
 1

Visualization to Support Version Control Software:
Suggested Requirements

Xiaomin Wu Margaret-Anne Storey Adam Murray Rob Lintern
University of Victoria University of Victoria University of Ottawa University of Victoria

xwu@uvic.ca mstorey@uvic.ca amurray@site.uottawa.ca rlintern@uvic.ca

Abstract

Many version control systems have been developed to
manage both software version history and associated
human activities with the intent of producing higher
quality software. To better understand and explore the
vast information these version control systems portray,
several approaches have been conducted to apply
visualization techniques in this domain, resulting in a
variety of tools. However, these tools have rarely been
evaluated and hence we are unable to tell how successful
these information visualization techniques are for
understanding and exploring version control information.
Moreover, there is lack of requirements for how such a
visualization tool can support version control activities.
This paper describes a set of requirements for
visualization support in a version control tool. We also
present a tool called Xia, which was developed for the
navigation and exploration of software version history
and associated human activities. Moreover, we conducted
an exploratory user study to test if the functionality of the
Xia tool meets these requirements and if there are
requirements we missed -- the results are documented.
This position paper ends with a question – how should we
proceed next with our research? We intend to refine the
requirements and seek directions for future exploration.

1. Introduction

Version control systems are becoming an increasingly

important tool for software development projects,
especially when the development tasks are performed in a
team environment. Presently, most medium to large-scale
software projects are developed in association with a
version control tool. A large amount of information is
generated and stored in the repositories of these version
control tools. What does this information mean to the
software development process? Can this information be
used in a meaningful way to help with team work? If so,
how does the presentation of this information assist
software development? To answer these questions, we
conducted a preliminary survey of five version control
systems in the spring of 2002. In this survey, we posed
questions related to the functionality and ease of use of
version control systems, as well as what data is important

to support team collaboration. The results of this survey
highlighted that although the features of version control
systems are considered adequate; the interfaces of these
systems are not satisfactory for users to understand and
explore version control information. Also, our survey
demonstrated that the most prominent concerns related to
a team development task include:

• What happened since I last worked on the project
(types of events, such as new file added, file
modified, etc.)?

• Who made this happen?
• Where did this take place (location of the new file,

change, deletion, etc.)?
• When did this happen?
• Why were these changes made (what is the

rationale of the designer(s) who made the change)?
• How has a file changed (exact details of the

change, as well as relationship to other files)?
• What is the history of a particular file?
We name this problem the “5W+2H” problem for

brevity, referring to the 5W’s, what, who, where, when,
why, and 2H, how, history, above. When many of the
5W+2H questions remain unresolved, developers may
feel like they are working in a void, and progress will be
greatly hindered. More importantly, if the 5W+2H
problem is not properly addressed, we cannot explore
how people work in teams on software projects. When
this problem is related to the entire software project,
participants in our survey stated that they would like to
have an overall view of the entire dataset. They believe
that an overall view showing data related to all people’s
work would enable them to collaborate even better. This
is because they will have more awareness of each other’s
activities and how other people’s work may be relevant
with their own work.

On the basis of these findings, we conjectured that
applying information visualization techniques to a version
control system might resolve these problems.
Consequently, we investigated related research and
noticed that some approaches have been deployed as in
the following projects: Seesoft [1, 7], Beagle [17], CVS
Activity Viewer [4], and others. These tools used some
kind of visualization and query mechanisms to display
and explore data from version control systems. However,
these tools don’t provide requirement analysis and have
rarely been evaluated and hence we are unable to tell how

 2

successful these visualization techniques can be for
assisting people in understanding and exploring version
control information.

In this position paper, we present Xia, a version control
visualization tool, which is tightly integrated with a full-
featured IDE, Eclipse [5]. In Xia, advanced visualization
techniques can be used for browsing and interactively
exploring the data in a CVS repository. A preliminary
user study was also conducted to evaluate both the
requirements we identified through the survey and to test
if the tool satisfactorily meets these requirements

Section 2 introduces our approach to the design and
implementation of Xia. The details and results of our user
study are described in Section 3. In Section 4, we outline
future work and pose questions about how to improve our
requirements and further evaluate our tool.

2. Approach

In our approach, we elected to focus our tool on the

version control system known as CVS [3]. CVS is freely
available open-source software that is widely used. We
believe the widespread user base will make it easier to
evaluate the effectiveness of our tool, as users will be
easier to find. Our previous experience [8, 10] of plugging
a visualization tool, SHriMP [14], into the Eclipse
platform [6], encouraged us towards an approach of using
the Eclipse platform as a framework for the integration of:

(1) The Eclipse CVS plug-in, a CVS interface plugged
into the Eclipse platform, through which the CVS
repository information could be accessed and retrieved;

(2) The Eclipse JDT (Java Development Tools) plug-in,
which provides the workspace information for a particular
Java project and;

(3) The SHriMP visualization engine, a domain-
independent information visualization tool developed at
the University of Victoria.

Xia is the result of an integration and customization of
these components. The Eclipse CVS plug-in [9] and the
JDT plug-in serve as data backends for Xia. The SHriMP
visualization tool is customized and used by Xia as a
visual front-end for the back-end data. Figure 1 illustrates
the architecture of Xia.

In the following subsections, we look into the data we
obtained from a CVS repository, and describe how we
design the visualization in our tool to help answer the
questions we raised before.

2.1. Data acquisition and analysis

The CVS repository is a good resource of information

for helping to resolve the 5W+2H questions. We believe
that pertinent information can be obtained and visualized.
For instance, the log message in CVS contains the record
of each commitment, including:

Figure 1. The architecture of Xia

• The author who made the commitment;
• The comments made by the author of what was

changed and hopefully why it was changed; and
• The time and date when the file revision was

created.
To understand how a change occurs, we propose the

diff function of CVS helps. The location of the changed
file in the repository hierarchy helps determine where the
change takes place. In our tool, the information we
required was retrieved directly from both the CVS
repository via the Eclipse CVS plug-in, and the JDT in
Eclipse, or the information was calculated from the
retrieved data.

By analyzing data from the CVS repositories, we
classified data into two categories: the software artifacts,
including files, folders, and other code-level entities, and
associated revision attributes. We attached the following
attributes (see Table 1) to each of the file revision.

Table 1. File revision attributes

Attribute Name Data Resource Data type
File revision number Retrieved Ordinal
File revision tags Retrieved Nominal
Date of last commitment
of a file revision

Retrieved Ordinal

Author who changed the
file most recently

Retrieved Nominal

Author who changes the
file most times in a
particular time period

Calculated Nominal

Comments associated
with each commitment

Retrieved Nominal

Number of changes
associated with a file
revision

Calculated Ordinal

History of a file Retrieved Nominal

These attributes reflect human activities that concern

people in answering the 5W+2H questions. They have

 3

been classified into two categories according to their data
types, nominal and ordinal. Nominal attributes are strings
whereas ordinal attributes have numeric or ordinal values.

2.2. Visualization

In this section, we describe the visualization of
software artifacts and associated version attributes. Then
we outline our method of interactively exploring this
information. Finally, we summarize how our visualization
techniques were designed to answer the 5W+2H
questions.

2.2.1. Visual representation of CVS artifacts. A single
file revision in the CVS repository is mapped to a single
node in SHriMP. Likewise, a folder containing file
revisions is mapped to a parent node of file revision nodes.

In the Eclipse CVS plug-in, software in the repository
is displayed in a tree-like hierarchical structure of folders
and file revisions. This structure corresponds well to
nested graphs in SHriMP, as illustrated in a screen shot of
the CVS data in Fig. 2. In Fig. 2, parent folder nodes
(shown in purple) encompass file revision nodes (shown
in yellow). The outmost blue nodes represent two
versions of the same project. Node size relates to the size
of the content within the node, so the version on the left
(which is graphically larger) contains more sub-nodes
than the version on the right..

Figure 2. A nested graph showing two versions

(in blue) of a software project.

2.2.2. Visual representation of attributes. In addition to
the pre-existing SHriMP visualization techniques, we
developed an Attribute Panel for showing and querying
attributes associated with file revisions. The attribute
panel concept was originally developed at the University
of Maryland, and combined with the Treemap
visualization tool [11].

Appropriate visual variables are used to display the
attributes [18]. For instance, using color, intensity, tool

tips, size, and position to highlight nodes and accentuate
their differences. Visual variable values are triggered
through the Attribute Panel, as illustrated in Fig. 3.

Tool tips provide instant messages that are easily
perceived during browsing. In Xia, all attributes in the
CVS domain can be viewed with tool tips. The user
selects which of the attributes to show in the tool tips.

Colors may be used for both nominal and ordinal
attributes, though different color schemes are necessary
for each type [2]. For nominal attributes, each of the
values may be assigned a distinct color; whereas ordinal
attributes may use color intensity instead of different
colors (see Fig. 4). In Xia, the date of last commitment
and number of changes are the two ordinal attributes that
can be visualized using color intensity. These ordinal
attributes are sorted in an old-to-new and few-to-more
order respectively, and then each value is assigned an
intensity of green (the default color). In our example, a
more recent date is assigned a brighter green color. Figure
4 shows two screen shots of coloring nodes according to
their nominal and ordinal attributes.

The arcs between nodes enable people to focus on a
specific task and keep track of its relationship to other
files in the project. This kind of awareness is very
important for teams to collaborate on work effectively,
especially if there are many dependencies between the
different artifacts that are being worked on.

(a) (b)

Figure 3. In (a), the user can change colors for
the developers, and change how the tool tips

appear; In (b), checkbox and double slider filters
are used to filter nodes by their attribute values

2.2.3. Interactive exploration. The Attribute Panel also
supports dynamic exploration using filters. Two kinds of
filtering widgets have been developed for different
attribute types. A checkbox filter, as illustrated in Fig. 3b
is created for each of the nominal attributes. A checkbox
filter consists of a set of checkboxes associated with each
of the attribute values in the domain. An unchecked
checkbox results in the corresponding nodes having equal

 4

attribute values being filtered from the screen. The other
filtering widget, a double slider, is designed for ordinal
attributes and is especially useful for dynamic queries. A
double slider allows the user to select a range of values
for query by adjusting the minimum and maximum value
of the slider, and can also be used to select a single value
by setting the minimum and maximum value of the slider
to the same value. We implemented the double slider in
Xia to filter two ordinal attribute values: Date of last
commitment and Number of Changes. These two sliders
could be used together to perform a multi-variable query.
For example, if a programmer wants to look at the file
that changed most frequently in the past week, he/she
would be able to get the result by setting the Date of Last
Commitment slider to the corresponding range, and
setting the Number of Change slider to its minimum and
maximum value.

Figure 4(a). The color of each node represents

the author who made the latest change

Figure 4(b). The color intensity of each node is

determined by the date of the latest commitment.

2.2.4. Ordered Treemap layout. To provide a view

that addresses the 5W+2H problem at the entire project
level, we adopted the Ordered Treemap algorithm created
by the HCI lab at the University of Maryland [12]. Two
distinct features of the Treemap layout are the variation of
the node size according to the associated numerical
attribute and the repositioning of nodes according to their
associated ordinal value. Figure 5 demonstrates a screen
shot in which node size was adjusted according to the

Figure 5. An ordered Treemap layout.

number of changes and the position of nodes are ordered
by their last commit date. This ordering feature provides a
comparable view for files in a project, hence answering
the When question at the project level.

2.2.5. Summary of visualization features for CVS. Xia
provides various ways to visualize data or derived data
from the CVS repository. In addition, relationships
between files can be determined using information
extracted from the Eclipse JDT plug-in.

Table 2. Map of visualization techniques to

questions of interest when working with CVS
Question Visualization techniques
What The name of the changed file can be shown

using labels on the nodes (which are visible
when you zoom in), or they can be shown
using tool tips when the user brushes over
nodes in the graph with a mouse.

Who Can be distinguished using different node
colors; filter by name using a checkbox.
Tool tips could also be used to show the
author’s name.

Where Nested within relevant folders in the layouts
When Date can be shown using color intensity,

tool tips. File revisions can also be filtered
by date

Why Rapid access to the code, CVS comments
(in the attribute table) and documentation
(by right clicking on the nodes, or by
zooming in to an embedded view)

How Access to the code, Javadoc and CVS
comments by zooming on a file revision
node. Tool tips, intensity, size and location
could also be used to show number of
changes to a file. Relationships between
files are shown using arcs, which could be
used to trace the impact of changes.

History Access to a history panel by zooming on a
file revision node and the use of right mouse
menu. A table contains the revision history
of the file is displayed.

 5

We conjecture that the 5W+2H questions can be

answered by interacting with the features in Xia which
includes the double slider filters, the different layout
algorithms (such as the Treemap layout) effecting size
and order of the nodes, the checkbox filters, tool tips,
color and intensity. In addition to these features, Xia
provides easy access to the source code, documentation
(Javadoc) and comments in the CVS repository. The user
can zoom into a node representing a file revision and
switch between these different views. In Table 2 we
summarize how these different features can be used to
answer the 5W+2H questions.

3. Evaluation

We conducted an exploratory user study to test both
the initial requirements we discovered through the survey
and the functionality and usability of Xia. As very few
studies have been conducted in the field of version control
visualization [19], we consider this study novel.

A Java project with four versions was chosen as the
dataset for the study. Five graduate students from the
Department of Computer Science at the University of
Victoria participated in the study. Each participant had
experience on a team software project, working with at
least one version control tool.

Following the pre-study questionnaire (to determine
their previous programming and version control
experience etc.), a fifteen-minute orientation on Xia was
provided to introduce the basic tool operations and the
tool’s core features to each participant. Then, a task list
was administered to participants. Further inquiry into the
user’s opinion of the tool was gathered through a post-
study questionnaire.

The following subsections describe in detail the tasks
users performed and our general observations.

3.1. Tasks

Two sets of similar tasks were assigned to participants

corresponding to two different data resources: the data in
the CVS repository and the data in the programmer’s own
workspace. These two sets of data constitute a
programmer’s working data in the real world.

The tasks involved exploring the information space
and answering questions related to team work and
software history, including the 5W+2H questions. For
example, one of the tasks asked the participant to name all
programmers that have been working on the project.
Another task asked the participant to find out who was the
last person working on a particular file. These two tasks
correspond to the “Who” question on the project and file
levels. In regards to the “What” question, we asked the
user to determine what kind of changes to a particular file

have been made. As per the “When” question, we
encouraged the user to establish which file was changed
most recently. With respect to the “How” question,
participants were asked to discover how a particular file
was changed in the latest commitment. The “Why”
question was explored by asking for the rationale behind a
particular change, and the “History” of a file was explored
by request too.

3.2. General observations

Participants successfully resolved most tasks. Some

general observations were as follows:
• The visualization and exploration techniques

provided by the Attribute Panel were used
frequently to resolve the tasks. Also, participants
pointed out in their post-study questionnaires that
they would like to use features of the Attribute
Panel in their everyday work.

• The tool appeared to be easy to learn and use.
Although only fifteen minutes of orientation was
provided, participants used the tool effectively to
perform the tasks. They were aware of the possible
ways to use the tool to solve problems and did not
require additional assistance or note any significant
difficulties.

• Participants considered the tool informative, from
both the project manager and programmer
perspective. Candidates indicated they believe the
Xia tool could prove helpful in helping them solve
many problems they encounter in a work
environment.

• The tool was also used to answer more sophisticated
questions by making use of a combination of features.
For example, one of the tasks asked the participants
to find out which file is most stable and which file is
most active. The participants defined “stable” and
“active” in a similar way: a file that has not been
changed for a long time and to which very few
changes were made was considered stable; the
opposite held true for an active file. To answer this
question, participants chose both the last commit date
double slider and number of change double slider to
narrow down the range of candidate nodes, and
analyzed the candidate nodes.

• The visualization features in Xia helped the users
gain more awareness of their teammates activities.

• The participants were impressed by the immediate
feedback the visualizations provided when they
posed a new query. Some of them had special
interests in color schemes while others used filters
more often.

Though the positive feedback is encouraging, we also
noticed some deficiencies of the tool:

 6

• Some participants were confused when working with
different revisions of the same file. They suggested
that some kind of mapping between different
revisions of the same file would be helpful.

• The file revision organization requires a more elegant
display. Currently, the file revisions are organized by
software versions. However, revisions not belonging
to a particular version will not be considered or
displayed in the tool. This may lead to the loss of
information.

• Some participants also suggested a time-line
arrangement of project versions as time is a very
important attribute in version control.

• Visualization of other attributes was also anticipated
by some of the users. For example, one of the users
was interested in who originally created a particular
file.

• Participants considered the “diff” function – a
comparison of two different file revisions very
important in their everyday work. We considered
displaying the CVS plug-in’s diff view within Xia,
however, Xia does not currently support this feature
on account of difficulties embedding Xia’s Java
Swing [15] GUI inside of Eclipse’s SWT [16] GUI (a
problem discussed by Rayside et al. [10]). Further
investigation is required for this technical issue.

3.3. Justification of the study design

The study we conducted is a very preliminary step to

provide feedback on the use of a tool such as Xia and to
help us in our requirements gathering process. Although
the number of users was small, we were more interested
in finding out if the requirements we had were correct,
and if we were missing any. The preliminary study also
allowed us to study how the tool can be used to help with
version control activities. Our intention at this point is
not to perform statistical analysis of results, as we believe
research in this area is still too new. The size of the code
studied was also small but the study required that the
users gain some knowledge of the code in a relatively
short time. We also did not compare our tool to others as
firstly, there are no other prototypes available that use
visualization for version control activities. Secondly, we
considered comparing our tool to CVS, but this would be
a biased study as our tool provides answers to questions
which cannot be easily answered by CVS even in a
textual way.

4. Future Work

Based on our observations from the user study we

found more research questions that need to be explored.
For example, we believe more version attributes beyond
the 5W+2H questions (e.g. the creator of an artifact) and

visualization of finer granularity of version control should
be investigated. We are currently making improvements
to our tool – the question we now face, is how should we
proceed in the next evaluation phase? Our proposed
approach is to do an introspective case study by applying
the tool in our own research group’s programming
activities. We also believe the requirements are evolving
with the availability of various tools. We are interested
in feedback on our tool and on our requirements at the
Vissoft workshop.

References
［1］ Ball, T. A. and Eick, S. G. 1996. Software visualization in

the large. IEEE Computer, vol. 29, no. 4, pp. 33-43.
［2］ Card, S. K., Mackinlay, J. D., and Shneiderman, B. 1999.

Readings in Information Visualization: Using Vision to
Think. Morgan Kaufmann.

［3］ CVS 2003. The CVS website: http://www.cvshome.org/
［4］ Dourish, P. 2002. “Visualizing Software Development

Activity”. URL:
http://www.ics.uci.edu/~jpd/research/seesoft.html

［5］ Eclipse 2003. Eclipse Homepage: http://www.Eclipse.org
［6］ Eclipse Platform, 2003. The Eclipse Platform Subproject

Webpage: http://www.eclipse.org/platform/index.html
［7］ Eick, S. G., Steffen, J. L., and Summer, E. E. 1992.

Seesoft – A tool for visualizing line oriented software
statistics. IEEE Trans. Software Engineering, vol. 18, no.
11, pp. 957-968.

［8］ Lintern, R., Michaud, J., Storey, M.-A., and Wu, X. 2003.
Plugging-in Visualization: Experiences Integrating a
Visualization Tool with Eclipse. In Proceedings of
Software Visualization 2003.

［9］ McGuire, K. 2002. VCM 2.0 Story (article in Eclipse

website: http://www.eclipse.org/platform/index.htm)
［10］ Rayside, D., Litoiu, M., Storey, M.-A., Best, C. and

Lintern, R. 2002. Visualizing Flow Diagrams in
Websphere Studio Using SHriMP Views (Visualizing
Flow Diagrams). Information Systems Frontiers: A
Journal of Research and Innovation, vol. 4 (4)

［11］ Shneiderman, B. 1992. Tree Visualization with Tree-
maps: A 2-d space-filling approach. ACM Trans.
Graphics, vol. 11, no. 1, pp. 92-99.

［12］ Shneiderman, B. and Wattenberg, M. 2001. Ordered
Treemap Layouts. In Proc. IEEE Symposium on
Information Visualization 2001, 73-78. Los Alamitos, CA

［13］ Storey, M.-A., Best, C., Michaud, J., Rayside, D., Litoiu,
M. and Musen, M. 2002. SHriMP views: an interactive
environment for information visualization and navigation.
In Proceedings of CHI 2002 Conference, Minneapolis,
Minnesota, USA, pp. 520-521.

［14］ SHriMP 2003. SHriMP Website: www.shrimpviews.com

［15］ Swing 2003. The Swing Connection, http://java.sun.com

/products/jfc/tsc/

 7

［16］ SWT 2003. SWT: The Standard Widget Toolkit,
http://www.Eclipse.org/articles/Article-SWT-Design-
1/SWT-Design-1.html

［17］ Tu, Qiang and Godfrey, Michael 2002. An Integrated

Approach for Studying Software Architectural Evolution.
In Proc. of 2002 Intl. Workshop on Program
Comprehension (IWPC-02).

［18］ Ware, C. 2000. Information Visualization, perception for
design. Morgan Kaufmann

［19］ Weinberg, Z. 2002. Novel Methods of Displaying Source
History: A Preliminary User Study.
http://www.panix.com/~zackw/cs260/novel-methods-of-
displaying-source-history.pdf

