see a screenshot of the VisualWorks
Refactoring Browser which we extended to accomodate
visualizations provided by our software visualization tool
CodeCrawler [11, 12]. In the figure we see a Class Blueprint
view [13] of the currently selected class. Moreover we see
that all methods selected in the browser (actually a com-
plete method protocol ’private’ has been selected) are also
selected in the visualization. Furthermore a rename refac-
toring is being performed on one method of this class. Note
that the visualization occupies the space normally used for
displaying the method body. However, since during the
browsing of the class (e.g., looking for a certain method,
method protocol, or attribute) the method body panel re-
mains often empty anyway, this is not such a severe prob-
lem. Our implementation (re)uses the refactoring engine of
the Refactoring Browser and thus allows us to perform even
more complex refactorings like push-up and pull-down of
methods or attributes. After the software has changed, our
tool gets notified and automatically redisplays an updated
view of the software.

The main drawback of our current integration is that be-
tween selecting a class or a group of classes and their vi-
sualization in the browser takes a few seconds5: this la-
tency introduces wait times which disturb the viewer. We
have already taken some countermeasures by implementing
a cache which yields (the cached visualizations) in less than
one second, but our personal experience shows that even
small latencies disturb the viewer.

5from 2 to 20 seconds, depending on the number of classes and con-
tained methods/attributes, measured on a PPC 500 MHz Apple G4.

5 The Goal?

The future of software visualization can hardly be pre-
dicted, we think however to be able to predict a possible
and desirable goal that at least some program visualization
tools will inevitably try to achieve:quasi-real-time static
software visualization. Versioning systems like CVS have
introduced a novel way of handling source code: they al-
low us to retrieve any version of any source file ever written
by any person. If software visualization is to become the
preferred way of developers of looking at source code, we
cannot ignore the issue of this quasi-real-time: there must
be a dependency mechanism between the versioning tool,
the integrated development environment, and the software
visualization tool:e.g.,as soon as someone changes a part
of the system several people are editing and manipulating at
once, they must be notified by the change at once. This is
also a place where software visualization can fully exploit
its potential: notifying the developers of system changes by
means of text boxes, dialogs, log files, etc. are all clumsy
approaches compared to literallyseeingthe changes happen
and the system grow/shrink/change its shape in quasi-real-
time.

6 Discussion

Should the goal described above be achieved, the result
would be a real-time visual collaborative environment in
which software engineers develop a system together, and in
which they all have a common view of the system, namely
the one proposed by the software visualization tool. This
of course makes the achievement of the goal heavily depen-
dent on the quality and the success of such a software visu-
alization tool: should the users (i.e., the software engineers)
dislike or disagree with the proposed visualization, they will
not accept it as part of their mental model of the system.
Therefore, before software visualization tool providers can
give it a try at such a long-term vision, they must first cope
with the following (and many other) issues:

Human-Computer-Interaction issues. The field of
Human-Computer-Interaction (HCI) deals with how
humans interact with computer and with how to in-
crease the quality of the interactions. User Interface
design [6, 17] plays an important part in this context,
and is also an issue in context of software visualiza-
tion: the better a human viewer can interact with the
visualizations, the more (s)he will think that the visu-
alizations are useful. These are largely unsolved is-
sues which can only increase in the context of real-
time- or 3D-visualization. Another obstacle are the
current input devices we are using to communicate
with a computer: a computer mouse is for example

Figure 1. The integration of CodeCrawler with the VisualWorks Refactoring Browser.

not an ideal device to navigate three-dimensional in-
formation spaces, trackballs and other gadgets may be
more appropriate, but are far less present at people’s
working place, and therefore not a recognized industry
standard.

Scalability issues.Scalability has always been an issue in
reverse engineering and reengineering, mainly because
the examined subject systems are usually very large
and complex. Although the ever-accelerating com-
puter hardware can solve a part of this issue, our own
experiments in the field of software evolution have
shown that the massive amounts of data (hundreds of
versions of systems which contain hundreds of classes
and tens of thousands or software artifacts) put a heavy

strain on even the fastest hardware. Therefore an im-
portant part of the scalability problem must be solved
on the software side. Note also that a different kind
of scalability problem, a purely visual one, came up
during our experiments on software evolution: when a
tool visualizes thousands of software artifacts the visu-
alized items either take up too much space (generating
navigation problems) or, in order to fit on a display,
become too small to be interacted with.

7 Conclusion

New techniques like Design Patterns [10], Code Refac-
toring [9], and methodologies like eXtreme programming

[1] and Agile Development [5] have changed the way devel-
opers see software: we are more and more going towards an
evolutionary view of a quasi-living software systems. This
view is further amplified by the right tool support like refac-
toring engines, multi-way browsers, etc. We are convinced
software visualization still does not exploit its full potential
in such an evolutionary context, on the contrary it is rather
being ignored so far. The future challenge of software vi-
sualization is thus to prove its value in the tough arena of
mainstream (professional) software development.

Acknowledgments

We would like to thank Gabriela Arévalo and St́ephane
Ducasse for commenting drafts of this paper.

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2000.

[2] J. Bertin.Graphische Semiologie. Walter de Gruyter, 1974.
[3] S. K. Card, J. D. Mackinlay, and B. Shneiderman, edi-

tors. Readings in Information Visualization - Using Vision
to Think. Morgan Kaufmann, 1999.

[4] E. J. Chikofsky and J. H. Cross, II. Reverse engineering and
design recovery: A taxonomy.IEEE Software, pages 13–17,
Jan. 1990.

[5] A. Cockburn. Agile Software Development. Addison Wes-
ley, 2001.

[6] A. Cooper. About Face - The Essentials of User Interface
Design. Hungry Minds, 1995.

[7] S. DeRose, E. Maler, and D. Orchard. XML Linking Lan-
guage (XLink) version 1.0 - w3c proposed recommendation
20 december 2000. Technical Report PR-xlink-20001220,
World Wide Web Consortium, Dec. 2000.

[8] e. a. Didier Martin, Mark Birbeck.Professional XML. Wrox
Press Ltd., 2000.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[11] M. Lanza. Codecrawler - lessons learned in building a soft-
ware visualization tool. InProceedings of CSMR 2003,
pages 409 – 418. IEEE Press, 2003.

[12] M. Lanza. Object-Oriented Reverse Engineering - Coarse-
grained, Fine-grained, and Evolutionary Software Visual-
ization. PhD thesis, University of Berne, may 2003.

[13] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. InProceedings of OOPSLA 2001, pages 300–311,
2001.

[14] M. M. Lehman and L. Belady.Program Evolution - Pro-
cesses of Software Change. London Academic Press, 1985.

[15] D. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental
models and software maintenance. In Soloway and Iyengar,
editors,Empirical Studies of Programmers, First Workshop,
pages 80–98, 1996.

[16] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
Ph.D. thesis, University of Illinois, 1992.

[17] J. Raskin.The Humane Interface. Addison Wesley, 2000.
[18] D. Roberts, J. Brant, and R. E. Johnson. A refactoring

tool for Smalltalk. Theory and Practice of Object Systems
(TAPOS), 3(4):253–263, 1997.

[19] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An
automated refactoring tool. InProceedings of ICAST ’96,
Chicago, IL, April 1996.

[20] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
editors. Software Visualization - Programming as a Multi-
media Experience. The MIT Press, 1998.

[21] M.-A. D. Storey.A Cognitive Framework for Describing and
Evaluating Software Exploration Tools. PhD thesis, Simon
Fraser University, dec 1998.

[22] M.-A. D. Storey, F. D. Fracchia, and H. A. M̈uller. Cogni-
tive design elements to support the construction of a mental
model during software exploration.Journal of Software Sys-
tems, 44:171–185, 1999.

[23] M.-A. D. Storey, K. Wong, and H. A. M̈uller. How do pro-
gram understanding tools affect how programmers under-
stand programs? In I. Baxter, A. Quilici, and C. Verhoef,
editors,Proceedings Fourth Working Conference on Reverse
Engineering, pages 12–21. IEEE Computer Society, 1997.

[24] M. Torchiano. Documenting pattern use in java programs.
In Proceedings of ICSM 2002 (International Conference on
Software Maintenance), pages 230–233. IEEE Computer
Society, IEEE Press, 2002.

[25] E. R. Tufte.Envisioning Information. Graphics Press, 1990.
[26] E. R. Tufte.Visual Explanations. Graphics Press, 1997.
[27] E. R. Tufte.The Visual Display of Quantitative Information.

Graphics Press, 2nd edition, 2001.
[28] C. Ware. Information Visualization. Morgan Kaufmann,

2000.

 Position Paper:
Challenges in Visualizing and Reconstructing Architectural Views

Juergen Rilling
Concordia University,
QC, Canada, H3G1M8
rilling@cs.concordia.ca

Michel Lizotte
Defence R&D Canada
QC, Canada, G3J 1X5

Michel.Lizotte@drdc-rddc.gc.ca

Abstract
A common approach to cope with software
architecture comprehension is to provide higher
levels of abstraction of lower level system
information. Architectural recovery tools provide
such high-level views by extracting and abstracting
a subset of the software entities. In this research
we are focusing on challenges in visualizing and
reconstructing architectural views. In particular
we are looking into issues related to the
applicability of current visualization
representations generated by architectural
recovery tools to support views and products
specified by the C4ISR architecture framework.

1. Introduction

One aid to improve the understanding of large
programs is to reduce the amount of detail a
programmer sees by using a higher level of
abstraction to represent a program. Over the last
decade, programs became larger and more
complex, causing new challenges to the
programmer in visualizing these complex and large
source code structures. Different techniques and
approaches have been developed and validated
with users. However, providing different levels of
abstraction might not be sufficient since users
might be still dealing with a large amount of
information and data. Not every visualization
technique is equally usable in displaying a
particular dataset. The visualization technique
might lack an appropriate navigation support or
may not allow the effective reduction of the
amount of information displayed through a choice
of distinct views.

Software visualization can be described as
analyzing a subject system (a) to identify the
system’s components and their interrelationships,
(b) to create representations of a system in another
form at a higher level of abstraction and (c) to
understand the program execution and the
sequence in which it occurred. It would be ideal to
be able to simultaneously view and understand
detailed information about a specific activity in a
global context at all times for any size of program.

As Ben Shneiderman explains in [12], the main
goal of every visualization technique is: “Overview
first, zoom and filter, then details on demand”. This
means that visualization should first provide an
overview of the whole data set then let the user
restrict the set of data on which the visualization is
applied, and finally provide more details on the
part the user is interested in. Software visualization
of source code can be further categorized in static
views and dynamic views. The static views are
based on a static analysis of the source code and its
associated information and provide a more generic
high-level view of the system and its source code.
The dynamic view is based on information from
the analysis of recorded or monitored program
execution. Based on their available run-time
information, dynamic views can provide a more
detailed and insightful view of the system with
respect to a particular program execution. As
Mayhauser [9] illustrated, dynamic and static views
should be regarded as complementary views rather
than being mutually exclusive. Users tend to apply
an opportunistic approach, using both static and
dynamic views to achieve a specific task. The
software visualization techniques used by recovery
tools are in most cases a carry over from the more
traditional reverse engineering tool domain. With
the majority of tools providing support for UML
visualization based techniques or procedural
orientated visuals, like call-graphs, tree structures.
Ideally, the high-level views provided by these
tools should be organized in a hierarchical/layered
fashion, allowing users to navigate through
different layers of abstraction.

Software Architecture

Software architecture has been defined as a
structure composed of components and rules
characterizing the interaction of these components
[13]. In [11] it has been defined as elements, form,
and rationale. Another definition is presented in [6]
where it was defined as components, connectors,
and configurations [6]. C4ISR AF is using a
definition, not limited to software, based on the
IEEE STD 610.12 and established by the DoD

Integrated Architecture Panel in 1995 [7]. They
define “architecture” as “the structure of
components, their relationships, and the principles
and guidelines governing their design and
evolution over time.” One of the earliest definitions
of software architectures, by Perry and Wolf [6],
has remained one of the most insightful.

Architecture Recovery

Architecture recovery can be seen as a
discipline within the reverse engineering domain
that is aimed at recovering the software
architecture of a system [2]. It can be described as
the process of recovering up-to-date architectural
information from existing software artefacts [2,
16]. The rational of system architectural recovery
and comprehension is to provide reasoning behind
the software architecture or high-level system
organization of a system. There may be little or no
documentation available and the documentation
that does exist probably does not resemble the
current system due to drift and erosion [3]. The
application of system understanding tools goes
beyond mere object identification - it includes a
generation of (interactive) documentation, quality
assessment, and introducing novice programmers
to a legacy application. Architectural recovery is
motivated by (re)generate coherent abstractions of
existing systems to guide analysts during the
comprehension of large existing systems and to
provide some reasoning about the system
architecture.

Motivation

The presented research is conducted under a
project of the Defense Research and Development
Canada (DRDC) at Valcartier. The focus of this
project is the visualization support for the various
products described in the US Department of
Defense (DoD) Architectural Framework (AF),
better known as the Command, Control,
Communications, Computers, Intelligence,
Surveillance, and Reconnaissance (C4ISR)
Architecture Framework (AF) [10]. As part of this
research, we extended a previously performed
survey of current reverse and architectural recovery
tools, with a focus on visualization support for
C4ISR AF, its views and products. Tools should
provide adequate visualization support, by
providing on the one hand users with views and
information abstraction that are beneficial for the
recovery process, as well as visualization
techniques that are required by architectural
frameworks to document the architecture.

The remainder of this article is organized as
follows. Section 2 introduces provides a brief

overview and background C4ISR architectural
framework. Section 3 maps and discusses the
applicability of the surveyed tools to the C4ISR
AF. Section 4 provides a discussion about
challenges and pitfalls of current visualization
techniques in supporting architectural views.

2 The DoD Architecture Framework
The purpose of the DoD AF is to improve

capabilities by enabling the synthesis of
requirements with sound investments leading to the
rapid employment of improved operational
capabilities, and enabling the efficient engineering
of warrior systems. This framework formerly
called the Command, Control, Communications,
Computers, Intelligence, Surveillance, and
Reconnaissance (C4ISR) Architecture Framework
[10] is intended to ensure that the architecture
descriptions developed by the Commands,
Services, and Agencies are inter-relatable between
and among each organization’s operational,
systems, and technical architecture views, and are
comparable and able to integrate across Joint and
combined organizational boundaries. It provides
the rules, guidance, and product descriptions for
developing and presenting architecture descriptions
that ensure a common denominator for
understanding, comparing, and integrating
architectures. This section is based on the C4ISR
Architecture Framework (Version 2.0 as published
by the AWG)

Figure 1: C4ISR Architecture Framework

The operational architecture view is a
description of the tasks and activities, operational
elements, and information flows required to
accomplish or support a military operation. It
contains descriptions (often graphical) of the
operational elements, assigned tasks and activities,
and information flows

The systems architecture view is a description,
including graphics, of systems and
interconnections. For a domain, the systems
architecture view shows how multiple systems link
and interoperate, and may describe the internal
construction and operations of particular systems
within the architecture.

For an individual system, the systems
architecture view includes the physical connection,
location, and identification of key nodes (including
materiel item nodes), circuits, networks,
warfighting platforms, etc., and specifies system
and component performance parameters (e.g.,
mean time between failure, maintainability,
availability). The systems architecture view
associates physical resources and their performance
attributes to the operational view and its
requirements per standards defined in the technical
architecture.

The technical architecture view is the minimal
set of rules governing the arrangement, interaction,
and interdependence of system parts or elements,
whose purpose is to ensure that a conformant
system satisfies a specified set of requirements.

In what follows, we present a case study based
on a survey of 23 architectural recovery and
reverse engineering tools (see appendix) that was
performed as part of this project and map their
capabilities in supporting the visualization products
described in the C4ISR system view. The other two
views described in the C4ISR, the operational and
technical view were not considered in this survey,
since these views are mostly based on domain
knowledge, rather than information that can be
recovered by analyzing program artifacts.

3. Case study – C4ISR Capability matrix

The motivation for the presented case study
and the resulting C4ISR visualization support
capability matrix are two-fold. The first objective
was to analyze the current state of the art support
of architectural views and visualization techniques
provided by recovery tools and their applicability
in support for the different visualization products
described in the system view of the C4ISR
architectural framework. Secondly, the resulting
capability matrix can serve as guidance for
directing future research, by addressing
shortcomings of current tools.

Visualization techniques supporting system view
products

The system view products described within the
C4ISR architecture framework suggest certain
visualization and diagrammatic techniques that
should be provided to document an existing
architecture. One intend of the C4ISR AF was to
guide tool developers by providing templates for
suitable/expected visualization and representation
techniques, to support the various system view
products. The suggested templates are not
compulsory and can be replaced by other

visualization techniques. There is a currently a
tendency in applying the standard UML notations
to document software architectures within the
C4ISR framework. This approach has both
advantages and disadvantages.

Advantages can be found in using a well-
known standard notation, in reducing the learning
overhead that might be caused by introducing new
visualization techniques and their notations.
Furthermore, over the last several years, UML
established itself as a viable approach for
documenting various aspects of the requirement,
specification and design phase

One of the major disadvantages of the UML
standard notation is its limited expressiveness with
respect to architectural aspects. Firstly, its notation
does not provide enough expressive power to
describe the specific requirements of architectural
artifacts. Secondly, the levels of abstraction
provided by UML might not be sufficient to
provide some of the required views.

The open framework approach of the C4ISR
AF with respect to visual representations
encourages tool developers to explore new avenues
and derive new visualization techniques that might
lead to more intuitive and architectural specific
representations. In particular tool developers are
facing during architectural recovery additional
challenges having no or only limited domain
knowledge available to derive the visual
abstractions.

Figure 2: System interface description

Figure 2 and 3 illustrate this situation, with

figure 2 abstracting the system interfaces in a high-
level view (using a non UML notation), which can
easily be understood by both novice and experts.
Comparing this with the UML view of the system
interface description (Figure 3), the differences in
both the capabilities, abstractions and applicability
of the visualization becomes evident.

The following are some of the visualization
techniques templates described in the C4ISR
standard document that should be created to
document system view specific products.

With current recovery tools focusing on the
structural analysis of existing system artifacts, one
of the challenges can be found in the reconstruction
of visual abstractions is their lack of domain
knowledge. Figure 2 is an example for domain
knowledge based visualization. The graphic
requires not only specific annotations, but also
domain specific representations of the objects (e.g.
different types of airplanes) involved in the system
and their intercommunication.

Figure 3: System interface description (UML

 based)
Figure 3 on the other hand is based solely on

structural analysis through lexical and semantic
parsing of existing system source code. This
information can almost completely automatically
be extracted, without any prior domain knowledge.

Some other visualization challenges include
the support for building traceability matrixes.
These traceability matrixes are an essential part of
architectural documentation and re-documentation
not only within the C4ISR architectural framework
but also within other frameworks (e.g. Zachmann).
Matrixes are used widely by the following products
within the system view (C4ISR):

System Performance Matrix: Depict current

performance of each system, and the expected or
required performance characteristics at specified
times in the future (soft and hardware).

Operational Activity to System Function
Traceability Matrix: Maps operational activities to
system functions in the form of a matrix (Figure 4)

Figure 4: Operational Activity to System Function
 Traceability Matrix

System Information Exchange Matrix: Shows the
data exchange among nodes in different systems in
the form of a matrix.

Systems Matrix: The product focuses on the flow
of data among system functions, and on the
relationships between systems or system functions
and activities at nodes.

Behavioral modeling
Within the C4ISR architectural framework the
importance of documenting and being able to trace
the dynamic and behavioral system aspects is
reflected by the following system behavior
modeling products.

? Systems Rules Model: A rule base for actions
occurring as part of the trace. The rule base
applies for the different visualization
techniques within the system activity product.

? Systems State Transition Description: State
transition descriptions describe system
responses to sequences of events. Events may
also be referred to as inputs, transactions, or
triggers (Figure 5).

Figure 5: State transition diagram
? Systems Event/Trace Description: The system

event trace describes the timing and behavior
(based on the rule model) between nodes, as
well as the interaction among these nodes. The
standard UML sequence diagram notation can
be applied to capture the behavior (Figure 6).

Figure 6. Modeling dynamic behavior within the

C4ISR AF

Physical Data Model: Describes the physical
implementation of the logical data model from an
operational view point. The product is supported in
the form of standard E/R diagrams, etc.

Capability matrix

Table 1 shows a capability matrix (based on
the survey of 23 architectural recovery and reverse
engineering tools) and maps their overall capability
to the products and their visual representations as
described by the C4ISR architecture framework.
The matrix provides a general summary of the
overall tool capabilities rather than focusing on the
specifics of a particular tool.

System view product Visualization
Support

System Performance Parameters Matrix Partially

Systems Functionality Description Partially

Operational Activity to System Function
Traceability Matrix

No

System Information Exchange Matrix No

System Interface Description Partially

Systems Communications Description Partially

Systems Matrix Partially

System Evolution Description No

System Technology Forecasts No

Systems Rules Model No

Systems State Transition Description Partially

Systems Event/Trace Description No

Physical Data Model Fully

Table 1: Visualization Capability
Partial visualization support is achieved if

at least one or more tools provide capabilities
required by the particular system view product.
The capabilities are often limited and do not exist,
because of a lack of domain knowledge, that is
necessary to re-create these views and products.

4. Discussion: Challenges and Pitfalls

Larger software systems place an enormous
cognitive load on users and humans are limited in
the density of information they can resolve and
comprehend [5,8]. Visualization facilitates the
discovery of new science by revealing hidden
structures and behaviours in model output. It is in
the areas of insight and understanding that
visualization plays a central role [8]. Many reverse
engineering tools have been built to help the
comprehension of large software systems. Software
visualizations are one approach being investigated

worldwide to provide some assistance in program
understanding. It should be recognized that
visualization is a complementary technique and is
to be used in conjunction with other program
understanding techniques such as software
inspection, metrics, static and dynamic source code
analysis, etc.

Throughout a software product’s life cycle,
many different people are responsible for
understanding the design details of the software
code. Learning the structure of code developed by
others is especially time consuming and effort
intensive during the software maintenance phase.
From an architectural recovery perspective the
challenges becomes even more aggravating,
because the maintainer has to create a mental
model of a larger system that might include several
subsystem and the interaction among these
subsystems.

One of the shortcomings of current
architectural recovery tools is their lack of
supporting architectural views and abstractions.
Architectural views require often notations other
than the ones provided by current reverse
engineering tools In particular traditional
visualization techniques are limited by their
available notations and their ability to map between
visualization elements and architecture components
(e.g. throughput, dynamic linked information, etc.).
Other factors are the lacking support for
architectural views that match the more traditional
architectural views (e.g. 4+1 or C4ISR AF). The
creation of architectural views requires often
additional user domain knowledge, architectural
design decisions and analysis support in form of
grouping/clustering have also to be considered.

The majority of the surveyed tools focus on
the visualization of static system structures rather
than dynamic interaction aspects. System
architectures are often based on distributed and
dynamic systems that take run-time behaviour into
consideration. In particular the mapping of these
dynamic architectural aspects to the static
visualization techniques is often difficult, because
these techniques do not support natively graphical
notations for representing these dynamic aspects.
Examples are their lack of support for e.g. remote
connectors, throughput, performance, resource
requirements, etc. Furthermore, in visualizing
architectures there exists an explicit need for views
and visualization techniques that are based on
dynamic tracing and profiling aspects. This aspect
are addressed and acknowledged for example by
the System Activity Sequence and Timing product
in the C4ISR Architecture Framework. For

architectural recovery tools to be able to manage
and display dynamic behaviour, often a large
amount of data has to be processed. Additionally,
the tools have to facilitate notations that support
the visualization of these dynamic aspects.

Figure 7 Moving to 3D worlds

Furthermore visualization techniques should
take advantage of 3D [5], virtual reality [8],
multimedia to provide intuitive and meaningful
representations of the underlying architectural
structure, its behaviour and relationships. In the
context of the C4ISR framework there are further
needs to provide views that combine system views
with operational views, as well as the technical
with the system view. Feature extraction and
concept analysis techniques have to be integrated
to facilitate this. Clustering and grouping requires
application–specific data and domain knowledge,
as well as source code analysis techniques. It is
important to note that clustering can be used for
functions such as filtering and search. Scripting
support is also essential to create abstract views on
the underlying repository

Different levels of granularity are required,
often not facilitate in the current tools, e.g. UML
does not provide enough meaningful levels of
abstraction. Navigation and context switching has
to be further improved to help the architects and
maintainers to navigate through the recovered
information.

6. References

1. Ball T., Eick Stephen G., “Software Visualization in

the Large”. IEEE Computer 29(4): 33-43 (1996).
2. O'Brien, L., Stoermer, C., Verhoef, C. 2002.

Software Architecture Reconstruction: Practice
Needs and Current Approaches ; CMU/SEI-2002-
TR-024 ADA407795

3. Clements, P., Bachmann, F.; Bass, L.; Garlan, D.;
Ivers, J.; Little, R.; Nord, R.; & Stafford, J. 2002.
Documenting Software Architectures: Views and
Beyond. Boston, MA: Addison-Wesley.

4. Deursen van A. 2002.Software Architecture
Recovery and Modelling. ACM Applied Computing
Review 10(1):4-7.

5. Feijs, L.M.G. & de Jong, R.P. 1998. 3D
Visualization of Software Architectures.
Communications of the ACM 41, 12 (December
1998): 73-78.

6. Garlan, D. and M. Shaw, An introduction to
software architecture, in: V. Ambriola and G.
Tortora, 1993, Advances in Software Engineering
and Knowledge Engineering, World Scientific
Publishing Company, 1993 pp. 1--39.

7. Institute of Electrical and Electronics Engineers.
IEEE Std 1471-2000. Piscataway, NJ: IEEE
Computer Press.

8. Knight C., Munro M., 2001. Visualising the non-
existing”, IASTED International Conference:
Computer Graphics and Imaging, Hawaii, USA..

9. Mayrhauser A., A. M. Vans, “Program
Understanding Behavior During Adaptation of
Large Scale Software”, Proceedings of the 6th Intl.
Workshop on Program Comprehension., IWPC ‘98,
pp. 164-172, Italy, June 1998.

10. Office of the Secretary of Defense Working Group.
1997 C4ISR Architecture Framework, Version 2.0.
Washington, DC.

11. Perry D. E. and Wolf A. L. 1992, Foundations for
the study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17:40--52, October
1992.

12. Shneiderman, Ben, “Tree Visualization with Tree-
Maps: A 2-D Space-Filling Approach”. In ACM
Trans. of Computer-Human Interaction, vol. 11, no.
1, 1992, pp. 92-99.

13. Shaw M. and Garlan D. 1996. Software
architecture: Perspectives on an emerging
discipline, Prentice-Hall.

14. Sneed, H. M. 1998.Architecture and Functions of a
Commercial Software Reengineering Workbench.
2-10. Proceedings of the Second Euromicro
Conference on Maintenance and Reengineering.
Florence, Italy, March 8-11. Los Alamitos, CA:
IEEE Computer.

15. Storey M.-A., Fracchia F. and Müller H..,
“Cognitive Design Elements to support the
Construction of a Mental Model During Software
Exploration, Journal of Software Systems, special
issue on Program Comprehension, v 44, pp.171-
185, 1999

16. Trevors A. and Godfrey M.W., 2002. Architectural
Reconstruction in the Dark, Position paper,
Workshop on Software Architecture Reconstruction
collocated with WCRE '02, Richmond, VA,
October 2002

Appendix A: Tool survey

1. Argo/UML : http://argouml.tigris.org/servlets/ProjectSource

2. Bauhaus: http://www.informatik.uni-
stuttgart.de/ifi/ps/bauhaus/

3. CIAO http://www.research.att.com/~ciao/

4. CodeCrawler:
http://www.iam.unibe.ch/~lanza/CodeCrawler/codecrawler

5. CodeSurfer:http://www.grammatech.com/home/index.htm

6. Columbus/CAN : http://www.frontendart.com/

7. CONCEPTwww.cs.concordia.ca/CONCEPT

8. The Dali Architecture Reconstruction Workbench.
http://www.sei.cmu.edu/ata/products_services/dali

9. Fujaba: http://www.uni-paderborn.de/cs/fujaba/

10. GSEEhttp://www-adele.imag.fr/~jmfavre/GSEE/

11. Headway: http://www.headwaysoft.com/index.htm

12. Imagix4Dhttp://www.imagix.com/index.html

13. KLOCworkinSight. www.klocwork.com/products/inSight.

14. ManSARThttp://www.mitre.org/pubs/edge/january_98/first

15. Rational http://www.rational.com/index.jsp

16. Red Hat Source-Navigatorhttp://sourcenav.sourceforge.net/

17. Refine/C Illuma: http://www.frontendart.com/

18. SniFF++: http://www.takefive.com/

19. SoftArch: http://www.cs.auckland.ac.nz/~john-
g/projects.html#softarch

20. Soloway E. and Ehrlich K.,1994. Empirical studies of
programming knowledge, IEEE Transactions on Software
Engineering, SE-10, 595--609 (1984).

21. SWAG tool kit: http://swag.uwaterloo.ca/pbs/

22. Understand for C++: http://www.scitools.com/ucpp.html

23. Visual Paradigm :http://www.visual-paradigm.com/index.php

Visualization to Support Version Control Software:
Suggested Requirements

Xiaomin Wu Margaret-Anne Storey Adam Murray Rob Lintern
University of Victoria University of Victoria University of Ottawa University of Victoria

xwu@uvic.ca mstorey@uvic.ca amurray@site.uottawa.ca rlintern@uvic.ca

Abstract

Many version control systems have been developed to
manage both software version history and associated
human activities with the intent of producing higher
quality software. To better understand and explore the
vast information these version control systems portray,
several approaches have been conducted to apply
visualization techniques in this domain, resulting in a
variety of tools. However, these tools have rarely been
evaluated and hence we are unable to tell how successful
these information visualization techniques are for
understanding and exploring version control information.
Moreover, there is lack of requirements for how such a
visualization tool can support version control activities.
This paper describes a set of requirements for
visualization support in a version control tool. We also
present a tool called Xia, which was developed for the
navigation and exploration of software version history
and associated human activities. Moreover, we conducted
an exploratory user study to test if the functionality of the
Xia tool meets these requirements and if there are
requirements we missed -- the results are documented.
This position paper ends with a question – how should we
proceed next with our research? We intend to refine the
requirements and seek directions for future exploration.

1. Introduction

Version control systems are becoming an increasingly

important tool for software development projects,
especially when the development tasks are performed in a
team environment. Presently, most medium to large-scale
software projects are developed in association with a
version control tool. A large amount of information is
generated and stored in the repositories of these version
control tools. What does this information mean to the
software development process? Can this information be
used in a meaningful way to help with team work? If so,
how does the presentation of this information assist
software development? To answer these questions, we
conducted a preliminary survey of five version control
systems in the spring of 2002. In this survey, we posed
questions related to the functionality and ease of use of
version control systems, as well as what data is important

to support team collaboration. The results of this survey
highlighted that although the features of version control
systems are considered adequate; the interfaces of these
systems are not satisfactory for users to understand and
explore version control information. Also, our survey
demonstrated that the most prominent concerns related to
a team development task include:

• What happened since I last worked on the project
(types of events, such as new file added, file
modified, etc.)?

• Who made this happen?
• Where did this take place (location of the new file,

change, deletion, etc.)?
• When did this happen?
• Why were these changes made (what is the

rationale of the designer(s) who made the change)?
• How has a file changed (exact details of the

change, as well as relationship to other files)?
• What is the history of a particular file?
We name this problem the “5W+2H” problem for

brevity, referring to the 5W’s, what, who, where, when,
why, and 2H, how, history, above. When many of the
5W+2H questions remain unresolved, developers may
feel like they are working in a void, and progress will be
greatly hindered. More importantly, if the 5W+2H
problem is not properly addressed, we cannot explore
how people work in teams on software projects. When
this problem is related to the entire software project,
participants in our survey stated that they would like to
have an overall view of the entire dataset. They believe
that an overall view showing data related to all people’s
work would enable them to collaborate even better. This
is because they will have more awareness of each other’s
activities and how other people’s work may be relevant
with their own work.

On the basis of these findings, we conjectured that
applying information visualization techniques to a version
control system might resolve these problems.
Consequently, we investigated related research and
noticed that some approaches have been deployed as in
the following projects: Seesoft [1, 7], Beagle [17], CVS
Activity Viewer [4], and others. These tools used some
kind of visualization and query mechanisms to display
and explore data from version control systems. However,
these tools don’t provide requirement analysis and have
rarely been evaluated and hence we are unable to tell how

successful these visualization techniques can be for
assisting people in understanding and exploring version
control information.

In this position paper, we present Xia, a version control
visualization tool, which is tightly integrated with a full-
featured IDE, Eclipse [5]. In Xia, advanced visualization
techniques can be used for browsing and interactively
exploring the data in a CVS repository. A preliminary
user study was also conducted to evaluate both the
requirements we identified through the survey and to test
if the tool satisfactorily meets these requirements

Section 2 introduces our approach to the design and
implementation of Xia. The details and results of our user
study are described in Section 3. In Section 4, we outline
future work and pose questions about how to improve our
requirements and further evaluate our tool.

2. Approach

In our approach, we elected to focus our tool on the

version control system known as CVS [3]. CVS is freely
available open-source software that is widely used. We
believe the widespread user base will make it easier to
evaluate the effectiveness of our tool, as users will be
easier to find. Our previous experience [8, 10] of plugging
a visualization tool, SHriMP [14], into the Eclipse
platform [6], encouraged us towards an approach of using
the Eclipse platform as a framework for the integration of:

(1) The Eclipse CVS plug-in, a CVS interface plugged
into the Eclipse platform, through which the CVS
repository information could be accessed and retrieved;

(2) The Eclipse JDT (Java Development Tools) plug-in,
which provides the workspace information for a particular
Java project and;

(3) The SHriMP visualization engine, a domain-
independent information visualization tool developed at
the University of Victoria.

Xia is the result of an integration and customization of
these components. The Eclipse CVS plug-in [9] and the
JDT plug-in serve as data backends for Xia. The SHriMP
visualization tool is customized and used by Xia as a
visual front-end for the back-end data. Figure 1 illustrates
the architecture of Xia.

In the following subsections, we look into the data we
obtained from a CVS repository, and describe how we
design the visualization in our tool to help answer the
questions we raised before.

2.1. Data acquisition and analysis

The CVS repository is a good resource of information

for helping to resolve the 5W+2H questions. We believe
that pertinent information can be obtained and visualized.
For instance, the log message in CVS contains the record
of each commitment, including:

Figure 1. The architecture of Xia

• The author who made the commitment;
• The comments made by the author of what was

changed and hopefully why it was changed; and
• The time and date when the file revision was

created.
To understand how a change occurs, we propose the

diff function of CVS helps. The location of the changed
file in the repository hierarchy helps determine where the
change takes place. In our tool, the information we
required was retrieved directly from both the CVS
repository via the Eclipse CVS plug-in, and the JDT in
Eclipse, or the information was calculated from the
retrieved data.

By analyzing data from the CVS repositories, we
classified data into two categories: the software artifacts,
including files, folders, and other code-level entities, and
associated revision attributes. We attached the following
attributes (see Table 1) to each of the file revision.

Table 1. File revision attributes

Attribute Name Data Resource Data type
File revision number Retrieved Ordinal
File revision tags Retrieved Nominal
Date of last commitment
of a file revision

Retrieved Ordinal

Author who changed the
file most recently

Retrieved Nominal

Author who changes the
file most times in a
particular time period

Calculated Nominal

Comments associated
with each commitment

Retrieved Nominal

Number of changes
associated with a file
revision

Calculated Ordinal

History of a file Retrieved Nominal

These attributes reflect human activities that concern

people in answering the 5W+2H questions. They have

been classified into two categories according to their data
types, nominal and ordinal. Nominal attributes are strings
whereas ordinal attributes have numeric or ordinal values.

2.2. Visualization

In this section, we describe the visualization of
software artifacts and associated version attributes. Then
we outline our method of interactively exploring this
information. Finally, we summarize how our visualization
techniques were designed to answer the 5W+2H
questions.

2.2.1. Visual representation of CVS artifacts. A single
file revision in the CVS repository is mapped to a single
node in SHriMP. Likewise, a folder containing file
revisions is mapped to a parent node of file revision nodes.

In the Eclipse CVS plug-in, software in the repository
is displayed in a tree-like hierarchical structure of folders
and file revisions. This structure corresponds well to
nested graphs in SHriMP, as illustrated in a screen shot of
the CVS data in Fig. 2. In Fig. 2, parent folder nodes
(shown in purple) encompass file revision nodes (shown
in yellow). The outmost blue nodes represent two
versions of the same project. Node size relates to the size
of the content within the node, so the version on the left
(which is graphically larger) contains more sub-nodes
than the version on the right..

Figure 2. A nested graph showing two versions

(in blue) of a software project.

2.2.2. Visual representation of attributes. In addition to
the pre-existing SHriMP visualization techniques, we
developed an Attribute Panel for showing and querying
attributes associated with file revisions. The attribute
panel concept was originally developed at the University
of Maryland, and combined with the Treemap
visualization tool [11].

Appropriate visual variables are used to display the
attributes [18]. For instance, using color, intensity, tool

tips, size, and position to highlight nodes and accentuate
their differences. Visual variable values are triggered
through the Attribute Panel, as illustrated in Fig. 3.

Tool tips provide instant messages that are easily
perceived during browsing. In Xia, all attributes in the
CVS domain can be viewed with tool tips. The user
selects which of the attributes to show in the tool tips.

Colors may be used for both nominal and ordinal
attributes, though different color schemes are necessary
for each type [2]. For nominal attributes, each of the
values may be assigned a distinct color; whereas ordinal
attributes may use color intensity instead of different
colors (see Fig. 4). In Xia, the date of last commitment
and number of changes are the two ordinal attributes that
can be visualized using color intensity. These ordinal
attributes are sorted in an old-to-new and few-to-more
order respectively, and then each value is assigned an
intensity of green (the default color). In our example, a
more recent date is assigned a brighter green color. Figure
4 shows two screen shots of coloring nodes according to
their nominal and ordinal attributes.

The arcs between nodes enable people to focus on a
specific task and keep track of its relationship to other
files in the project. This kind of awareness is very
important for teams to collaborate on work effectively,
especially if there are many dependencies between the
different artifacts that are being worked on.

(a) (b)

Figure 3. In (a), the user can change colors for
the developers, and change how the tool tips

appear; In (b), checkbox and double slider filters
are used to filter nodes by their attribute values

2.2.3. Interactive exploration. The Attribute Panel also
supports dynamic exploration using filters. Two kinds of
filtering widgets have been developed for different
attribute types. A checkbox filter, as illustrated in Fig. 3b
is created for each of the nominal attributes. A checkbox
filter consists of a set of checkboxes associated with each
of the attribute values in the domain. An unchecked
checkbox results in the corresponding nodes having equal

attribute values being filtered from the screen. The other
filtering widget, a double slider, is designed for ordinal
attributes and is especially useful for dynamic queries. A
double slider allows the user to select a range of values
for query by adjusting the minimum and maximum value
of the slider, and can also be used to select a single value
by setting the minimum and maximum value of the slider
to the same value. We implemented the double slider in
Xia to filter two ordinal attribute values: Date of last
commitment and Number of Changes. These two sliders
could be used together to perform a multi-variable query.
For example, if a programmer wants to look at the file
that changed most frequently in the past week, he/she
would be able to get the result by setting the Date of Last
Commitment slider to the corresponding range, and
setting the Number of Change slider to its minimum and
maximum value.

Figure 4(a). The color of each node represents

the author who made the latest change

Figure 4(b). The color intensity of each node is

determined by the date of the latest commitment.

2.2.4. Ordered Treemap layout. To provide a view

that addresses the 5W+2H problem at the entire project
level, we adopted the Ordered Treemap algorithm created
by the HCI lab at the University of Maryland [12]. Two
distinct features of the Treemap layout are the variation of
the node size according to the associated numerical
attribute and the repositioning of nodes according to their
associated ordinal value. Figure 5 demonstrates a screen
shot in which node size was adjusted according to the

Figure 5. An ordered Treemap layout.

number of changes and the position of nodes are ordered
by their last commit date. This ordering feature provides a
comparable view for files in a project, hence answering
the When question at the project level.

2.2.5. Summary of visualization features for CVS. Xia
provides various ways to visualize data or derived data
from the CVS repository. In addition, relationships
between files can be determined using information
extracted from the Eclipse JDT plug-in.

Table 2. Map of visualization techniques to

questions of interest when working with CVS
Question Visualization techniques
What The name of the changed file can be shown

using labels on the nodes (which are visible
when you zoom in), or they can be shown
using tool tips when the user brushes over
nodes in the graph with a mouse.

Who Can be distinguished using different node
colors; filter by name using a checkbox.
Tool tips could also be used to show the
author’s name.

Where Nested within relevant folders in the layouts
When Date can be shown using color intensity,

tool tips. File revisions can also be filtered
by date

Why Rapid access to the code, CVS comments
(in the attribute table) and documentation
(by right clicking on the nodes, or by
zooming in to an embedded view)

How Access to the code, Javadoc and CVS
comments by zooming on a file revision
node. Tool tips, intensity, size and location
could also be used to show number of
changes to a file. Relationships between
files are shown using arcs, which could be
used to trace the impact of changes.

History Access to a history panel by zooming on a
file revision node and the use of right mouse
menu. A table contains the revision history
of the file is displayed.

We conjecture that the 5W+2H questions can be

answered by interacting with the features in Xia which
includes the double slider filters, the different layout
algorithms (such as the Treemap layout) effecting size
and order of the nodes, the checkbox filters, tool tips,
color and intensity. In addition to these features, Xia
provides easy access to the source code, documentation
(Javadoc) and comments in the CVS repository. The user
can zoom into a node representing a file revision and
switch between these different views. In Table 2 we
summarize how these different features can be used to
answer the 5W+2H questions.

3. Evaluation

We conducted an exploratory user study to test both
the initial requirements we discovered through the survey
and the functionality and usability of Xia. As very few
studies have been conducted in the field of version control
visualization [19], we consider this study novel.

A Java project with four versions was chosen as the
dataset for the study. Five graduate students from the
Department of Computer Science at the University of
Victoria participated in the study. Each participant had
experience on a team software project, working with at
least one version control tool.

Following the pre-study questionnaire (to determine
their previous programming and version control
experience etc.), a fifteen-minute orientation on Xia was
provided to introduce the basic tool operations and the
tool’s core features to each participant. Then, a task list
was administered to participants. Further inquiry into the
user’s opinion of the tool was gathered through a post-
study questionnaire.

The following subsections describe in detail the tasks
users performed and our general observations.

3.1. Tasks

Two sets of similar tasks were assigned to participants

corresponding to two different data resources: the data in
the CVS repository and the data in the programmer’s own
workspace. These two sets of data constitute a
programmer’s working data in the real world.

The tasks involved exploring the information space
and answering questions related to team work and
software history, including the 5W+2H questions. For
example, one of the tasks asked the participant to name all
programmers that have been working on the project.
Another task asked the participant to find out who was the
last person working on a particular file. These two tasks
correspond to the “Who” question on the project and file
levels. In regards to the “What” question, we asked the
user to determine what kind of changes to a particular file

have been made. As per the “When” question, we
encouraged the user to establish which file was changed
most recently. With respect to the “How” question,
participants were asked to discover how a particular file
was changed in the latest commitment. The “Why”
question was explored by asking for the rationale behind a
particular change, and the “History” of a file was explored
by request too.

3.2. General observations

Participants successfully resolved most tasks. Some

general observations were as follows:
• The visualization and exploration techniques

provided by the Attribute Panel were used
frequently to resolve the tasks. Also, participants
pointed out in their post-study questionnaires that
they would like to use features of the Attribute
Panel in their everyday work.

• The tool appeared to be easy to learn and use.
Although only fifteen minutes of orientation was
provided, participants used the tool effectively to
perform the tasks. They were aware of the possible
ways to use the tool to solve problems and did not
require additional assistance or note any significant
difficulties.

• Participants considered the tool informative, from
both the project manager and programmer
perspective. Candidates indicated they believe the
Xia tool could prove helpful in helping them solve
many problems they encounter in a work
environment.

• The tool was also used to answer more sophisticated
questions by making use of a combination of features.
For example, one of the tasks asked the participants
to find out which file is most stable and which file is
most active. The participants defined “stable” and
“active” in a similar way: a file that has not been
changed for a long time and to which very few
changes were made was considered stable; the
opposite held true for an active file. To answer this
question, participants chose both the last commit date
double slider and number of change double slider to
narrow down the range of candidate nodes, and
analyzed the candidate nodes.

• The visualization features in Xia helped the users
gain more awareness of their teammates activities.

• The participants were impressed by the immediate
feedback the visualizations provided when they
posed a new query. Some of them had special
interests in color schemes while others used filters
more often.

Though the positive feedback is encouraging, we also
noticed some deficiencies of the tool:

• Some participants were confused when working with
different revisions of the same file. They suggested
that some kind of mapping between different
revisions of the same file would be helpful.

• The file revision organization requires a more elegant
display. Currently, the file revisions are organized by
software versions. However, revisions not belonging
to a particular version will not be considered or
displayed in the tool. This may lead to the loss of
information.

• Some participants also suggested a time-line
arrangement of project versions as time is a very
important attribute in version control.

• Visualization of other attributes was also anticipated
by some of the users. For example, one of the users
was interested in who originally created a particular
file.

• Participants considered the “diff” function – a
comparison of two different file revisions very
important in their everyday work. We considered
displaying the CVS plug-in’s diff view within Xia,
however, Xia does not currently support this feature
on account of difficulties embedding Xia’s Java
Swing [15] GUI inside of Eclipse’s SWT [16] GUI (a
problem discussed by Rayside et al. [10]). Further
investigation is required for this technical issue.

3.3. Justification of the study design

The study we conducted is a very preliminary step to

provide feedback on the use of a tool such as Xia and to
help us in our requirements gathering process. Although
the number of users was small, we were more interested
in finding out if the requirements we had were correct,
and if we were missing any. The preliminary study also
allowed us to study how the tool can be used to help with
version control activities. Our intention at this point is
not to perform statistical analysis of results, as we believe
research in this area is still too new. The size of the code
studied was also small but the study required that the
users gain some knowledge of the code in a relatively
short time. We also did not compare our tool to others as
firstly, there are no other prototypes available that use
visualization for version control activities. Secondly, we
considered comparing our tool to CVS, but this would be
a biased study as our tool provides answers to questions
which cannot be easily answered by CVS even in a
textual way.

4. Future Work

Based on our observations from the user study we

found more research questions that need to be explored.
For example, we believe more version attributes beyond
the 5W+2H questions (e.g. the creator of an artifact) and

visualization of finer granularity of version control should
be investigated. We are currently making improvements
to our tool – the question we now face, is how should we
proceed in the next evaluation phase? Our proposed
approach is to do an introspective case study by applying
the tool in our own research group’s programming
activities. We also believe the requirements are evolving
with the availability of various tools. We are interested
in feedback on our tool and on our requirements at the
Vissoft workshop.

References
［1］ Ball, T. A. and Eick, S. G. 1996. Software visualization in

the large. IEEE Computer, vol. 29, no. 4, pp. 33-43.
［2］ Card, S. K., Mackinlay, J. D., and Shneiderman, B. 1999.

Readings in Information Visualization: Using Vision to
Think. Morgan Kaufmann.

［3］ CVS 2003. The CVS website: http://www.cvshome.org/
［4］ Dourish, P. 2002. “Visualizing Software Development

Activity”. URL:
http://www.ics.uci.edu/~jpd/research/seesoft.html

［5］ Eclipse 2003. Eclipse Homepage: http://www.Eclipse.org
［6］ Eclipse Platform, 2003. The Eclipse Platform Subproject

Webpage: http://www.eclipse.org/platform/index.html
［7］ Eick, S. G., Steffen, J. L., and Summer, E. E. 1992.

Seesoft – A tool for visualizing line oriented software
statistics. IEEE Trans. Software Engineering, vol. 18, no.
11, pp. 957-968.

［8］ Lintern, R., Michaud, J., Storey, M.-A., and Wu, X. 2003.
Plugging-in Visualization: Experiences Integrating a
Visualization Tool with Eclipse. In Proceedings of
Software Visualization 2003.

［9］ McGuire, K. 2002. VCM 2.0 Story (article in Eclipse

website: http://www.eclipse.org/platform/index.htm)
［10］ Rayside, D., Litoiu, M., Storey, M.-A., Best, C. and

Lintern, R. 2002. Visualizing Flow Diagrams in
Websphere Studio Using SHriMP Views (Visualizing
Flow Diagrams). Information Systems Frontiers: A
Journal of Research and Innovation, vol. 4 (4)

［11］ Shneiderman, B. 1992. Tree Visualization with Tree-
maps: A 2-d space-filling approach. ACM Trans.
Graphics, vol. 11, no. 1, pp. 92-99.

［12］ Shneiderman, B. and Wattenberg, M. 2001. Ordered
Treemap Layouts. In Proc. IEEE Symposium on
Information Visualization 2001, 73-78. Los Alamitos, CA

［13］ Storey, M.-A., Best, C., Michaud, J., Rayside, D., Litoiu,
M. and Musen, M. 2002. SHriMP views: an interactive
environment for information visualization and navigation.
In Proceedings of CHI 2002 Conference, Minneapolis,
Minnesota, USA, pp. 520-521.

［14］ SHriMP 2003. SHriMP Website: www.shrimpviews.com

［15］ Swing 2003. The Swing Connection, http://java.sun.com

/products/jfc/tsc/

［16］ SWT 2003. SWT: The Standard Widget Toolkit,
http://www.Eclipse.org/articles/Article-SWT-Design-
1/SWT-Design-1.html

［17］ Tu, Qiang and Godfrey, Michael 2002. An Integrated

Approach for Studying Software Architectural Evolution.
In Proc. of 2002 Intl. Workshop on Program
Comprehension (IWPC-02).

［18］ Ware, C. 2000. Information Visualization, perception for
design. Morgan Kaufmann

［19］ Weinberg, Z. 2002. Novel Methods of Displaying Source
History: A Preliminary User Study.
http://www.panix.com/~zackw/cs260/novel-methods-of-
displaying-source-history.pdf

Visualization for Software Risk Assessments

Jordi Vidal Rodrı́guez
jordi@software-improvers.com

Tobias Kuipers
tobias.kuipers@software-improvers.com

Software Improvement Group
www.software-improvers.com

1. Introduction

The Software Improvement Group performs so-called
Software Risk Assessments (SRAs) [10]. An SRA is per-
formed to identify the risks inherent in a software system.
The types of risks that are identified during an SRA can be
varied, depending on the system and the requirements of the
customer.

Risks can be identified with respect to maintainability,
performance, operational costs, and so on. The systems the
SRAs are performed onvary widely in size, technology and
complexity. They can be web applications consisting of 20
forms, or multimillion lines-of-code Cobol legacy systems.

An SRA consists roughly of two parts: A first part where
the stakeholders in the system are interviewed and docu-
mentation about the system is analysed. In the second part
of the assessment the source code of the system is analysed
using various tools that we have developed at the Software
Improvement Group.

The Software Analysis Toolkit (SAT) that has been de-
veloped at the Software Improvement Group routinely cal-
culates a number of metrics for the system under assess-
ment. Furthermore it calculates a graph structure that con-
tains all the dependencies in the system. The various depen-
dencies in the system are typed and can be data dependen-
cies from a specific module to a specific view on a database,
which in turn is dependent on a specific table in a database,
which in turn triggers a stored procedure in the database
(and so on). Effectively using the information in this graph
depends largely on the ability to interactively view (parts
of) the graph, and relating those parts to specific locations
in the source code, and to metrics about those parts of the
source code.

An example graph of all dependencies in a 150,000 line
web application is given in figure 1.

1.1. Scenarios

Visualization needs during an assessment are twofold:
first of all, visualization should facilitate the understand-

ing of the system. This initially requires visualizing the
overall structure of the system: control dependencies be-
tween modules, and data dependencies between modules
and databases. Afterwards, when a general understanding of
the system is reached, the visualization should provide de-
tailed views to validate ideas that have occurred about the
functioning of the system.

Interactively manipulating the view on the software sys-
tem is key in both phases. As an example, consider the fol-
lowing scenarios.

Scenario 1

A system consisting of 3,000,000 lines of Cobol is anal-
ysed using the SAT. This results in a graph containing all the
dependencies. (More about the data representation that re-
sults from the SAT analysis in section 3). The first visualiza-
tion shows that there are 20 database tables in the system,
and that only about 10 modules (out of 1200) access these
tables. Closer inspection of the 10 modules shows that these
are so-called utility modules, and that all modules that call
these utilities can be considered to perform database access.
The view should than be adjusted to remove the database
utilities, and replace them with direct edges from the mod-
ules that called the utilities to the database tables.

Since these systems typically use different technologies
to access persistent data, the view needs to be adjusted to ac-
commodate for that fact: for gaining a general understand-
ing of the system database access through DB2 should be
visualized in the same way as, say, access through IMS.
However, when looking at detailed IMS usage DB2 should
obviously be removed from the view.

Scenario 2

As an example of a more detailed view consider the sys-
tem displayed in figure 1. This is a web application built us-
ing Microsoft Active Server Pages. After a first inspection,
and interviews with the developers of the system the consul-
tant performing the assessment comes up with the following

hypothesis: All asp files in the system include a standard “li-
brary” file, and a single file that contains the non-dynamic
portion of the page. In order to validate this hypothesis she
looks at the graph in figure 1. Obviously there is nothing to
see there, since there are far too many edges and nodes.

The graph needs to be interactively filtered to first show
only the asp files, and their includes. If there are too many to
immediately see whether the above hypothesis holds, than
a threshold needs to be set to show only asp files with less
than two includes: if they exist then the hypothesis does not
hold.

1.2. Graph Visualization Requirements

The assessments described in the scenarios above could
be performed using an interactive graph browser that sup-
ports a number of operations. The operations we currently
are looking for in a graph visualization tool are: abstrac-
tions (leading to nested graphs), searching, filtering, undo
facility, and automatic layout. For instance, the set of oper-
ations should enable us to replace a node by direct edges be-
tween all its sibling nodes. These operations will be applied
on large graphs (up to 100,000 nodes). Finally, an script-
ing facility to enable automatization and an annotation fa-
cility to store comments on findings are seen as crucial for
efficiently carrying out SRAs.

1.3. Position

Our position is that in spite of good tools solving partly
SRA’s requirements, there is still missing a general tool
to handle all SRA aspects smoothly, embracing from data
model, visualization to reporting.

In the next section, we give an overview of the various
software visualization tools that we are currently using, or
have tried in the past.

In section 3 we describe the data model that we use for
our assessments, and how it relates (both in theory and in
practice) to our visualization tooling. Section 4 discusses
the various challenges we see when using existing visual-
ization tooling.

We end the paper asking ourselves whether we should
start to produce our own visualization software...

2. Related Tools

The most common techniques for software system com-
prehension are graph visualization and a combination of
browsing/navigation/query. Specialized instances of these
techniques are scattered among tools. The most relevant and
inspiring tools for our activities are described next.

Rigi [7] uses a nested graph model. However the graph’s
levels are displayed using multiple windows. It has basic

graph operations for name pattern search, selection and ab-
straction. Visualization and interaction can often be cum-
bersome.

SHriMP [9] is a nested graph navigation tool, lacking
any graph manipulation feature. It complements Rigi. It
maintains context and focus via a modified fish-eye algo-
rithm.

Dalı́ [6] is a workbench that supports extraction and fu-
sion of architectural views. It highlights the need to fuse
views from different source extractions, leaving the data
gathering to other tools for the purporse. It is an open ap-
proach to integrate tools and uses a common data reposi-
tory.

Portable Bookshelf [5] is aimed at re-engineering and
migration, mainly as a navigation tool by means of directed
graphs. Software landscapes visualize the main part of the
system and keep context with neighbouring subsystems.

Code Crawler [3] is a tool that combines object oriented
software metrics into some predefined such graph models
like tree, matrix correlations and histograms. The nodes (or
entities) can distinguish up to 3 data dimensions, visualized
as x, y size and colour.

CIAO [2] is a flexible navigator that can visualize graph
models and query the system at source code level. It can be
used in any project by specifying a new data model.

SPOOL [8] is a tool set to bridge to other comprehension
tools. It allows browsing of high level constructs, query the
design and structural searching, but lacks abstraction oper-
ations. Other helper tools are used for source code analysis.
It aims to integrate several tools to allow flexibility in creat-
ing user-defined views of any system.

As the above descriptions reveal, these tools do not sat-
isfy all requirements as stated in section 1.2. Consequently
we looked at graph layout libraries such as Dot, aiSee, GVF,
JViews and Tom Sawyer, which offer advanced features.
Dot is not an interactive tool, although there are some li-
braries containing dot that alleviate this problem. aiSee was
found to offer good layout algorithms but with an unfriendly
user interface. The last two are powerful graph libraries al-
lowing nested, multiple layouts.

3. Model Requirements

The tools above demonstrate the usefulness of the vari-
ous features they were developed for, but fail to satisfy the
complete list of features we need to perform Software Risk
Assessments.

During assessments we need to contrast different views
at different abstraction level of the system, subsystem or a
slice of source code. Due to the variety of systems that can
be analysed, no specialized tool fully suits the purposes. In-
stead an open, extensible tool should be created to cope with
the business demands.

In general data is gathered during the assessment process
into a generic data model (in similar fashion as FAMIX [4]).
From it we generate three generic types of views: Di-
rected graphs, charts and source code. The visualization tool
should be able to display these three views, their relations,
and navigate effortlessly between them.

The model we generate views from are described below.

3.1. Data Model

The are two main aspects the data model must meet.
Fisrt, it have to allow navigation from one view to another,
this is, regardless of the inspection starting point we can
navigate to any related view forth and back even at differ-
ent abstraction level.

Current tools attempt to provide such functionality (i.e.
SHriMP, SPOOL) but limited to a pair of views with their
own data model. On the other side, (commercial) source
navigators (such as Eclipse [1]) provide excellent features
but miss high level views.

Second, it holds data from three subareas: the artifacts’
relations, visualized as a directed graph; the software met-
rics, visualized in charts; and the source code, visualized as
enhanced text.

The model must be able to support any programming
language, as in the case of large legacy systems. Thus
object–oriented, procedural, functional and scripting lan-
guages must all be supported transparently. Only the arti-
fact gathering tool is tailored to the target language.

Next, we describe what features both the data model and
each view should provide support.

3.2. Graphs

Most of our interest is on exploring large and highly con-
nected hierarchical typed directed graphs and derive some
knowledge. We have seen there is no single tool that sup-
ports all required features for effective exploration: nested
graphs (SHriMP), abstraction operations (Rigi), incremen-
tal layout, context keeping (SHriMP, PBS) and annotations.
Instead each tool supports one or few of these.

3.3. Source Code

Source code inspection is a common practise in software
assessment. Either beginning from source code or from a
model, we are interested in obtaining alternative views of
the same set of artifacts.

When inspecting a piece of source code, the correspond-
ing subgraph and a set of related metrics should be dis-
played. Similarly, when pointing to either a graph or a chart
entity, the related piece of source code would show marked
up.

Figure 1. A graph containing all the depen-
dencies of a system under assessment

Figure 2. Complexity of systems versus their
size

Figure 3. Complexity of systems versus func-
tion points and lines of code

3.4. Metrics

Software metrics gathering, at different granularity lev-
els, is routine in our assessments. Currently we visualize
them as independent charts (i.e. bar charts, pie charts, bub-
ble charts).

Metrics are valuable to quickly point out measurable fea-
tures such as complexity and size among other source code
attributes.

Linking the metrics with the other views also aids in in-
specting. For instance, selecting a complex system’s pro-
gram and then browsing its source code. We also realize it
is helpful to merge metric information into the graph model
as in [3].

4. Visualization Challenges

To carry out SRA we actually use practises from reverse
engineering, software metrics measurements and automatic
generation of documentation. Currently we are using a set
of independent tools for the purpose. These tools are inte-
grated by our Software Analysis Toolkit. The visualization
part currently consists of graphs visualized using dot, charts
displayed using JFreeChart, and marked up source code us-
ing a purpose built system. We browse the source code and
make annotations manually.

We have conducted experiments with some tools men-
tioned in related work section. Other tools were dismissed
after checking the list of features or after seeing the de-
mos. The tools we have experimented with did not serve our
goals. Most tools perform a single task well, but not oth-
ers. Furthermore, we had problems integrating these tools
within the Software Analysis Toolkit, and the usability for
some of these tools is so terrible that we wonder whether
they are used at all.

Our wished features for graph visualization tools are as
follows:

4.1. Focus and Context

Usually we focus on a small part of the large system.
When zooming in, the involved nodes should be placed
close to each other to fit one screen while maintaining its
context (i.e. its immediate neighbours). The context may be
essential to identify possible erroneous relations. Solutions
like nested graphs, multiple views, fish-eye views and show-
ing neighbours seem feasible.

4.2. Annotations

The assessment process produces large amounts of re-
sults referencing both the detailed and the coarse level. Cru-
cial is the reproducibility of the assessments, for updated
versions of the system, and retrieval of old assessment re-
sults for comparison. This opens the way to trend analysis.

Even rudimentarily supported, by saving views and other
data files, an integrated annotation tool would increase pro-
ductivity. The Film strip feature in SHriMP, or the Saving
View in Rigi are both promising methods. Structured stor-
age would help in the report writing phase.

4.3. Layout

The graph layout reveals important relations that can be
spotted by a quick visual inspection. However, obtaining a
good layout is not trivial, not to mention that for large graph
no layout has given satisfactory results.

Therefore, using the focus+context to reduce the graph
size to display, layout algorithms can be used again. Nev-
ertheless, it is also of importance to keep the mental map
as the exploration proceeds. For instance, smooth transis-
tions and minimal alterations to the graph structure should
be enough. Animation cues are not discarded at all.

A not less important aspect is labeling. Labels should be
readable at any zoom factor. Although if the node is too
small, there is no need to show its label. SHriMP [9] ap-
proach seems the most advanced approach so far.

4.4. Graph Operations

During the understanding process we manipulate the
graph by, for instance, grouping (abstraction) common arti-
facts into subnodes (hence nested graphs). Other operations
are: navigation, search, filtering and selection. We are cur-
rently not convinced that this list is exhaustive, but more ex-
periments are needed.

Navigation should allow to track the visited elements.
Different approaches could be: a) list visted nodes in a sep-
arate view; b) move visited nodes close each other; c) not
alter the layout. Options a), b) maintain context, while c) is
adequate when only the final target is necessary.

The search space can be textual or structural. Locat-
ing certain names of artifacts is textual. Locating chains of
node types and edge types is structural. Questions like “Is
database X accessed directly or indirectly by any program in
Y?” should be answered by a structural search. This search
involves textual and structural search combined.

Abstraction as supported by Rigi merged with the
SHriMP capabilities of nested graphs would be a nice start.

We have pointed out the importance of keeping focus and
context while carrying operations that affect the graph struc-
ture. When having to understand small portions of large
graphs, these operation features help raise model compre-
hension by reducing confusion by sudden changes of the
layout.

5. Conclusions

A number of tools exist that partly solve the complex re-
verse engineering task of Software Risk Assessment.

Projects like SPOOL try to go further, providing envi-
ronments were multiple tools collaborate to tackle as much
of the reverse engineering tasks as possible in an elegant,
clear way.

A standarized, integrated environment would allow users
to access simultaneously a broad set of tools with the advan-
tage that they could tightly collaborate each other, result-
ing in a productivity boost. The diverse techniques could
be tried under a single environment allowing to more ef-
ficiently compare, investigate, create new research tech-

niques benefiting from the already developed helper tools.
For instance, to try a new visualization technique, only the
view has to be programmed.

We have been developing a generic data repository to
hold all data we derive from large software systems to per-
form assessments. We currently can visualize aspects of this
data in various ways.

Our search for an interactive graph viewer that suits our
needs has so far been interesting, but has not led to the tool
we want. We have listed our wishes regarding such a tool.

Nevertheless, we are currently contemplating building
the tool ourselves. We would like to invite the software visu-
alization community to challenge our ideas, to tell us such a
tool already exists, to tell us everything we know is wrong,
and finally, to collaborate with us to build a system that
would perfectly suit our needs.

References

[1] The Eclipse project. http://www.eclipse.org.
[2] Y.-F. R. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wal-

lach. Ciao: A graphical navigator for software and docu-
ment repositories. In Proc. Int. Conf. Software Maintenance,
ICSM, pages 66–75. IEEE Computer Society, 1995.

[3] S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse
Engineering Approach Combining Metrics and Program Vi-
sualization. In Proceedings of the Working Conference on
Reverse Engineering, pages 175 – 186, 1999.

[4] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is
not universal. UML shortcomings for coping with round-trip
engineering. In Proceedings UML’99 (The Second Inter-
national Conference on The Unified Modeling Language),
1999.

[5] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, , and
K. Wong. The Software Bookshelf. In IBM Systems Jour-
nal, volume 36, pages 564–593, 1997.

[6] R. Kazman and S. J. Carriere. View Extraction and View
Fusion in Architectural Understanding. In Proceedings of
the 5th International Conference on Software Reuse, Victo-
ria, B.C., 1998.

[7] H. Müller. Rigi. http://rigi.cs.uvic.ca.
[8] S. Robitaille, R. Schauer, and R. K. Keller. Bridging Pro-

gram Comprehension Tools by Design Navigation. In Pro-
ceedings of the International Conference on Software Main-
tenance, pages 22–31, October 2000.

[9] M.-A. Storey. SHriMP. http://shrimp.cs.uvic.ca.
[10] A. van Deursen and T. Kuipers. Source-Based Software Risk

Assessment. In Proceedings of the International Conference
on Software Maintenance, 2003.

Position paper:
MetaViz – Issues in Software Visualizing Beyond 3D

Juergen Rilling, Jianqun Wang, S. P. Mudur

Department of Computer Science, Concordia University
{rilling, jianq_wa, mudur}@cs.concordia.ca

Abstract
In this research, we present our MetaViz project that

was initiated to investigate software visualization issues
in the context of novel modeling and visualization
techniques. The focus of our research is the visualization
of software structures and their dynamic behavior using
3D visualization techniques. Rather than applying
traditional 2D visualization techniques and transfer
these to the 3D space, we are exploring novel
visualization techniques and investigate computational,
grouping and layout related issues of these visualization
techniques.

1. Introduction

For large, complex software systems, the
comprehension of such diagrammatic depictions is
restricted by the resolution limits of the visual medium
(2D computer screen) and the limits of user’s cognitive
and perceptual capacities. One approach to overcome or
reduce the limitations of the visual medium is to make
use of a third dimension by mapping source code
structures and program executions to a 3D space [6].
Mapping these program artifacts into the 3D space
allows users to identify common shapes or common
configurations that may become apparent, and which
could then be related directly to design features in the
code. Scalability becomes a well-known barrier that
exists in both 2D and 3D software visualization [9].
Improving layout algorithm and clustering management
is one way to make visualization techniques scalable. In
this paper, we will investigate some of the readability
issues of visuals representations in 3D space, and present
improvements in three different aspects. First, we will
introduce the use of metaballs as a metaphor to visualize
software systems to improve the more traditional
representation of “Nodes and Arcs”. Second, we will use
hierarchic grouping of entities to abstract higher level
entities and improve the usability. This will lead to an
“overview first, zoom and filter, then details on demand”
approach. Finally, we will address issues related to gird

based 3D layout algorithms as some of the techniques to
improve readability of the 3D visuals created [12].

The remainder of the paper is organized as follows.
Section 2 introduces the MetaViz project; section 3
discusses the metaball visualization approach and the
Marching Cube algorithm used to create the metaballs.
Section 4 introduces 3D layout algorithms and quality
aspects. In section 5 we discuss grouping and clustering
to improve the comprehensibility of visual
representations. Section 6 illustrates applications of
MetaViz tool, followed by a discussion of future
challenges in section 7.

2. Overview of MetaViz

The MetaViz tool was developed using Java 3D as an
independent, but reusable 3D visualization environment
to investigate the various application domains for the
metaball metaphor. The tool provides a programming
interface that allows for an easy extension and further
reuse of the tool. The MetaViz tool consists of three
major parts: the grid-layout, a clustering and grouping
algorithm, and the metaball rendering engine (see Figure
1).

Figure 1. MetaViz architecture

The grid layout plug-in is based on an XML input file,
which describes the software artifacts and their internal
relationships. Within the MetaViz tool, users can select
among 4 different layout algorithms, and provides users
with feedback about the progress made in the layout
optimization by displaying snapshots of the current
layout state. Once a predefined optimum is reached, the
layout optimization is completed and will be stored in an
XML file for further processing.

The rendering engine of the MetaViz tool reads this
XML file as input to generate and render the metaballs in

XML files

Grouping Layout Rendering

Metaballs

CONCEPT
Analyzer

3D space, by mapping the structural software properties
to the properties of the metaballs. After the completion of
the rendering process, the user can navigate through the
visuals and apply overview, select and zoom techniques
to refine the current view.

3. Metaball Metaphor
Creating intuitive and useful abstraction is one of the

major research issues in 3D software visualization [5]. As
part of the MetaViz project we are investigating new
metaphors for 3D software visualization that can provide
additional guidance in supporting the comprehension
process [6].

3.1. Metaball vs. “Nodes and Arcs”

Metaballs provide a three dimensional picture with
smooth connection between metaballs and shading,
which eases the difficulties of building mental model.
Figure 2 illustrates the advantage of metaball over a 3D
sphere-line graph. Both visuals display the same
information and use the same layout. One of problems of
the sphere-line graph is that it cannot convey some
structural information in the same way as, for example,
the metaballs. The fusion (the thickness of the
connection) among two or several metaballs can be used
to show clearly structural dependencies. The fusion can
also be used to indicate the relationship among different
software artifacts. Shading and blending are other
options that can be applied to convey additional
information not available in most traditional software
visualization techniques.

Figure 2. Metaball vs. sphere-line graph

However, it should be mentioned that the metaball has
one major disadvantage - its computational complexity,
caused by the Marching-cube algorithm that is used for
rendering the metaballs. For visualization techniques to
be useful and applicable, performance plays an important
role. In what follows we discuss an optimization for the
general Marching-cube algorithm that improves on the
rendering speed of the algorithm.

3.2. Marching-cube Algorithm Optimization

The performance problem with the metaball rendering
is directly related to the computations carried out by the
Marching cube algorithm that computes the iso-surface
of the metaballs [15]. One way to improve the
performance of the algorithm is to avoid any surface
computations for grid cells that do not contain any parts
of the metaball iso-surface. The following table (Table 1)
shows our test results for 64 metaballs with and without
this optimization. For the experiment, we limited the
recursion level to 9. It should be noted that the recursion
level directly corresponds to the rendering quality of the
metaballs. For a recursion level of 5 or lower, the
resulting metaball surface becomes too coarse
(polygonized) to be useful. For more than 9 recursions,
the computation complexity becomes too large to be
applicable.

Recursion times Non-optimized Optimized

5 1,093 ms 157 ms
7 55,469 ms 1,750ms
8 459,609 ms 9,031 ms
9 3,286,978 ms 58,343 ms

Table 1. Test results for 64 metaballs rendered by the
marching cube algorithms optimization.
(CPU: P4 2.8GHz, 1GB RAM)

4. 3D Grid Layout Algorithms
Within the MetaViz tool, we applied a grid layout

approach, where the position of each node corresponds to
integer coordinates. There are two major reasons for
applying this approach for 3D visualizations. Firstly, the
layout algorithm allows for a space efficient visualization
of metaballs. For example, 1000 entities can be placed
within a 10*10*10 grid using the metaball visualization.
On the other hand, displaying the same 1000 entities
using a cone tree [2], the size of each entity becomes too
small at the lower levels of the tree.

Secondly the grid layout is reusability and can be
applied for other visualization techniques that have
similar layout and readability problems. The presented
layout algorithm is developed as a separate Java package
plug-in that can be reused by other visualization
approaches within our CONCEPT project (e.g. UML
diagrams, 3D worlds, etc.).

It should be noted that grid layout algorithms have
two major shortcomings. One is their lack of real-time
responsiveness, which makes them not suitable for
interactive/animated applications. The other shortcoming
is that the rearrangement of graphs may not preserve
some designing properties, and the context (e.g.
grouping, clustering) of the original design might be lost.
[8].

4.1. Readability criteria
Software visualization techniques were originally

introduced to support people during software and system
comprehension. For a visualization technique to be
useful, its readability becomes a major quality factor.
Readability criteria have already been established and
applied in information visualization to evaluate the
quality of layout algorithms [10]. Figure 3 shows the
importance ranking of different criteria for the
readability of a visualization technique in general. In our
implementation, we take into account most of these
criteria. The objective function is a weighted sum of these
numbers, with line object crossing having the highest
weight, and the length of arcs having the lowest weight.
Drawing space and density distribution can be further
optimized by choosing a minimum grid size that can
accommodate the given number of metaballs.

Minimize the number of edge crossings

Minimize the “projection crossings”

Minimize the length of edges.

Optimize density distribution

Optimize drawing space (area)

Achieve symmetry.

Im
portance

Figure 3. Visualization criteria

4.2. 3D Grid Layout as a State Searching
Problem

The 3D grid layout problem can be described as
placing m entities into n3 positions to satisfy certain
readability constrains, where m<= n3.

The computationally intensive nature of 3D layouts
has already been shown in existing layout algorithms in
other application domains [3]. The complexity of
evaluating a 3D layout is O (n3!). A brute force search is
not feasible, because of the size of the search space [13].
One solution to the search problem is to apply a heuristic
search. In what follows we apply the hill-climbing
algorithm to improve the grid layout algorithm.

4.3. The Hill-climbing Search as a 3D Layout
Problem

Initially, a search tree has to be created that starts
from a root state and moves on to its children. In the case
of a root state, the algorithm randomly places m entities
within the given n3 space. The algorithm swaps some of
the entity positions and creates new states for the
children. The number of children corresponds to the
“branch factor”, which directly influences the complexity
of searching algorithm. We calculate the branch factor
for certain operators (Table 2).

Operator n entities into n
positions

Branch
factor

Switching two entities (n-1)*n/2 351
Switching three entities (n-1)*…*(n-4) 15,600
Switching four entities (n-1)*…*(n-5) 3.6e+5
Switching five entities (n-1)*…*(n-6) 7.9e+6

Table 2. The branch factors of searching trees for
placing 27 entities into 27 positions

The hill-climbing algorithm is a state searching
algorithm, with the goal to minimize the memory
requirements to perform the search. A detailed analysis
of existing searching algorithms that are studied
extensively in the field of Artificial Intelligence can be
found in [13]. The limitation of the hill climbing
algorithm is that it can only find a local peak. In our
research, we try to overcome this limitation by modifying
the hill-climbing algorithm. In our extended version
called as the competition hill-climber, we modify the hill-
climbing algorithm by using a more expensive
comparison to break away from the local peak and jump
to another hill which has a higher peak than the current
hill.

Thread Projection

crossings
Line

object
cross

Lines
length

Objective
Function

value

Compute
time
(sec)

0 22 0 125 279 1284
1 10 1 130 221 1134
2 24 1 149 338 953
3 33 0 126 357 1161
4 20 0 126 266 1230
5 17 1 123 263 1353
6 18 0 124 250 1348
7 12 0 114 198 1325
8 16 0 129 241 968
9 11 1 115 213 1329

Table 3. Results of competition hill-climber (Test
condition: P4 2.8GHz, 1 GB RAM)

Moreover, we apply a random positioning of the
entities into the grid and use these as random starting
states. These random starting states will then lead to
different peaks. In our implementation, we use ten
threads to evaluate ten different starting states using one
of the above strategies. Finally, we compare the ten
computed peaks and choose the peak with the best result.
In our example (see Table 3), thread number 7 has the
best estimation value.

5. Grouping
“Program analysis is a crucial part of many program

understanding tools” [1]. Grouping can be described as a
process of program analysis prior to the layout
management. The layout algorithms are constrained by
the amount of information to be displayed and the limited

screen space. Even, if one manages to create a layout, the
resulting visual might have far too much information,
causing an information overload. Therefore, limiting the
number of entities to be displayed to the user is one of the
key challenges in software visualization. For the
visualization of large software systems, it is essential to
provide some type of grouping to create a decomposition
of the system. It has been shown that grouping can
improve readability [11], by supporting a representation
that is closely related to the mental model a programmer
forms of a system [14] during typical comprehension
tasks. Grouping or clustering can be applied to generate
suitable abstraction levels and therefore allow for a
reduction of the amount of information to be displayed on
the screen. In this paper, we present two methods of
grouping: metric-based grouping and feature-based
grouping.

Metric-based grouping.
For metric-based grouping an internal relation table is

created that analyzed the coupling among different
classes. The number of function calls defines the weight
of relationships among the different entities (coupling).
In a first step, we identify entities that are strongly
coupled with each other and group them closely together.
During the second processing step, we identify a
threshold that corresponds to the maximum number of
entities displayed on the screen. Based on the coupling
relationships and the maximum threshold, objects are
placed on the screen. For example, the threshold for
Figure 4 is four. After the first grouping iteration, ten
groups are identified. Each of these groups can be treated
as a separate entity, for which the process can be re-
applied recursively to create the next higher level of
abstraction.

Figure 4. Metric-based grouping

Feature-based grouping
There exist several techniques for identifying features

in software systems, e.g. (program slicing [12], concept
analysis [7], etc.). For some applications, such as testing
and debugging, programmers might be interested in
focusing on particular features instead of the whole
software system. Therefore, grouping software entities
based on their features can help programmers to focus on
related software parts and therefore reduces the cognitive
and comprehension load.

Figure 5. Feature-based grouping

Figure 5 shows an example of such a feature-based
grouping. A program might be represented, like in this
example as a hierarchical structure, with a feature
consisting of several sub features.

6. Applying MetaViz
In this section, we illustrate some applications of

MetaViz and its visualization techniques, layout
algorithms and grouping techniques. For illustration
purposes, we use the MetaViz implementation itself.
MetaViz consists of 64 classes with a total of
approximate 10,000 LOC. The examples will illustrate
how metaballs in combination with different source code
analysis techniques guide programmers during program
comprehension. The examples include: a hierarchical
representation, grouping based on coupling among
different software entities, the animation of the layout
algorithms and visualization of dynamic program aspects
using metaballs.

6.1. Hierarchical Structure of Software
Typically, any larger software system is organized as a

hierarchical structure and many software visualization
techniques are developed for visualizing these hierarchies
(e.g., tree structures such as cone-tree, cam-tree, and
information-cube)[4]. Within MetaViz, we visualize
these hierarchies by applying the metaball metaphor.

Figure 6. Hierarchical structure in SunONE (left); same

structure using MetaViz’s visualization

Figure 6 shows the MetaViz program structure in both
a textual representation as it can be found in most IDEs
(left) and a graphical representation using the metaball

approach (right). We additionally apply color coding to
indicate package dependencies and hierarchy
information.

6.2. Applying the Metaball Metaphor to
Visualize Coupling Measurements

Visualizing the internal relationships and call
dependencies of software systems is an essential part of
many software visualization tools. In this application
example, we apply coupling between object classes
(CBO) as the relationship measure among software
artifacts. The cylinders diameter connecting two
metaballs corresponds directly to the existing CBO
coupling among two entities. Furthermore, the cylinder
provides a visual feedback of the strength of the coupling.

Figure 7. Metaball visuals of MPC measurements

6.3. Layout Management Animation
The MetaViz tool not only implements an optimized

hill-climbing layout algorithm, but also has the option to
visualize the layout computation and optimization
process. The following two sample snapshots (Figure 8)
are from one of these layout optimization sessions,
providing users with instant visual feedback on the
progress of the current layout optimization. It also allows
the user to terminate the optimization process once layout
meets the visual expectations (quality).

Figure 8. The Layout optimization Process

6.4. Visualizing Dynamic Information

Currently most visualization tools are restricted in
their ability to support dynamic program information and

aspects. Within the MetaViz tool, an execution trace is
recorded for a specific program execution; allowing for a
stepwise re-execution that can be displayed as a sequence
of frames. Figure 9 shows four frames of such an
animated re-execution. The metaballs in the picture
represent executed classes, with the diameter of the
metaball corresponding to the number of executed
statements and the white ball indicating the current
execution position.

Figure 9. Dynamic visualization

7. Software visualization beyond the third

dimension
In this article we presented our MetaViz tool, in

which we address the following visualization issues: We
introduced the metaball metaphor as a basic notation for
our software visualizations, a grid based 3D layout and
grouping techniques. One of the initial motivations for
the MetaViz project was to explore novel software
visualization techniques in 3D space. One of the
immediate results of our prototype implementation was
that 3D visualization techniques can enhance and benefit
the comprehension process by enhanced utilization of
screen space and additional visualization effects
(shading, transparency, fusion, etc.). Source code
analysis can provide additional insights and guidance in
filtering and visualizing the information. Our grid layout
technique improves the readability of 3D visuals on
screen. Specifically, the ability to dynamically observe
the behavior of the layout algorithm as it progresses helps
the user to be an active participant in this visual
generation process. Grouping based on object coupling
and slicing based features were demonstrated, to avoid

information overloading. However, several main
challenges remain that go beyond just moving to 3D
space or applying some layout or clustering techniques.

Remaining key challenges are the re-creation of a
mental model that closely corresponds to the mental
model designers/programmers developed during the
originally forward engineering process. No matter what
layout, clustering or grouping algorithm one applies to
identification and analysis of logical relationships among
different software entities, they always will be limited by
the quality of the algorithm and the lack of domain
knowledge modeling. Overcoming these limitations
requires additional information sources (other than
source code) and domain knowledge has to be
incorporated in existing layout, grouping and clustering
algorithms.

With more and more applications moving into
distributed and network centered environments; software
visualization, analysis techniques, as well as grouping
and layout approaches have to keep up with these
changing requirements. Visualizing dynamic and
behavioral aspects has additional challenges in the form
of filtering large amount of information, the creation of
meaningful abstractions and

8. References

[1] A. van Deursen and J. Visser. Building Program
Understanding Tools Using Visitor Combinators. In
Proceedings 10th International Workshop on
Program Comprehension (IWPC'02), pages 137-
146, IEEE Computer Society, 2002.

[2] Cockburn, A. & McKenzie, B., “An evaluation of
cone trees,” In People and Computers XV.
Proceedings of the 2000 British Computer Society
Conference on Human-Computer Interaction,
University of Sunderland, 4--8 September, 2000.

[3] Fabien Jourdan, Guy Melançon A scalable force-
directed method for the visualization of large
graphs Workshop on info visualization. LIRMM,
Monptellier. January 2002

[4] Ivan Herman, Guy Melancon, and M. Scoot
Marshall, “Graph Visualization and Navigation in
Information Visualization: a Survey”, IEEE
Transactions on Visualization and Computer
Graphics, Vol6 No 3, 2000 Computer Science,
1995.

[5] Knight, C. and Munro, M. “Software Visualization
conundrum”, Department of Computer Science
Technical Report 05/01, July 2001.

[6] Knight, C., and Munro, M. “The Power of
(Software) Visualization”, Department of Computer
Science Technical Report 01/00, January 2000.

[7] Koschke, R., `An Semi-Automatic Method for
Component Recovery', Proceedings of the Sixth
Working Conference on Reverse Engineering,
pp.256-267, Atlanta, October 1999.

[8] M. A. Storey, and H. A. Muller. “Graph layout
adjustment strategies”. In Graph Drawing '95,
pages 487--499, 1995

[9] Maletic, J.I., Marcus, A., Collard, M. "A Task
Oriented View of Software Visualization", in
Proceedings of the the IEEE Workshop on
Visualizing Software for Understanding and
Analysis (VISSOFT 2002), Paris, France, June 26,
2002, pp. 32-40

[10] R. Tamassia. New layout techniques for entity-
relationship diagrams. In Proc. 4th Int. Conf. on
Entity-Relationship Approach, pages 304--311,
1985

[11] S. Mancorids. B. S. Mitchell, Y. Chen, E. R.
Gansner “Bunch: A clustering tool for the recovery
and maintenance of software structures” In Proc;
IEEE Inter. Conference on Software Maintenance,
IEEE Computer Society Press, 1999, pp 50-59.

[12] J. Rilling, and S. P..”The Metaball Metaphor for
Slicing Based Software Visualization”, 2003.

[13] S. Russell and P. Norvig, “Artificial Intelligence A
modern approach”, Prentice Hall, 1995.

[14] V. Tzerpos, R.C Holt. “ACDC: An algorithm for
comprehension-driven clustering”, Int. Working
Conference on Reverse Engineering, 2001

[15] William E. Lorensen and Harvey E. Cline,
Marching Cubes: A High Resolution 3D Surface
Construction Algorithm", Computer Graphics
(Proceedings of SIGGRAPH '87), Vol. 21, No. 4,
pp. 163-169

KScope: A Modularized Tool for 3D Visualization of Object-Oriented Programs

Timothy A. Davis Kenneth Pestka Alan Kaplan
Department of Computer Science Department of Computer Science Panasonic Technologies

Clemson University Clemson University Princeton, NJ
tadavis@cs.clemson.edu kapestk@clemson.edu kaplana@research.panasonic.com

Abstract
Visualization of software systems is a widely used tech-
nique in software engineering. This paper proposes a 3D
user-navigable software visualization system, termed
KScope, that is comprised of a modular, component-
based architecture. The flexibility of this construction al-
lows for a variety of component configurations to vali-
date experimental software visualization techniques. The
first iteration of KScope is described and evaluated.

1. Introduction

Software visualization has become an important means
by which software engineers can study and understand
complex software systems at any stage during the soft-
ware lifecycle – from initial development to legacy code
maintenance. Currently, a popular 2-dimensional (2D)
approach to software visualization is represented by the
Unified Modeling Language (UML). The application of
3D visualization systems to software engineering is chal-
lenging, as in 2D representations, since the software com-
ponents are abstractions that have no immediately
recognizable shape or substance and choices must be
made as to the physical object used to represent each
software component.

While both 2D and 3D representations can take advan-
tage of shape recognition, symbol set knowledge, and the
color awareness abilities of viewers, 3D systems add
depth, motion, distance, transparency, animation and spa-
tial orientation as data transmission tools. These addi-
tional attributes allow a larger set of data values to be
incorporated into a single view. Accordingly, a large
amount of information can be communicated more
quickly and with a higher assimilation rate [10]. The
ability to navigate a 3D visualization space further allows
a software engineer to transition from one view to another
in a seamless manner.

As a means of testing various possible aspects of a 3D
visualization system, a modularized tool, termed KScope,

has been designed and a prototype implementation has
been developed. The advantage of a component-based
system is that it facilitates the creation of experiments in
which some components are fixed, while others are al-
tered or replaced in order to compare the efficiencies of
various configurations. For instance, parsers for various
languages might supply the definition of scene objects
while the rest of the components are held fixed in one
configuration, and thus allow a realistic evaluation of the
degrees of variation in the output based on the language
input.

The development of the KScope visualization system
is planned as an iterative process. The first iteration de-
fines the following five dimensions as specified in [8] :
� task – provide an analysis of java programs
� audience – researchers in the implementation of

visualization systems
� target – Java class files as the data source
� representation – primitive visual objects in the

analysis
� medium – a navigable 3D visualization with a sys-

tem architecture that allows for the easy substitution
of alternate components.

Subsequent iterations will expand the definition of these
dimensions.

Several key issues arise when formulating a software
visualization system: finding a suitable symbol set for
representing abstract program concepts, placing these ob-
jects in 3D space to enhance understanding and minimize
confusion, ensuring the system scales across systems of
varying size, and finally, selecting some form of criteria
for evaluating the effectiveness of the visualization.

2. Related Work

Research in the area of 3D visualization over the last
few decades has covered many areas. Several studies [4]
[10] validate that visualization of software systems in-
creases the ability to acquire knowledge of a software sys-

tem, and that 3D visualizations are more effective than
2D ones in transmitting information to a software engi-
neer. The exploration of visualizing C++ programs as a
means of increasing program comprehension is illustrated
by [4]. This work explores the basic visual symbol set of
objects and relationships in a 2D system and justifies
visualization as an important learning tool in understand-
ing software.

A 3D representation increases the software engineer’s
information perception over that of a 2D representation
[10]. Additionally, combining motion (e.g., rotation of
the scene) and a 3D stereo view (e.g., through navigation)
is a useful visualization technique to aid in understanding
the structure of object-oriented code. In many instances,
3D visualization overcomes the limitations of 2D visuali-
zations and in minimizing user confusion and increasing
data comprehension [7].

The use of 3D visualization may be especially useful in
understanding class structure of Java programs, as evi-
denced by the J3Browser tool [1]. Here, transparency,
depth, ordering in space, and motion are used to convey a
large amount of information in a highly effective manner.
Of course, object placement and structure of the visual
scene are significant in the overall success of the system.

Symbol sets and object metaphors are also significant
in creating effective software visualizations. One symbol
set, the “Software World” metaphor [5], uses a cityscape
based on classes represented as districts within a city,
with each district composed of buildings that represent
class methods. This type of symbol set can be effective,
but in all cases, the symbol set should reduce the com-
plexity of the concept being visualized [6].

More recent customized symbol sets, such as the static
shaded 3D symbols in [3], are also effective in user un-
derstanding as compared to the standard UML class dia-
gram symbols. The symbols in this set are constructed
using a basic symbol alphabet known as geons [2] and
outperform the UML set in all the illustrated experiments.

In evaluating the effectiveness of 3D visualization sys-
tems, two distinct elements should be considered: repre-
sentation of objects and the mode of visualization [11].
The first element involves the representation of abstract
concepts as physical entities, and covers the symbol set

used in the visualization. The second set of criteria deal
with the visualization itself. These criteria will be used in
assessing the effectiveness of KScope.

3. Implementation

3.1 Architecture

The implementation of the KScope tool is based on the
following of components (see Figure 1):
� KScope Visualization System – acts as the main

driver and calls the other modules in the order
shown along the arrow connectors

� Program Parser Module – extracts meaningful in-
formation about the structure of the program under
inspection

� Spatial Coordinate Module – determines the loca-
tion in 3D space of each of the scene objects

� Display Module – maintains the interactive 3D envi-
ronment on a chosen visual system

Java, a reflective language, was chosen as the language
to be analyzed by this first iteration of the KScope visu-
alization tool. The extensive Java Byte Code Engineering
Library (BCEL) [??] is freely available and allows for
easy implementation of the parsing stage. The initial
symbol set is made up of simple primitive objects includ-
ing cubes, pyramids, and lines that can be rendered
quickly in the display component. KScope uses the
Java3D graphics library because of its cross-platform ca-
pabilities and the ease of configuring across various dis-
play devices.

Our sample test case is based on classes and interfaces
coded in such a way as to illustrate five UML relationship
types represented within the main class, and within the
classes and interfaces used by the main class. Classes are
named to show their relationships with the class under
analysis. For example, the parent class of Child_Main_1
class is named “Parent.” The types of relationships illus-
trated include: inheritance, association, dependency,
composition, and implementation. Inheritance in Java is
based on extending the functionality of a parent class,
while implementation is based on an implementing class
defining the methods of the interfaces. There is an
association relation between classes when a reference to a
class object existing outside the class under analysis is
passed as an argument to a class constructor. A depend-
ency exists where a class object is an argument to a
method of the class under analysis. A composition rela-
tion exists when a class object is created within the class
under analysis and has a lifetime less than or equal to the
lifetime of the class (e.g., a class object as an attribute of
a class).

Figure 1: KScope architecture

Figure 2 shows our test case as analyzed by the 2D
visualization system, Together Version 6.0 [9]. The en-
tire static class representation uses standard UML nota-
tion to represent the various relations.

Figure 3 shows the same example test case as analyzed
by KScope. In KScope, coloring is used as a significant
element in defining symbols. A multicolored cube repre-
sents the main class (i.e., the class containing the main
method) under analysis. The cube shape is used to indi-
cate a class, while a pyramid indicates an interface. The
dark blue shaded cubes represent what are called termina-
tor classes, which are those classes defined outside the di-
rectory of the class under analysis, including the standard
Java library classes and other predefined libraries. Ter-
minators are primarily used to limit the extent of the
analysis. The light purple pyramids represent interfaces,
while the light green pyramid represents a terminator in-
terface. The color of the connecting line indicates the re-
lationship of the connected objects: association is red,
dependency is blue, composition is magenta, implementa-
tion is black, class inheritance is green, and interface in-
heritance is yellow.

Two forms of text-based information are available to
the user: class and interface names, and additional infor-
mation displayed by selection with the left mouse button.
For classes and interfaces in the current directory, a
BCEL-derived analysis appears; in the case of termina-
tors, the appropriate JavDoc appears.

3.2 Object Placement

Within KScope spatial orientation is used to indicate
the direction of relationships. Class inheritance proceeds
upwards, as indicated by the green vertical lines connect-
ing classes. An interface is placed on the horizontal plane
of the class that implements it, while interface inheritance,
like the class method, is indicated vertically. The compo-
sition, dependency and association relations are placed
below the main class with appropriately colored connect-
ing lines. Terminators are place above the main class.

The placement of each type of object is determined by
separate placement algorithms. The main class is always
placed at the origin of the display universe (0, 0, 0).
Classes that are part of an inheritance hierarchy are
placed above their respective child class (i.e., parent
classes are always higher than their children). Related
classes are set in place based on conical calculation; that
is, a count of the related classes is used to divide a circle
into equal arcs with classes placed at the end point of
each arc. The entire circle is displaced on the negative Y
axis based on the generation of the parent class. The ra-
dius of a placement circle is based on the number of ob-
jects in the set and the number of generations below the

main class. The terminator classes are placed in a similar
manner with displacement on the Y-axis in a positive di-
rection. Interfaces are offset in the positive X direction
with inheritance in a vertical displacement.

3.3 User Navigation

User navigation is performed via the keyboard (see
Table 1).

4. Results

Figure 3 shows the initial view of the test case under
analysis. The user can select (through a drop-down
menu) three other views: related classes, interfaces and
their related classes, and terminators, as shown in Figures
4, 5 and 6, respectively. In all of the views, the entire
software representation initially rotates at a constant rate.

Table 1 Keyboard navigation

Key Action
� move viewpoint left
� move viewpoint right
�
 move viewer toward objects

�
 move viewer away from objects

page up move visual objects up (viewpoint down)
page down move visual objects down (viewpoint up)
= return to start view

Figure 2: Together 6.0 class analysis

The user has the option to start or stop the rotation as de-
sired. Note that Figures 2 and 3 analyze the same system.

In each view an object can be inspected by left clicking
on it. This brings up a pop-up window (see Figure 7)
with a textual description of the class or interface, as ex-
plained in Section 3.1. Various details of the class are
listed within this text area. Additional items can also be
included; the items shown were selected for brevity.

A complex system can create a complex visualization,
as shown in Figure 8 (KScope’s self analysis); therefore,
the system includes a user choice of level of detail. The
user can right click on a class to change the view to one
that contains the class and terminators related to that class
(see Figure 9).

4.1 Evaluation

The evaluation of KScope is based on the criteria dis-
cussed in Section 2 [11]. First, the abstract representation
contained in the system is considered:
� individuality – color is used to express the individu-

ality of the types of objects
� distinctive appearance – classes are distinguished

from interfaces by 3D shape

� high information content – colors, shape and text are
used to present data to the user

� low visual complexity – primitive shapes, such as
the cube and pyramid, keep visual complexity low

� scalability of visual complexity and information
content - KScope performs well for small to medium
sized programs, but the scalability to large programs
has yet to be demonstrated

� flexibility for integration into visualizations - the
flexibility of the overall system is reduced when
color is applied as a distinguishing characteristic to
the object symbols (i.e., color is no longer available
as a characteristic of some other aspect of the analy-
sis); however, such tradeoffs are often necessary

� suitability for automation - selection of simple
primitives require low processor time to display

When considering the visualization criteria as pertain-
ing to KScope the following is noted:
� simple navigation with minimum disorientation –

the small number of keyboard and mouse commands
makes KScope's user interface extremely simple

� high information content – large amounts of infor-
mation is presented in each view

� well-structured with low visual complexity – ar-

Figure 3: KScope: all views

rangement of the objects in hierarchical cone-like
formations represents a structuring of the visualiza-
tion; however, the arrangement of objects with a
multitude of connector lines does lead to a complex
visualization; rotation of the scene, as well as select-
able views for reduced object sets and relationships,
gives the viewer an enhanced understanding of the
virtual space and increases the ability to compre-

hend the relationships of the objects
� varying levels of detail - the user’s ability to select a

class and view the related terminals is a direct appli-
cation of this criterion

� resilience to change – as the views are changed, re-
lationships of objects is maintained in either a sub-
tractive or additive selection of views

� good use of visual metaphors – no attempt was
made to find visual metaphors

� approachable user interface – the limited controls
and simple selection process of the user interface
satisfy this criterion

� integration with other information sources – the text-
based representation of the object integrates the 3D
view with another source of information

� good use of interaction – user interaction with the
objects is shown through the ability to navigate the
visual space and to select alternate sources of
information

� suitable for automation – the system is fully auto-
mated in the generation of the visualization.

5. Conclusion and Future Work

Future work will focus on additional spatial coordinate
selection algorithms, symbol sets, and language parsers.
Further additions to the symbol library could be achieved
by extending the “geon” symbol alphabet [3] into a vir-
tual environment and thus, greatly expand the number of
geon-defined objects and the variety and number of rela-
tionships expressed in a single view.

Figure 4: KScope: “ Relationships” view

Figure 5: KScope: “ Interfaces” view

Figure 6: KScope: “ Terminators” view

Figure 7: Class pop-up

The modular structure of KScope lends itself to vari-
ous extensions. Improvements to the system would in-
volve additions to the current number of alternative
modules. By increasing the variety of components, such
as additional selections of the type of spatial coordinate
placement algorithms, and additional symbol sets for the
symbol library module, the tool will be made the basis for
a series of experiments as to the quality of information
presented to the user and the user's ability to comprehend
the information.

Overall KScope presents the visualization of software
in an interesting and visually stimulating manner. The
colors, spatial placement, alternate views, multiple meth-
ods of presenting data, and viewer interaction create an
effective educational environment for the user. Increas-
ing the functionality of the system and experimenting with
different configurations will build on the strengths illus-
trated by KScope.

6. References

[1] K. Alfert and F. Engelen, “Experiences in 3-Dimensional

Visualization of Java Class Relations,” Transactions of

the SDPS, September 2001, Vol.5, No. 3, pp 91-106.
[2] I. Biederman, “Recognition-by-Components: A Theory of

Human Image Understanding,” Psychological Review,
Vol. 94, No. 2, 1987, pp 115-147.

[3] P.Irani, C.Ware and M.Tingley, “Using Perceptual Syntax
to Enhance Semantic Contents in Diagrams,” IEEE Com-
puter Graphics and Applications, (in Press)

[4] D. F. Jerding and J. T. Stasko,”Using Visualization to
Foster Object-Oriented Program Understanding,” Techni-
cal Report GIT-GVU-94-33, July 1994.

[5] C. Knight and M. Munroe, “Virtual but Visible Soft-
ware,” Visualization Research Group, Centre for Soft-
ware Maintenance, Department of Computer Science,
University of Durham, Durham, DH1 3LE, UK. 1998.

[6] C. Knight and M. Munroe, “Comprehension with[in] Vir-
tual Environment Visualization,” Visualization Research
Group, Centre for Software Maintenance, Department of
Computer Science, University of Durham, Durham, DH1
3LE, UK. 1999.

[7] H. Koike, “The Role of Another Spatial Dimension in
Software Visualization,” ACM Transactions of Informa-
tion Systems, Vol. II, No. 3, July 1993 pp 266-286.

[8] J. I. Malectic, A. Marcus and M. Collare, “A Task Ori-
ented View of Software Visualization,” VISSOFT 2002,
June 26, 2002.

[9] http://www.borland.com/together/index.html, 2003.
[10] C. Ware, D. Hui and G. Franck, “Visualizing Object Ori-

ented Software in Three Dimensions,” CASCON 93 Con-
ference Proceedings, Toronto, Ontario, Canada, October,
1993, pp 612—620.

[11] P. Young and M. Munroe, “Visualizing Software in Vir-
tual Reality,” 6th International Workshop on Program
Comprehension: IWPC'98.

Figure 8: KScope analyzes KScope

Figure 9: Level of detail

Self-Organizing Maps Applied in Visualising Large Software Collections

James Brittle and Cornelia Boldyreff
Department Of Computer Science

University Of Durham
{j.g.brittle,cornelia.boldyreff}@durham.ac.uk

Abstract

The self-organizing map’s unsupervised clustering
method can be used as a data visualisation technique.
Within this paper different techniques to visualise self-
organizing maps (SOM) and their effectiveness are inves-
tigated in relation to the organisation of a large software
collection and its visualisation.

GENISOM, an offspring component of the GENESIS
software engineering platform, incorporates the genera-
tion, maintenance and viewing of Self-Organizing Maps.

The results from our studies indicate that a hybrid of 2D
and 3D visualisations is favoured by users. Extensive us-
ability tests also show that the majority of users found that
the additional information a SOM provides, aids browsing
and searching of a software collection. Further work is
addressing the problems found in the application of SOM
within a software engineering environment.

Key Words: Self Organizing Maps, GENISOM, software
visualisation

1 Introduction

Interactive exploration of a large software collection or
large software systems, where the user looks at individual
artefacts one at a time would be greatly aided by ordering
them according to their contents.

There exist many possibilities to achieve this organisa-
tion, e.g. as a graph or a hierarchical structure. A common
organisation is one in which the artefacts are represented
by points on a 2D plane and the geometric relations be-
tween them relate to their similarity. Such representations
are often called document maps. These organised collec-
tions of data facilitate a new dimension in information re-
trieval namely the possibility to locate pieces of relevant or
similar information that the user was not explicitly looking
for.

Document maps can be constructed through a number of
methods including the data visualisation technique, the Self
Organizing Map (SOM), invented by Prof. Teuvo Kohonen
in the early 1980s [7]. SOMs are an unsupervised, cluster-
ing algorithm, which use neural networks. They have been
demonstrated to aid programmers in the process of reverse
engineering by discovering common features within legacy
code [2] and to assist in object recovery[1], although visu-
alisation of the associated maps is not explicitly considered
in reports of this research.

A prominent problem within the field of Software Engi-
neering concerns reuse. Reusable assets are in abundance,
over the web and in libraries but it is extremely difficult
to locate reusable software artefacts that are relevant to a
particular application. The necessary organisation is often
lacking and difficult to achieve given the dynamic nature of
such software collections. This problem can also be found
where a large evolving software system consists of an ever
growing number of components and the managment and
hence the comprehension of the associated software arte-
facts tends to be increasingly difficult.

Having suitable visualisations of such software collec-
tions can mitigate the problem identified above. The appli-
cation of information visualisation builds upon the strenghts
of humans and computers as

“by properly taking advantage of peoples’ abili-
ties to deal with visual presentations, we may rev-
olutionise the way we understand large amounts
of data” [5]

Within this paper the use of Self Organising Maps as
a means of visually presenting large software collections
is demonstrated. Section 2 describes the implementation
of GENISOM. Section 3 details the different visualisations
the software can produce. Section 4 presents the results of
the evaluation of the tool and subsequent adaption of maps.
Section 5 identifies further work.

2 GENISOM

GENISOM is a client/server application designed to
manage and enable viewing of SOMs. Figure 1 illustrates a
simplified architecture diagram for the GENISOM system.

TCP/IP

SERVER SIDE CLIENT SIDE

MySQL SERVER

SOM DB

WEB SERVER

GENISOM CLIENT

User Interface

SOM Trainer

SOM Viewer

WORKSTATION

GENISOM ADMINISTRATOR

SOM Viewer

User Interface

WEB BROWSER

WORKSTATION

GENISOM CLIENT

Figure 1. GENISOM architecture

The GENISOM Administrator is used to manage SOMs;
it enables their creation and maintenance. The generated
SOMs are then stored within a MySQL database, from
which the GENISOM Client can then retrieve the data and
display the generated maps. The Client is web based us-
ing Java Web Start1 to aid its accessibility to users. The
architecture of the system enables distributed software en-
gineering teams to work together (see Figure 2).

Input data to create a SOM can be descriptions of any
content as long as it is stored within a database table. For
example each record could be a description of a reusable
artefact or of a software component within a large software
sytem such as a method in a class.

There are two main use case scenarios for the system;
firstly the Administrator could be used by the librarian of a
reuse library and the Client by the system developers (see
Figure 3), therefore aiding them in the location of reuse can-
didates. Secondly both tools could be used by members of a
software development team to aid program comprehension,
or help in decisions regarding restructuring and reengineer-
ing of the system.

3 Visualisations of Maps

The GUI for the SOM evolved through a number of
stages, due to the interactive design approach adopted.

1http://www.java.sun.com/products/javawebstart/

Figure 2. Possible geographic layout of GENI-
SOM system

Figure 3. Reuse infrastructure with GENISOM
system in place

Earlier designs drew inspiration from and were similar to
WEBSOM [8], a web based example of the use of SOMs
for organisation of document collections. Feedback through
quick and dirty evaluations [12] was critical of the initial
colour scheme used. This resulted in the final 2D map as il-
lustrated in Figure 4. The improved colour scheme is based
upon the use of the primary colours, essentially to help dis-
tinguish different elements of the map more clearly than the
heatmap approach applied in WEBSOM.

Figure 4. Screenshot of 2D Map

The neural net is arranged as a grid with the inputs (e.g.
reusable artefacts) being attached to the neurons. The black
dots on grid cells (i.e. neurons) indicate that inputs have
been matched to them, with the size of the dot representing
the number of them. The green shading of the grid cells
indicates the boundaries of similar clusters of neurons.

The map is interactive allowing the user to select a par-
ticular neuron (the blue cursor indicating the selection), this
displays the neuron’s labels, five or less words that best de-
scribe the inputs matched to it (see Figure 5). This labelling
approach, taken from LabelSOM [13], is a commonly used
method within SOM software. As well as displaying the la-
bels for a selected neuron, details of the inputs matched to
it are also displayed in a side bar though this is not depicted
in the figures.

Figure 5. Closeup screenshot of 2D Map

Browsing is aided by a search system coupled to the map
which highlights the results in red for a certain search string.

Using 2D limits the amount of information that can be
visualised. Improvements to the GENISOM GUI therefore
naturally led on to the development of a 3D map using the
Cityscapes technique which has already found application
in software visualisation [6]. Using this technique in GENI-
SOM each value is plotted as a column (or ’building’). The
’buildings’ are plotted on the same horizontal plane, allow-
ing differences in height and position to be analysed. In re-
lation to a SOM, each building represents a neuron and the
height of the building relates to the number of inputs that are
matched to it. The implementation of this used Java3D2 and
in the final system the option was made available to switch
between using 2D and 3D interfaces.

Figure 6 illustrates the 3D map; the user’s view can be
rotated and zoomed in and out. Furthermore, the user can
also interact with the 3D map in the same manner as the 2D
map following the same colour scheme (see Figure 7).

Figure 6. Screenshot of 3D Map

4 Evaluation and Results

A series of different evaluations were carried out to as-
sess the success of the GENISOM software. As test input
data, a selection of 300 Debian Packages were gathered
from the Debian Project. This is an open source develop-
ment of a free OS, Debian GNU/Linux. New contributors to
the project as well as users interested in studying the Debian
project could be the potential beneficiaries of these maps. In
the evaluations all participants were from the Department of
Computer Science at the University of Durham.

2http://java.sun.com/products/java-media/3D/

Figure 7. Screenshot of 3D Map

4.1 Administrator

The Administrator was assessed for usability as it is a
critical area of the software, in that the user should be able
to generate maps proficiently. Results from a heuristic eval-
uation showed that the technical terminology used within
the software and also the task of assessing the ’goodness’
of the SOM produced could be problematic. The former
was found to be the case after carrying out usability test-
ing and questionaires. The anticipated problem of assessing
the ’goodness’ of a map did not actually occurr in practice
during the evaluations.

Overall the Administrator has a steep learning curve,
which is to be expected with such a technical piece of soft-
ware. However it is predicted that once the terminology (i.e.
language) barrier has been overcome, operation of the sys-
tem can be quickly mastered with training. Trials carried
out with software engineering researchers proved this to be
the case.

4.2 Client - 2D versus 3D

Secondly the Client was evaluated, in two distinct trials.
The first of these involved a comparison between the two
types of interface with respect to usability and efficiency. A
population of 10 computer scientists carried out a series of
usability exercises, which involved searching for informa-
tion held within the map.

Statistical results from these evaluations indicated that
the 2D interface was superior to the 3D. The 2D was more
efficient with respect to the time required to complete the
tasks and more effective due to the observed signs of frus-
tration shown by the users. All participants considered that
the Cityscape technique did inform them far better on the
spread of the population (i.e. the heights of the buildings
were more intuitive indicators of the population density than
the different sizes of black dots), however this feature was
not considered a necessity. Overall an overwhelming ma-
jority, 90%, preferred to use the 2D interface.

Reasons for their opinions mostly arose from the dif-
ficulty in selecting a ’building’ (i.e. a neuron) in the
Cityscape, as certain buildings could obscure others mean-
ing that the view of the scene would have to be changed to
enable selection of the obscured buildings. Other comments
noted the poor navigation through the 3D scene, which is a
common problem with such applications. It is difficult to
control the 3D space with interaction techniques that are
currently in common use since they were designed for 2D
manipulation (e.g. dragging and scrolling) [11].

Overall conclusions drawn from the evaluation were that
the combination of the two maps actually complemented
each other. The 2D map was quick and simple to use;
however, the 3D map did add functionality to the browsing

which concurs with the findings of Koua and Kraak [9].

4.3 Client - Major Evaluation

In the second part of the evaluation of the Client, a key
question sought to determine whether using SOMs was an
improvement against other methods. This led to the cre-
ation of the GENISOM Testbed, an application that could
be downloaded by participants and would essentially guide
them through an evaluation while automatically logging the
results.

The Testbed consisted of two searching tasks using the
2D map and as a comparison two tasks using a standard
search system, similar to the functionality of the Google
web search engine. It also included a questionnaire to
record the users’ experiences.

114 participants took part in the evaluation, on the basis
of the statistical results the 2D map proved to be less effec-
tive, as it took users longer to complete set tasks with the
2D map. User opinions on the effectiveness of the new sys-
tem were mixed though; over 30% thought that it was more
effective and only 52% stated it was less effective. Overall,
however, the evaluation statistically regarding the times to
complete tasks was seen to be flawed due to the difference
in learning curves of the two systems. The 2D map provides
a fairly complex interface and therefore has a steep learning
curve, while users will already have obtained most knowl-
edge of how to operate the standard search system due to
prior experience with web search engines.

Predictions regarding future fair usability tests are
promising for the SOM as users were found to vastly re-
duce their times for the second task using the map even
though the second task was considerably more difficult.
Also participants’ views on whether the additional infor-
mation the SOM provided, aided searching and browsing
showed that over 68% thought this to be true, which con-
curs with Merkl’s findings:

“such a library system has its benefits when develop-
ers look for a particular component during the develop-
ment process of a software system. Additionally the self-
organizing map can be used easily for interactive explo-
ration of the software library - a feature that is of vital im-
portance in software reuse”[10]

Although Merkl’s paper is very positive towards the ap-
plication of Self-Organizing Maps to reuse libraries, its re-
sults were subjective. The asset population was small in
comparison to what would be found in a normal reuse li-
brary and there was no formal evaluation of the prototype
system developed.

4.4 SOM Algorithm

Evaluation of the algorithm behind the Administrator
consisted of creating a number of different maps with vary-
ing input size, 25 to 13000 Debian Packages. The very na-
ture of the standard SOM algorithm is that a number of trial
maps need to be created to achieve the best map:

“an appreciable number (say, several dozens) of random
initialisations...and different learning sequences ought to be
tried, and the map with the minimum quantization error
selected.”[7]

The results from the evaluation back up this theory, how-
ever, they present a possible problem for the use of SOMs
in this application. Generating maps is a time consuming
activity due to the memory latencies of self-organizing neu-
ral networks. Coupled with the factor that many maps will
need to be trialled the feasabilty of using the standard SOM
algorithm in a software engineering environment is fairly
low, unless the software collection is stable and justifies the
initial investment in the map production. Further work into
researching more advanced algorithms is therefore a main
priority of our work.

4.5 Outstanding Problem

Feedback highlighted one major criticism of both the
GENISOM 2D and 3D map interfaces. The criticism was
that initially the view of the maps was ’uninformative’ as
information, i.e. grid cell label, was only displayed once
the cell had been selected. Therefore the user must sys-
tematically select cells to build up a mental model of the
map’s contents. However, displaying all the labels at the
same time led to a cluttered map therefore it was decided
let the user have control over which label was displayed. A
better mechanism for providing the user with an overview
of the map’s contents other than exposing the textual labels
over the whole map is being sought. Currently structuring
the SOM hierarchically is being investigated.

5 Conclusions and Further Developments

The evaluation of GENISOM highlighted many differ-
ent areas of improvement. Firstly regarding the SOM algo-
rithm, a hybrid algorithm the Growing Hierarchical Self-
Organizing Map (GHSOM)[3] is proposed as a replace-
ment. This has a number of benefits: the training process
is virtually automated minimizing the number of parame-
ters and in theory allowing the best map to be generated on
the first attempt. This also has the advantage of simplify-
ing the generation of the maps, which was found to be a
troublesome area within the Administrator.

The GHSOM also enables a hierarchical structure of
SOM to be built up, firstly this would aid visualisation of

the information in respect to the SOM’s organisation and
the earlier stated problem regarding labelling of the map.
Secondly if actual source code was used as input data then
it would facilitate object finding as demonstrated by Chan
and Spracklen [2].

Regarding the different visualisations of SOM, the pre-
sented results suggest a combination of the 2D and 3D
maps. Research into combining the two would be worthy
of further consideration. Investigating other 3D techniques
to visualise SOMs may lead to conclusions on whether the
technique of Virtual Data Mining is applicable in this appli-
cation.

The integration of the software to the GENESIS platform
[4] is also proposed, giving scope for real life trials of the
software and actual use by software engineering profession-
als. Investigations could also be carried out into the appli-
cability of the SOM not just to software components but to
a variety of reusable artefacts: test cases, designs and docu-
mentation. This would allow the possibility of further work
following the findings of Chan and Spracklen to investigate
in more detail the software analysis properties of the SOM.

References

[1] A. Chan and T. Spracken. Discovering common features in
software code using self-organizing maps. InProceedings
of the International Symposium on Computational Intelli-
gence, Kosice Slovakia, August 2000.

[2] A. Chan and T. Spracklen. Object recovery using hierar-
chical self-organizing maps. InProceedings of the Inter-
national Conference on Engineering Applications of Neural
Networks, Kingston Upon Thames UK, July 2000.

[3] M. Dittenbach, D. Merkl, and A. Rauber. The growing hi-
erarchical self-organizing map. InInternational Joint Con-
ference on Neural Networks, volume 24, Como, Italy, July
2000.

[4] M. Gaeta and P. Ritrovato. Generalised environment for pro-
cess management in cooperative software engineering. In
International Computer Software and Applications Confer-
ence, volume 26, pages 1049–1059, Oxford, England, Au-
gust 2002. IEEE.

[5] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Sta-
tistical themes and lessons for data mining. InData Min-
ing and Knowledge Discovery. Kluwer Academic Publish-
ers, 1997.

[6] C. Knight. Virtual Software In Reality. PhD thesis, Durham
University, 2000.

[7] T. Kohonen. Self-Organizing Maps. Information Sciences.
Springer, second edition, 1997.

[8] T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, J. Honkela,
V. Paatero, and A. Saarela. Self organization of a massive
document collection. InIEEE Transactions on Neural Net-
works, volume 11, pages 574–585, May 2000.

[9] E. Koua and M. Kraak. An evaluation of self-organizing
map spatial representation and visualization for geospatial

data: Perception and visual analysis. Technical report, In-
ternational Institute for Geo-Information Science and Earth
Observation (ITC), 2001.

[10] D. Merkl. Self-organizing maps and software reuse. InCom-
putational Intelligence in Software Engineering. World Sci-
entific, 1998.

[11] J. Nielsen. 2d is better than 3d. useit.com - Jakob Nielsen’s
Alertbox, 1998.

[12] J. Preece, Y. Rogers, and H. Sharp.Interactive Design: be-
yond human-computer interaction. John Wiley and Sons,
2002.

[13] A. Rauber. Labelsom : On the labeling of self-organizing
maps. InInternational Joint Conference on Neural Net-
works, 1999.

The end of the line for Software Visualisation?

Stuart M. Charters, Nigel Thomas and Malcolm Munro
Visualisation Research Group

Department of Computer Science
University of Durham,

South Road,
Durham,

DH1 3LE, UK
S.M.Charters@durham.ac.uk Nigel.Thomas@durham.ac.uk Malcolm.Munro@durham.ac.uk

Abstract

This position paper addresses the issue of how software
visualisation should develop in the future. A number of use-
ful visualisations have been developed by the software vi-
sualisation community but these have usually been through
standalone tools. Is it now time to consider if and how these
visualisation tools can be integrated into development envi-
ronments and be used as roundtrip visualisation tools. If
this is not addressed then software visualisation research
may have come to a useful end.

1 Introduction

Software visualisation is a relatively young research area
where great progress has been made in developing ideas,
representations and tools to aid program comprehension
during the maintenance and evolution of software. This de-
velopment is paralleled in the software development com-
munity where visual representations of systems have been
used to help in for example requirements capture and de-
sign [11] [7]. The representations and tools to aid program
comprehension take a variety forms from animations of al-
gorithms and data structures, through dynamic run-time in-
formation, to tools which present static view of software
structures linked to source code views [8] [9] [10] [3] [2]
[4]. Despite these advances it is time to question if the time
has come when no new advances are being made and all
advances are just variants on the old theme.

Software development is an evolutionary process, often
one of iterative refinement. Segments of code are written,
tested, refined and built upon. Software visualisation needs
to support this iterative process, if tools are stand alone the
effort to evaluate changes to code using those tools is con-

siderable.

In an ideal world the maintenance and evolution of a sys-
tem is carried out on the appropriate level of structure within
the lifecycle model because of the in built traceability be-
tween the documents that result from each phase. For exam-
ple, corrective maintenance is concerned with the code, and
changes are made at this level, whereas perfective mainte-
nance is concerned with changing requirements and hence
the changes should be made to the requirements and then
be reflected through to changes in the design documents
and the code. In practise however, maintenance and evo-
lution is carried out at the code level because the traceabil-
ity has been destroyed through excessive maintenance or it
never existed in the first place. In this situation changes are
rarely reflected in the other lifecycle documents that define
the system. Thus the need for program comprehension sup-
plemented by visualisation.

It is recognised that program comprehension occurs in
different ways, top-down, bottom-up or a combination of
the two [12]. This program comprehension can be system-
atic or as-needed, the integration of visualisation allows de-
velopers and maintainers to use whichever strategy is re-
quired or suits them best to achieve the understanding they
require to make changes. Another view of program compre-
hension is the feedback loop strategy, where the program is
compared against the mental model of the problem solution
held by the developer. The use of visualisation throughout
the implementation phase would complement this feedback
loop strategy as the developer saw the program growing vi-
sually allowing them to continually compare this against
their mental model. Work has already been done to integrate
different views to allow the use of different comprehension
strategies within a number of tools [9].

2 A Simple Analogy

This section draws a simple parallel between the devel-
opment of HTML pages and program code. It is not in-
tended to be a comprehensive comparison but to act as a
simple analogy to illustrate a possible way forward for soft-
ware visualisation.

When developing an HTML page one approach is to use
a simple text editor to write raw HTML and then to view
that HTML in a browser. In the maintenance of that HTML
page the maintainer will iterate between the editor and the
browser, always changing the HTML in the editor. The use
of the browser can been seen as using a visualisation of the
HTML code to check that it is correct and to get some un-
derstanding of how the HTML works. This type of use is
termed a one-way trip, in that the code (HTML in this in-
stance) is edited and the visualisation is used to give some
understanding. This can be seen as a simple analogy with
one way that program code is developed and where visuali-
sation is used to help understand some aspect of that code.
The programmer will use simple visualisation tools (such as
call graphs and control flow diagrams) to supplement their
understanding of the program source code.

Another way to develop HTML pages is to use a devel-
opment environment such as Dreamweaver. Here the main
interface is a visual one that allows WYSIWYG layout and
editing of the underlying HTML without having to resort to
understanding the HTML. Changes in the visual interface
generate or update the underlying HTML. In addition these
development environments allow the direct editing of the
underlying HTML and changes made via the textual repre-
sentation are reflected in the visual interface. This type of
use is termed roundtrip editing.

Of course it is recognised that Dreamweaver is a tool
with complete integration that operates on a somewhat re-
stricted language (HTML) that is inherently visual. The
Dreamweaver type of tool [5] [1] [6] works with HTML
because there is a one to one mapping between the HTML
tags and the visual representation. With software visualisa-
tion tools this one to one mapping is less obvious and harder
to achieve due the complexity of programming languages
and the nature of the visualisations.

Visualisation of software systems show the relationships
between the components of the system at different levels
of granularity and at different levels of abstraction. They
come in many forms and range for example, from high-
level architectural representations, through design notations
(UML) to structural representations such as call graphs and
control flow diagrams. To these may be attached attributes
that show, for example, the relationships between names
(variable, class etc.) used in systems. These visualisations
have been shown for example, using conventional node and
arcs, tables, and grids, and have utilised real life and abstract

metaphors in a two-dimensional or a virtual reality world.

3 Roundtrip visualisations

Roundtrip visualisation is used to describe visualisation
systems that are linked with the data from which they are
generated in such a manner that changes to the underlying
data updates the visualisation and changes made through the
visualisation itself are reflected in the underlying data. An
example of roundtrip visualisation for software is the con-
struction of a visualisation that represents the class structure
of a Java project and where if the structure of the classes
is modified then the visualisation is updated and similarly
if the visualisation is used as a mechanism to restructure
classes then the code reflects that restructuring.

Current visualisation tools tend to be one-way trip. One
model is where the source code is edited and this is reflected
in the visualisation but not the other way round. An exam-
ple of this is a call graph visualisation linked to a source
code editor that changes as the calling structure of the code
is modified. A further one-way trip mode is where the vi-
sualisation is edited and this is reflected in the code but not
the other way round. An example of this is the JBuilder GUI
designer where the visualisation consists of a canvas and a
palette of GUI components. The canvas can be ’edited’ in
order to change the GUI and these changes are reflected in
the java source code. However if the generated GUI java
code is edited directly then the changes are not necessarily
reflected on the canvas.

The limiting factor is that the visualisations developed so
far do not have the required properties for roundtrip visual-
isations. The current visualisations of software are at the
wrong level of abstraction or of the wrong granularity and
thus are one-way trip visualisations.

4 Conclusion

Current progress in software seems to confined to:

� improving abstractions to reduce information over-
load;

� developing new representations using abstract or real
world metaphors; and

� improving layout of existing representations;

and are instantiated in one-way trip standalone tools. These
are all laudable research aims and can sustain software vi-
sualisation research for a while longer.

The way forward for software visualisation is to address
the issues of roundtrip visualisation. To support roundtrip
visualisation an alternative approach is required, partial in-
tegration with the development environment is needed to

allow for access to the source data by the visualisation and
for changes made in the visualisation to be reflected in the
development environment. However this integration must
be sufficiently flexible, for example by the use of a standard
integration method for visualisations, that different types of
visualisations can easily be integrated and that visualisa-
tions can be integrated with different development environ-
ments. The roundtrip nature of the integration would need
to ensure that changes made using the visualisation are re-
flected in the source and that changes to the source were
reflected in the visualisation.

If this issue is not addressed then it really is the end of
software visualisation. We must develop new visualisations
that can easily integrate as roundtrip visualisations.

References

[1] Adobe. Pagemill. http://www.adobe.com/, 2003.
[2] J. Cain and R. McCrindle. Software visualisation using c++

lenses. Proccedings of 7th International Workshop on Pro-
gram Comprehension, May 1999.

[3] C. Knight and M. Munro. Comprehension with(in) vir-
tual environment visualisations. Proccedings of 7th Inter-
national Workshop on Program Comprehension, May 1999.

[4] C. Knight, M.-A. Storey, and M. Munro. First IEEE Interna-
tional Workshop on Visualizing Software For Understanding
And Analysis, 2002.

[5] Macromedia. Dreamweaver. http://www.dreamweaver.com/,
July 2003.

[6] Netscape. Netscape composer. http://www.netscape.com/,
2003.

[7] P. W. Parry, M. B. Ozcan, and J. I. Siddiqi. The applica-
tion of visualization to requirements engineering. Technical
report, Computing Research Centre, Shefield Hallam Uni-
versity, England, 1998.

[8] M. P. Smith and M. Munro. Runtime visualisation of ob-
ject orientated software. First IEEE International Workshop
on Visualizing Software For Understanding And Analysis,
2002.

[9] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Muller.
On integrating visualization techniques for effective soft-
ware exploration. In Proceedings of the IEEE Symposium
on Information Visualization, 1997.

[10] C. M. B. Taylor and M. Munro. Revision towers. First IEEE
International Workshop on Visualizing Software For Under-
standing And Analysis, 2002.

[11] A. Teyseyre, R. Orosco, and M. Campo. Requirements vi-
sualization. Workshop de Investigadores en Ciencias de la
Computacin(WICC’99), 1999.

[12] A. Von-Mayrhauser and A. M. Vanns. Program comprehen-
sion during software maintence and evolution. IEEE Com-
puter, August 1995.

VISSOFT’03 Maletic, Marcus

CFB: A Call For Benchmarks - for Software Visualization

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242 USA
jmaletic@cs.kent.edu

Andrian Marcus
Department of Computer Science

Wayne State University
Detroit, MI 48202 USA
amarcus@cs.wayne.edu

Abstract
The paper argues for the need of a benchmark, or

suite of benchmarks, to exercise and evaluate software
visualization methods, tools, and research. The intent of
the benchmark(s) must be to further and motivate
research in the field of using visualization methods to
support understanding and analysis of real world and/or
large scale software systems undergoing development or
evolution. The paper points to other software
engineering sub-fields that have recently benefited from
benchmarks and explains how these examples can assist
in the development of a benchmark for software
visualization.

1 Introduction

Recently, the development of benchmarks has been
highlighted [15] as a means to increase the scientific
maturity of a discipline. Sim et al [15] detail a number of
fields in Computer Science and Software Engineering
that have proposed benchmarks to further research and
understanding of the fields.

With regards to reverse engineering and program
analysis a recent benchmark on dealing with fact
extraction [16] motivated a number of improvements on
tools such as cppx [3]. Also, developing a benchmark for
clone detection was recently discussed at the
International Workshop on Program Comprehension
2003 with a main goal of formalizing the meaning of
source code clones and the like.

A number of individuals have argued for the Software
Visualization community to develop a standard
benchmark to support the research in the field. This
important issue was discussed at the ICSE’01 Workshop
on Software Visualization, VISSOFT’02, and most
recently at the ACM Symposium on Software
Visualization (SoftVis’03).

In particular, our recent discussions with Stephan
Diehl, general chair of SoftVis’03, and Margaret-Ann
Storey, an organizer for VISSOFT’02 and ’03, motivated
us to develop a Call-For-Benchmarks in Software

Visualization. We will motivate why this may be the
best means of developing a benchmark (suite) for
software visualization research. We feel there is a need
for a suite of problems that address different aspects of
software visualization and argue for this type of
approach. Additionally, we will propose a set of
guidelines to help organize this call.

2 Aspects of Software Visualization

The focus of the benchmark will be to exercise
software visualization systems/tools/methods in light of
their applications toward supporting industrial software
development, maintenance, and evolution. In order to
frame this task we define five dimensions of software
visualization [6]. These dimensions reflect the why,
who, what, where, and how of the software visualization.
The dimensions are as follows:

• Tasks – why is the visualization needed?
• Audience – who will use the visualization?
• Target – what is the data source to represent?
• Representation – how to represent it?
• Medium – where to represent the visualization?

These dimensions define a framework capable of

accommodating a large spectrum of software
visualization systems. This viewpoint subsumes such
diverse topics as program visualization, algorithm
animation, visual programming, programming by
demonstration, software data visualization, and source
code browsers. This diversity is reflected in the
taxonomic descriptions of the field by researchers such as
Price [9, 10], Roman [14], Myers [8], and Stasko [17].

Foremost, the benchmark should highlight different
types of tasks. For instance one could propose a
benchmark with the task of visualizing possible ADTs in
legacy code or visualizing the run time activation of
classes over a system. These are specific tasks that
require (possibly) very different visualization metaphors
and tools.

Before we continue this discussion let us present a
general reference model for information visualization.

VISSOFT’03 Maletic, Marcus

This will help focus the particulars of the benchmark
with regard to the underlying pre-processing and analysis
that must accompany any software visualization tool or
method.

3 A Reference Model for Visualization

Card [1] proposes that visualization is a mapping from
data to a visual form that the human perceives. Figure 1,
adapted from [1], describes these mappings and serves as
a simple reference model for visualization. In this figure,
the flow of data goes through a series of transformations.
The human may adjust these transformations, via user
controls, to address the particular application task.

The first transformation converts raw data into more
usable data tables. The raw data is typically in some
domain specific format that is often hard, or impossible,
to work with. This is very apparent when working with
trace data generated from program executions. Data
tables [1] are relational depictions of this data.
Information about the relational characteristics of the
data (meta data) can also be included in the data tables.
Meta data is descriptive information about the data [19].
From here, visual mappings transform the data tables into
visual structures (graphical elements). Finally, the view
transformations create views of the visual structures by
specifying parameters such as position, rotation, scaling,
etc. User interaction controls the parameters of these
transformations. The visualizations and their controls are
all with respect to the application task.

The core of the reference model is the mapping of a

data table to a visual structure. Data tables are based on
mathematical relationships whereas visual structures are
based on graphical properties processed by human vision.
Although raw data can be viewed directly, data tables are
a vital intermediate step when the data is abstract [2, 5,
12].

Software visualization maps to this reference model
directly. The raw data is source code, execution data,
design documents, etc. In the case of execution (trace)
data, the readability is minimal. However, source code is
readable, at least on a small scale, that is, one can hardly
keep in mind more than a few dozen lines of source at
one time. Data tables, an abstraction of the raw data,
take the form of abstract syntax trees, program
dependence graphs, or class/object relationships for
example. A variety of software analysis tools can
generate this type of data (table). Visual structures are
then the software-specific visualizations we render.
These visual structures are typically very specific to a
particular software engineering task.

This model also points out the need to transform raw
data into something more usable. This includes initial
acquisition, quality, and granularity of the data. While
these issues are not high profile for source code, they are
a key component for dealing with the huge amounts of
data that can be generated from execution traces, or from
parse trees of large systems.

The software visualization process maps on top of this
reference visualization model. Roman [14] and Price [9,
10], each define their own general model of the software
visualization. Their views are more domain-specific and

 Data Visual Form

Data
Transformations

Visual
Mappings

View
Transformations

Data
Tables

Visual
StructuresRaw Data Views

Human
Perceiver

Human Interaction Human Interaction

Raw Data: idiosyncratic formats
Data Tables: relations (cases by variables) + meta data
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, etc.)

Figure 1. Reference Model for Visualization. Visualization can be described as a mapping of data to
visual form that supports human interaction for making visual sense [1].

VISSOFT’03 Maletic, Marcus

omit aspects related to generation of views and data
transformations. These models drive the definition of
their respective taxonomies. We believe the general
information visualization reference model should also be
taken into direct consideration by a software visualization
system designer.

Development of a benchmark for visualizing the run
time behavior of a system may be more difficult for some
particular tasks. Providing an execution trace for a given
system along with specific features of that trace that are
deemed interesting is quite straight forward. However,
developing a benchmark for visualizing the execution of
a system in real time such as the research being done by
Reiss [13] may be more difficult. However this could be
posed as a specific question such as with debugging or
bottleneck location. Of course the underlying analysis
and data gathering is a permanent issue.

4 Composition of the Benchmark

Given this general reference model we can now define
benchmarks in terms of each of its specific components
in conjunction with the task, audience, target, etc being
addressed. A question that must be raised at this point is
whether the underlying program/data/run time analysis
methods are an integral part of the software visualization
method? That is, can we (completely) decouple the
visual structures and views from the underlying raw data
and data tables? Obviously in general the answer to this
question is no. However, the authors own work [7] along
with others [18] counters this to some degree within a
broad, abet limited, set of problem domains.

5 Call For Benchmarks

To develop a benchmark suite for software
visualization we propose a Call For Benchmarks much
like a Call For Papers. We issue this call to all
researchers active and/or interested in software
visualization. The plan is to collect all proposed
benchmarks, review each, and have a round of
revisions/clarifications. The collection will assembled
and made available to the research community on the
web. This should coincide with a related conference or
workshop and the benchmark could be presented in a
working session or the like to motivate individual
research groups to apply the benchmarks to their work.

Of course, the concept that a software visualization
tools is quite task specific and tightly coupled with the
underlying data analysis is what makes construction of a
single general benchmark, for software visualization,
quite difficult (impossible). However, for a visualization
tool to be widely utilized it should be interoperable with
a variety of tools and environments.

The goal is to collect the results of using the
benchmarks and present the findings in a paper,
presentation, and/or web site. This being the case, what then must the benchmark be

composed of? We believe the general consensus is that a
number of distinct problems (i.e., tasks, target, and
audience) of differing domains, each with its own data
set must be developed. The data set could include raw
data but alternatively include data tables (or both).
Providing data tables will drastically improve the ability
to compare the visual aspects of methods as opposed to
the underlying analysis methods.

We, the authors, invite benchmark proposals. The
submitted benchmarks should include:

• Description of the proposed benchmark
• Software engineering task being addressed
• The data (sets) necessary (source code, models,

data tables, etc.)
• What types of data analysis are necessary (if any)

to apply the benchmark
Furthermore, the stated task of a given benchmark

must be well directed at software engineering problems.
We could easily fall into comparing 2D graph layout
algorithms, whereas the real software visualization
problem is more like the comparison of UML class
diagrams layout methods (in a 2D space). Of course
there must be an agreed upon quality measure. For class
diagrams, recent work on the esthetics of UML diagram
layout [4, 11] can help provide guidelines. In this case,
the data table (UML class model) is all that is necessary.

• An evaluation method
• Types of user interaction required

E-mail your benchmark proposal to both

jmaletic@cs.kent.edu and amarcus@cs.wayne.edu. For
further information visit the web site www.sdml.info.

6 References

[1] Card, S. K., Mackinlay, J., and Shneiderman, B., Readings
in Information Visualization Using Vision to Think, San
Francisco, CA, Morgan Kaufmann, 1999.

Broader problems may include the visualization of
cross cutting concerns within a given system. Here one
must supply a system (raw data), with known aspects,
and (hopefully) pointers to (or a list of) these aspects
within the source (data tables). In this case the weaker
the data table, the more of an analysis problem this
becomes.

[2] Chi, E. H., Barry, P., Riedl, J. T., and Konstan, J., "A
spreadsheet approach to information visualization", in
Proceedings of Information Visualization Symposium '97,
1997, pp. 17-24,116.
[3] CPPX, "CPPX - Open Source C++ Fact Extractor", Web
page, http://swag.uwaterloo.ca/~cppx/, 2001.

http://swag.uwaterloo.ca/~cppx/

VISSOFT’03 Maletic, Marcus

[4] Eichelberger, H., "Nice Class Diagrams Admit Good
Design", in Proceedings of ACM Symposium on Software
Visualization (SoftVis'03), San Diego, CA, June 11-13 2003,
pp. 159-168.
[5] Levoy, M., "Spreadsheet for images", Computer Graphics,
vol. 28, 1994, pp. 139-146.
[6] Maletic, J. I., Marcus, A., and Collard, M. L., "A Task
Oriented View of Software Visualization", in Proceedings of
1st IEEE Workshop of Visualizing Software for Understanding
and Analysis (VISSOFT'02), Paris, France, June 26 2002, pp.
32-40.
[7] Marcus, A., Feng, L., and Maletic, J. I., "3D
Representations for Software Visualization", in Proceedings of
1st ACM Symposium on Software Visualization (SoftVis'03),
San Diego, CA, June 11-13 2003, pp. to appear.
[8] Myers, B. A., "Taxonomies of Visual Programming and
Program Visualization", Journal of Visual Languages and
Computing, vol. 1, no. 1, March 1990, pp. 97-123.
[9] Price, B. A., Baecker, R. M., and Small, I. S., "A Principled
Taxonomy of Software Visualization", Journal of Visual
Languages and Computing, vol. 4, no. 2, 1993, pp. 211-266.
[10] Price, B. A., Baecker, R. M., and Small, I. S., "An
Introduction to Software Visualization", in Software
Visualization, Stasko, J., Dominque, J., Brown, M., and Price,
B., Eds., London, England MIT Press, 1998, pp. 4-26.
[11] Purchase, H. C., "Effective information visualisation: a
study of graph drawing aesthetics and algorithms", Interacting
with Computers, vol. 13, no. 2, December 2000 2000, pp. 147-
162.

[12] Rao, R. and Card, S. K., "Exploring large tables with the
table lens", in Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI'95), 1995, pp. 403-404.
[13] Reiss, S. P., "Visualizing Java in Action", in Proceedings
of ACM Symboposium on Software Visualization (SoftVis'03),
San Diego, CA, June 11-13 2003, pp. 57-66.
[14] Roman, G.-C. and Cox, K. C., "A Taxonomy of Program
Visualization Systems", IEEE Computer, vol. 26, no. 12,
December 1993, pp. 11-24.
[15] Sim, S. E., Easterbrook, S., and Holt, R. C., "Using
Benchmarking to Advance Research: A Challenge to Software
Engineering", in Proceedings of 25th International Conference
on Software Engineering (ICSE'03), Portland OR, May 3-10
2003, pp. 74-83.
[16] Sim, S. E., Holt, R. C., and Easterbrook, S., "On Using a
Benchmark to Evaluate C++ Extractors", in Proceedings of
10th International Workshop on Program Comprehension,
Paris, France, 2002, pp. 114-123.
[17] Stasko, J. T. and Patterson, C., "Understanding and
Characterizing Software Visualization Systems", in
Proceedings of IEEE Workshop on Visual Languages, Seattle,
WA, September 1992, pp. 3-10.
[18] Storey, M.-A. D., Best, C., and Michaud, J., "SHriMP
Views: An Interactive Environment for Exploring Java
Programs", in Proceedings of Ninth International Workshop on
Program Comprehension (IWPC'01), Toronto, Ontario, Canada,
May 12-13 2001, pp. 111-112.
[19] Tweedie, L., "Characterizing interactive externalizations",
in Proceedings of Conference on Human Factors in Computing
Systems (CHI '97), 1997, pp. 375-382.

NNootteess

NNootteess

NNootteess

NNootteess

	p62-Marcus.pdf
	1. Description
	2. Support for User Interaction
	3. Current and Future Work
	4. References

	p113-Maletic.pdf
	Introduction
	Aspects of Software Visualization
	A Reference Model for Visualization
	Composition of the Benchmark
	Call For Benchmarks
	References

	page01: 1
	page11: 2
	page21: 3
	page31: 4
	page41: 5
	page51: 6
	page61: 7
	page71: 8
	page81: 9
	page91: 10
	page101: 11
	page111: 12
	page121: 13
	page131: 14
	page141: 15
	page151: 16
	page161: 17
	page171: 18
	page181: 19
	page191: 20
	page201: 21
	page211: 22
	page221: 23
	page231: 24
	page241: 25
	page251: 26
	page261: 27
	page271: 28
	page281: 29
	page291: 30
	page301: 31
	page311: 32
	page321: 33
	page331: 34
	page341: 35
	page351: 36
	page361: 37
	page371: 38
	page381: 39
	page391: 40
	page401: 41
	page411: 42
	page421: 43
	page431: 44
	page441: 45
	page451: 46
	page461: 47
	page471: 48
	page481: 49
	page491: 50
	page501: 51
	page511: 52
	page521: 53
	page531: 54
	page541: 55
	page551: 56
	page561: 57
	page571: 58
	page581: 59
	page591: 60
	page601: 61
	page611: 62
	page621: 63
	page631: 64
	page641: 65
	page651: 66
	page661: 67
	page671: 68
	page681: 69
	page691: 70
	page701: 71
	page711: 72
	page721: 73
	page731: 74
	page741: 75
	page751: 76
	page761: 77
	page771: 78
	page781: 79
	page791: 80
	page801: 81
	page811: 82
	page821: 83
	page831: 84
	page841: 85
	page851: 86
	page861: 87
	page871: 88
	page881: 89
	page891: 90
	page901: 91
	page911: 92
	page921: 93
	page931: 94
	page941: 95
	page951: 96
	page961: 97
	page971: 98
	page981: 99
	page991: 100
	page1001: 101
	page1011: 102
	page1021: 103
	page1031: 104
	page1041: 105
	page1051: 106
	page1061: 107
	page1071: 108
	page1081: 109
	page1091: 110
	page1101: 111
	page1111: 112
	page1121: 113
	page1131: 114
	page1141: 115
	page1151: 116
	page1161: 117
	page1171: 118
	page1181: 119
	page1191: 120

