
AutoCode: Using Memex-like Trails to Improve Program Comprehension

Richard Wheeldon, Steve Counsell and Kevin Keenoy
Department of Computer Science

Birkbeck College, University of London
London WC1E 7HX, U.K.�

richard,steve,kevin � @dcs.bbk.ac.uk

1 Introduction

In his seminal paper “As We May Think” [1], Vannevar
Bush suggested a future machine called a “memex”. In do-
ing so, he introduced the world to the concept of linked
documents and of the trail - a sequence of linked pages.
The concept of trails is well established in the hypertext
community and many systems have been built which sup-
port their construction [2].

Previous work has described a navigation engine for auto-
matically constructing trails as a means of assisting users
browsing Web sites [4]. This navigation engine was further
used to provide search and navigation facilities for Javadoc
program documentation. If JavaDoc-style program docu-
mention, which is derived from source code, can be in-
dexed, it seems logical that the source code itself can be
indexed.

We have developed a new tool called AutoCode based upon
the navigation engine design. AutoCode provides full-text
indexing of the java source code and uses a probabilistic
best-first algorithm to identify trails in graphs of coupling-
type relationships.

2 Trails on Java Code

Classes and objects in OO systems to not work in isola-
tion. The classes are connected to each other by various
dependencies. The Java language connects classes together
via five coupling relationships - Aggregation, Inheritance,
Interface, Parameter and Return Type [3]. Each of these
coupling relations can be used to construct a graph of de-
pendencies. AutoCode constructs trails on each of these
five graphs and presents them in a Web-based interface.

The NavSearch user interface used to present the trails (fig-

ure 1) has three main elements. At the top is a naviga-
tion tool bar comprising of a trail of classes considered
most relevant (the “best trail”). On the left is a naviga-
tion tree window showing all the trails. Whenever the
mouse pointer moves over these trails, a small pop-up ap-
pears which shows metadata and an extract. The rest of
the display is dedicated to showing the source code of the
selected class. A demonstration of this interface show-
ing the 6000 classes of the JDK libraries is available at
http://nzone.dcs.bbk.ac.uk/.

Each trail is colour-coded according to the type of cou-
pling involved. This coupling type is also shown in the
pop-up for each class. green trails denote parameter type
references, cyan trails denote return-type references, gold
trails show interface extensions, purple trails shows chains
of aggregation links and orange trails show inheritance re-
lationships from subclass to superclass.

Figure 1 shows how the trails are presented for the re-
sults to the query “zip” on the JDK 1.4 source code.
Figure 2 shows the trails more clearly. It can be easily
seen from the first trail that there is a member variable
of type ZipFile in the class ZipFileInputStream.
The second and third trails start with the common root,
ZipFile. These show that one or more methods in
the ZipFile class must take ZipEntry as a parame-
ter and that ZipFile has a subclass called JarFile.
The fourth trail shows that ZipFile implements the in-
terface ZipConstants. The fifth shows that ZipOut-
putStream has a member variable of type ZipEn-
try. The sixth and seventh trails show that both Zip-
InputStream and JarFile have methods which take
ZipEntrys as parameters. The eighth trail shows that
JarInputStream has at least one method which returns
a ZipEntry and the ninth shows that ZipEntry is the
superclass of JarEntry which is, in turn, the superclass
for JarFile.JarFileEntry.

AutoCode indexes the Java code using a custom doclet.

1



Figure 1. Results for the query “zip” on the
JDK 1.4 source code.

Figure 2. Trails returned for the query “zip”
on the JDK 1.4 source code.

This communicates with an external parser and constructs
the five coupling graphs. Given the graphs of related
classes, the navigation engine can be used to construct
trails. This works in 4 stages. The first stage is to calculate
scores (using ����� �	�
� ) for each of the classes matching one
or more of the keywords in the query, and isolate a small
number of these for future expansion, by combining these
score with a metric called potential gain [4, 3]. The second
stage is to construct the trails using the Best Trail algorithm
[4]. This builds trails using a probabilistic best-first traver-
sal. The third stage involves filtering the trails to remove
redundant information. In the fourth and final stage, the
navigation engine computes small summaries of each class
and formats the results for display in a web browser. Jason
Shattu’s Java2HTML1 is used to present the source code,
as it provides effective syntax highlighting, has a public
API and makes links to both Javadocs and between classes
in source code.

3 Future Work

Object Oriented languages gain particular benefit from the
mapping between classes and Web pages. It is intended
that AutoCode be extended to support both C++ and C#. It
is also hoped that the system can be extended to allow per-
sonalized results so that programmers working on a partic-
ular field have query results tailored to their needs.

References

[1] Vannevar Bush. As we may think. Atlantic Monthly,
76:101–108, 1945.

[2] Siegfried Reich, Leslie Carr, David De Roure, and
Wendy Hall. Where have you been from here? : Trails
in hypertext systems. ACM Computing Surveys, 31(4),
December 1999.

[3] Richard Wheeldon and Steve Counsell. Making
refactoring decisions in large-scale java systems: an
empirical stance. Computing Research Repository,
cs.SE/0306098, June 2003.

[4] Richard Wheeldon and Mark Levene. The best
trail algorithm for adaptive navigation in the
world-wide-web. Computing Research Repository,
cs.DS/0306122, June 2003.

1 http://java2html.com/

2


